BBC Panorama: GM Food

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: June 9, 2015

On June 8th 2015, BBC Panorama reported on Genetically Modified Crops. I put together a ‘Storify’ taken from the twitter response that occurred during and after the program.

Check it out!

PanoramaPic

 

Genome Resequencing for Mutant Identification

As most biologists will be aware, the cost of DNA sequencing has been falling well in advance of the costs predicted by Moores law (although argued by Neil Hall a few years ago, this might not have been the best thing to happen, intellectually at least).

Instead of simply sequencing many genomes for the sake of it, this also offers opportunities for researchers to use this technology to ‘do-science’ that might previously have been prohibitively laborious or expensive. One such area where this is true is in the identification of novel mutations in plants, especially in Arabidopsis.

Classic approaches to identity the location of an EMS mutation involved mutant identification, backcrossing, selection, rough mapping by PCR or CAPS markers, probably more crossing and then a little guesswork toward the end..…..before using Sanger sequencing to identify what you hope is the causative mutation. Even with a strong following wind this process could take upwards of a year……. many a 1990s PhD thesis was written off the back of mutant identification. In contrast it is now relatively cheap to resequence the Arabidopsis genome so a lot of time can be taken out of this process. In addition, resequencing can remove some of the difficulty involved with selective of mutants that have a subtle phenotypes wherein inaccurate selection of putative mutants would significantly set back the process.

Back in 20111, Anthony Hall’s group in Liverpool University used resequencing in parallel with classic genetics to identify the lesion in the novel early bird1 gene (ebi1), which has a defect in function of the circadian clock. In this case ebi1, which was generated using EMS, was backcrossed 4 times to reduce the number of EMS-induced SNPs not associated with phenotype, and then sequenced alongside the original wildtype plant (from the WS ecotype). The critical part of the protocol came in the power of the software they used to detect homozygous SNPs in the ebi1 line. Indeed the researchers ran into some difficulties due to a high number of SNPs they initially identified. However, when they combined altering the stringency of SNP-calling together with classical rough mapping they were left with approximately 30 SNPs to finally assess. Using a priori knowledge of proposed gene function and by investigating expression changes in these candidates they ultimately identified a novel mutant. Although this process was ultimately successful, it took some extra time due to the difficulty of mutant selection, optimization of the SNP-calling software and subsequent analysis of gene expression.

A recent paper from the lab of Lucia Strader at Washington University in St Louis shows how powerful resequencing can be if you are using a robust method of mutant selection. In their case they isolated mutants with a defect in the root growth response to ABA, which is an unequivocal phenotype to score. They backcrossed their initial mutants, selected for ABA resistance in F2 generation before resequencing these resistant plants. Using this process the authors report that they narrowed their search to between 3-10 candidate genes and that they have subsequently identified novel (unpublished) genes using this method. In addition, as an exemplar of their protocol they used it to isolate novel alleles of known ABA-resistant mutants.

Schematic for mutant identification using NGS. Reproduced from Taylor and Francis PSB http://dx.doi.org/10.1080/15592324.2014.1000167
Schematic for mutant identification using NGS. Reproduced from Taylor and Francis PSB http://dx.doi.org/10.1080/15592324.2014.1000167

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In parallel they used a similar protocol to the Hall lab where they resequenced non-backcrossed plants and then selected SNPs that only lay within exons.Using this approach they identified between 100-200 homozygous SNPs, a potentially fifty-fold increase compared to their other method. Therefore when you are working with a strong robust phenotype it is probably worth the extra time to obtain a back-crossed population in order to have greater confidence you are isolated your mutant of interest.

The authors importantly note that one limitation of this protocol is that by only selecting for exonic mutations, they are removing the possibility of identifying mutants with splicing or non-coding defects, which may in turn rule out a number of candidate genes.

 

For me the take-home message from this second study is that if you have a robust phenotype to select for and are confident that your mutation is novel then use of ever-improving NGS is now a time and cost effective way of mutant identification.

In fact this technology might inspire a return to the forward genetic screens of the 80s and 90s , with the aim of identifying novel genes involved in well characterised signaling pathways……..except that PhD students might now have to characterise 10 novel genes prior to graduation….

Arabidopsis Research Roundup: June 3rd 2015

We are unashamedly biased in this weeks Arabidopsis Research Roundup which firstly features work from the group of GARNet PI Jim Murray about the genetic interactions that define growth of lateral organs. Elsewhere we highlight papers that investigate a different role for CYCD3 genes in vascular development, the role of TFL1 in the shoot meristem and the ability of Arabidopsis seedling to tolerant a high light environment during ontogenesis.

Randall RS, Sornay E, Dewitte W, Murray JA (2015) AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property Journal Experimental Botany http://dx.doi.org/10.1093/jxb/erv200

Jim Murray and Walter Dewitte (Cardiff) lead this study that investigates the relationship between the AINTEGUMENTA (ANT) transcription factor and cyclin CYCD3;1 during lateral aerial organ (LAO) formation. LAO growth is determined by the both the number and size of cells that comprise the organ. During petal development, ant mutants have reduced cell number but increased cell size, demonstrating a ‘compensatory mechanism’ of growth. In contrast cycd3;1 mutants have increased cell size that results in larger petals, showing no compensatory mechanism. Interestingly ant cycd3;1 double mutants do show growth compensation in the same tissue. The authors propose that occurrence of the compensatory mechanism depends on at which time-point during distinct phases of cell division and cell expansion the growth defect occurs.

 

C Collins, Maruthi M.N and C Jahn (2015) CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. Journal Experimental Botany http://dx.doi.org/10.1093/jxb/erv218

Another study that investigates a different role of D-type cyclins is led by former Murray lab member, Carl Collins working at the Natural Resources Institute at the University of Greenwich. The factors that control cambial cell growth are poorly understood but the authors provide a link between the cell cycle and cambial differentiation by showing that CYCD3 subgroup of genes play a role in the process. Three CYCD3 genes are expressed in cambial tissue and the equivalent triple mutant has reduced hypocotyl and stem diameter, which is linked to a reduction in mitotic activity. Conversely, mutant xylem cells increased in size. This shows that CYCD3 genes provide a mechanism for controlling the correct proportions of cell growth during vascular development. This might provide a useful tool in the future study of this important process in woody plants.

 

Carvalho FE, Ware MA, Ruban AV (2015) Quantifying the dynamics of light tolerance in Arabidopsis plants during ontogenesis Plant Cell Environment http://dx.doi.org/10.1111/pce.12574

The group of Professor Alexander Ruban at Queen Marys University London utilise a novel methodology to measure the ‘intactness’ of photosystem II (PSII). In this paper they assess the amount of light required to inhibit PSII activity through the life cycle of Arabidopsis plants grown in short days. They show that maximum light tolerance occurs in 8-week old plants. Interestingly the light tolerance correlates with rates of electron transport yet did not coincide with the chlorophyll a/b ratios or anthocyanin content.

 

Baumann K, Venail J, Berbel A, Domenech MJ, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D (2015) Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. Journal Experimental Botany http://dx.doi.org/10.1093/jxb/erv247

The TFL1 gene is a repressor of flowering in the Arabidopsis shoot meristem. Researchers from the UK, USA, Spain and Italy, led by Desmond Bradley at the JIC show that ecoptocally expressed TFL1 can repress flowering outside of its normal expression domain. By comparing the expression of TFL1 with genes that determine floral identity (APETALA, LEAFY) the authors conclude that the shoot meristem is more sensitive to TFL1, allowing the maintenance of a vegetative state in this tissue.

Multi-scale Biology Meeting.

What is Multi-scale Biology?

That was the overriding question that occupied attendees of the inaugural meeting of the Multi-scale Biology Network, held at the University of Nottingham on June 1st 2015. This newly funded BBSRC network brought together biologists, physicists, engineers, and the funding bodies (amongst others) for this meeting that aimed to set the agenda for this area of future collaboration. Storify of the meeting.

Those who had also been involved in the genesis of synthetic biology policy might have felt a touch of deja-vu over the questions being asked at this meeting. However whereas the term ‘synthetic biology’ might have remained opaque after those early meetings, the feeling at the end of this day was that good progress had been made into an understanding of what this network might achieve.

Although there were <a href="http://www.multiscalebiology.org.uk/events/event/springboard/" onclick="_gaq.push(['_trackEvent', 'outbound-article', 'http://www cialis 20mg en france.multiscalebiology.org.uk/events/event/springboard/’, ‘speakers from a range of biological disciplines’]);” target=”_blank”>speakers from a range of biological disciplines there was no requirement for forced interactions between different research areas. Instead there was a sense of ‘wondering what can be learnt‘ when for example, plant scientists talked to neurobiologists…

The meeting was kicked off by Professor Markus Owen from the Nottingham Maths department and the agenda had been clearly designed to encourage significant amounts of discussion, be it during the lecture period or over an extended lunch in which attendees split into small groups to discuss challenges in MSB.

Many of the attendees were involved in some form of systems biology so the sense was that MSB comes as the natural extension of that area of research. Instead of looking at a single network, how should researchers extend their thinking to include how these networks interact at different scales…..without losing the quality of analytic data?

Professor Alfonso Martinez-Arias (Cambridge) led the first discussion and made the important point that even though we now have enormous amounts of data, what is it we actually want to learn?….and is focusing on that type of question compatible with current necessity for publication in high quality journals?

Immediately after lunch Professor Carole Goble introduced a new ERASysApp network (FAIRdom) in which she is involved that aims to ensure that systems biology projects make their data, operating procedures and models, Findable, Accessible, Interoperable and Reusable (FAIR). This was a timely reminder that it is very important to produce data that is reusable by the community so that people aren’t reinventing the wheel in each experiment. In 2016 GARNet will be hosting a meeting with the Exeter Centre for the Study of Life Sciences that will address issues surrounding data reuse. Details to follow later in 2015!

Toward the end of the day Professor Martin Howard from the John Innes Centre led the final discussion that attempted to coalesce the thoughts of attendees. One suggestion was for biologists to act ‘like engineers’ and to use ‘dirty tricks’ as to get tasks completed. Understanding the details can come later…. getting the job done is most important….. whatever the job is that needs to be done! It was also discussed that coming to any ‘effective theory’ of biology is almost impossible given the unpredictable nature of the field.

The results of group discussions!

The results of group discussions!

Overall it seems that making any decisions about how multi-scale biology projects can be implemented will depend on the funding environment. To that end Michael Ward from the EPSRC stressed that mathematical biology is important for mathematical science funding and urged attendees not to be put off from looking in their direction. Ceri Lyn-Adams from the BBSRC informed the group that although there wasn’t any money specifically ring-fenced for MSB, they welcome applications in this area under existing mechanisms.  What was clear is that MSB and systems biology remain in the forefront of BBSRC funding strategy!

By it’s very nature MSB will require large projects that might bring together a few responsive mode-size projects under a single umbrella. Hopefully new researchers will be able to be involved in this type of project and the money doesn’t all go to large established groups.

Plant Scientists were well represented at the meeting most notably by Martin Howard, Malcolm Bennett and Leah Band, who gave the final talk of the day. The multi-scale nature of plant biology was highlighted in this more than any other talk, as Leah discussed biology at the organismal, tissue, network, cellular and enzyme level. Her work builds the prior knowledge of GA transport and biosynthesis to make mathematical models to predict tissue expansion.
Multi-scale Plant Biology

Importantly for the GARNet community, the take home message from the meeting was that plant scientists will play a major role in the future of multi-scale biology so once the funding opportunities are revealed they should not be reticent in submitting bids.

Arabidopsis Research Roundup: May 27th

This weeks Arabidopsis Research Roundup sees a small number of high quality publications driven by UK-based researchers together with a couple of collaborative efforts that highlight the international aspect of research. Topics include two greatly different descriptions of how a plant responds to attack, an investigation into the intersection of vesicle and potassium transport as well as descriptions of auxin and sugar signaling.

Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FL, Sohn KH, Jones JD (2015) A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell 161, p1089-1100 http://dx.doi.org/10.1016/j.cell.2015.04.024

Jonathan Jones at the Sainsbury lab collaborated with his ex-PhD student Kee Hoon Sohn (now at Massey University in NZ) to produce this high profile publication in Cell. Professor Jones’s group has been in the vanguard of research into the response to bacterial pathogens and this paper adds a further layer of understanding as they show that the plant uses a bacteria’s own ‘attack mechanism’ against itself. Many bacterial effector proteins target WRKY DNA-binding protein domains in order to interfere with transcription. This work shows that the plant defence factor RRS1 also contains a WRKY domain, enabling it to ‘sense’ when the bacteria is in the cell and act as a decoy that makes the bacteria subsequently open to attack.

 

Jaouannet M, Morris JA, Hedley PE, Bos JI (2015) Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance. PLos Pathogens 11: e1004918.

The group of Jorunn Bos at the James Hutton Institute in Dundee looked at a different aspect of the defence response whereby they investigated transcriptional responses to aphid predation on Arabidopsis. Host and non-host responses to aphids show a high degree of overlap in expression but interestingly the host response included repressive of genes involved in metabolism and oxidative response. This type of study will pave the way for the future development of aphid control strategies in crop plants and once again highlights the utility of Arabidopsis as a model system.

MyzusPersicae

Zhang B, Karnik R, Wang Y, Wallmeroth N, Blatt MR, Grefen C (2015) The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane Plant Cell [Epub]

Control of potassium channels is the focus of this work from Mike Blatt’s lab at the University of Glasgow. They identify a subset of SNARE proteins (that are involved in vesicle trafficing) that control K+ channels, albeit in an unconventional manner. The vesicle-associated membrane proteins 721 (VAMP721) is able to target vesicles as well as supressing the actitivty of the K+ channels KAT1 and KC. This leads to a model whereby different subsets of SNARE proteins opposingly effect K+ channel activity alongside having an effect on vesicular transport.

 

Panoli A, Martin MV, Alandete-Saez M, Simon M, Neff C, Swarup R, Bellido A, Yuan L, Pagnussat GC, Sundaresan V. (2015) Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana. PLoS One. 10:e0126164.

The primary interest of Ranjan Swarup’s group at the University of Nottingham is in hormone signalling and root development yet he is included as a collaborator in this publication led from UC-Davies that focusses on auxin signalling during female gametophyte development. The paper shows that the YUCCA family of the auxin biosynthetic genes are asymmetrically expressed during embryo sac development and that the AUX1 and LAX1 auxin influx carriers are expressed only at both the micropylar pole of the embryo sac and in adjacent cells of the ovule. In addition aux1lax1lax2 triple mutants show numerous gametophytic developmental defects.  Given the importance of auxin in most aspects of plant development, this paper highlights the specific manner in which auxin is required for mitotic divisions, cell expansion and patterning during embryo sac development.

 

Zheng L, Shang L, Chen X, Zhang L, Xia Y, Smith C, Bevan MW, Li Y, Jing HC (2015) TANG, Encoding a Symplekin_C Domain-contained Protein, Influences Sugar Responses in Arabidopsis Plant Physiol [Epub]

Mike Bevan at the JIC is a collaborator on this Chinese driven project that investigates Arabidopsis tang1 mutants. These plants are hypersensitive to sugar amd following a classic map-based cloning approach, the TANG1 gene was found to encode a novel protein with a predicted Symplekin tight junction protein C-terminal. As TANG1 is ubquitiously expressed and has little effect on known sugar signalling pathways, the precise in vivo role of the protein remains somewhat opaque even though it is clearly an important player in the response to sugar in Arabidopsis.

Great British Success in ERA-CAPS

The ERA-CAPS funding call was a major EU initiative that was focused on plant sciences. Recently the second set of successfully funded projects were announced, even though the funding levels have not been confirmed. Amongst these twelve successful bids, eight feature UK plant scientists (including four from the JIC). These successful projects are highlighted below:
logo-era-caps
Project Name: DesignStarch, Designing starch: harnessing carbohydrate polymer synthesis in plants

The UK representative Rob Field is a biochemist based at the John Innes Centre. The objective of this project is to ‘gain a profound understanding of the regulation and control of the biophysical and biochemical processes involved in the formation of the complex polymeric structure that is the starch granule’, which will involve in vitro analysis of the enzymology of starch formation with the ultimate aim of transferring their findings back into plants.

EfectaWheat: An Effector- and Genomics-Assisted Pipeline for Necrotrophic Pathogen Resistance Breeding in Wheat

James Cockram (NIAB) is the project leader on this grant that proposes to investigate the economically important wheat leaf spot group (LSG) of necrotrophic pathogens. The project will use a range of techniques such as high-density genotyping, pathogen re-sequencing and advanced virulence diagnosis to deliver a genomics- and effector-based pipeline for the genetic dissection of LSG host-pathogen interactions across Europe.

EVOREPRO: Evolution of Sexual Reproduction in Plants

Both David Twell (Leicester) and Jose Gutierrez-Marcos (Warwick) are included in this seven-group consortium that aims to investigate the origin of the mechanisms that predate double fertilization in plants. The project will take a comparative gene expression-based approach to investigate gametogenesis across Marchantia, Physcomitrella, Amborella, Arabidopsis and a range of crop species. The expected findings will allow the identification of specific mechanisms that are targeted by environmental stresses during sexual reproduction in crops and will assist in the selection of stress-resistant cultivars.

INTREPID: Investigating Triticeae Epigenomes for Domestication

GARNet advisory board member Anthony Hall (Liverpool) leads this group which includes long time collaborator Mike Bevan (JIC). This project will look at variations in the epigenome across eight diverse wheat lines with the aim of determined how epigenetic marks are re-set and stabilized during the formation of new wheat hybrids and how they might influence gene expression.

MAQBAT: Mechanistic Analysis of Quantitative Disease Resistance in Brassicas by Associative Transcriptomics

John Innes Centre scientist Chris Ridout leads this six PI consortium that will look at pathogen resistance in Brassica napus, where diseases are a major limiting factor in growth success. Almost 200 lines of B.napus will be screened against a range of specific and general pathogens in the aim of discovering important disease resistance loci. One proposed aspect of the work will look at the role of glucosinolates in both disease resistace and seed quality. The project also includes UK B.napus expert Bruce Fitt (Hertfordshore).

PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops

Karen Halliday (Edinburgh) leads this three-PI group that will investigate the link between phytochrome signaling and resource allocation in both Arabidopsis and B.rapa. One aim of the project will be to build models that predict the dual action of phytochrome and photosynthesis on resource management and biomass production.

RegulaTomE: Regulating Tomato quality through Expression

Cathie Martin (JIB) leads this largest successful consortium of 8 labs that aim to link transcriptional regulation of metabolic pathways with tomato quality. Loci contributing to abiotic stress tolerance will also be identified toward the combined goals of obtaining more nutritious, stable and sustainable crops. The project will lead to regulatory gene identification (an important advance in terms of fundamental understanding), and provide new tools for metabolic engineering of fruit quality.

SOURSI: Simultaneous manipulation of source and sink metabolism for improved crop yield

Lee Sweetlove (Oxford) leads this group that aims to understand the linkages between source and sink tissues in the assimilation of carbon and nitrogen. The project claims to implement a metabolic engineering strategy of unprecedented scale in plants exploiting the new technique of biolistic combinatorial co-transformation.

Arabidopsis Research Roundup

Categories: Arabidopsis, GARNet, Global, UKPSF
Comments: No Comments
Published on: May 14, 2015

Your UK Arabidopsis Research Round-up this week contains studies that aim to define a network of lateral root formation, elucidate modes of calcium signaling, determine mechanisms of epigenetic memory and also the influence of exon-edge evolution in determining the extent of selective pressure.

Liu J, Whalley HJ, Knight MR. Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses. New Phytologist. 2015 Apr 27. doi: 10.1111/nph.13428.

Marc Knight’s group at the University of Durham have attempted to decode the complex mechanism by which calcium controls changes in gene expression. They have developed an experimentally parameterized model that reveals calcium signals are amplified by the binding of calmodulin and calmodulin-binding transcription activators (CAMTAs). Interestingly, the model suggests that gene expression change in response to a calcium signature is defined by the previous history of that signal.

Lavenus J, Goh T, Guyomarc’h S, Hill K, Lucas M, Voß U, Kenobi K, Wilson MH, Farcot E, Hagen G, Guilfoyle TJ, Fukaki H, Laplaze L, Bennett MJ. Inference of the Arabidopsis Lateral Root Gene Regulatory Network Suggests a Bifurcation Mechanism That Defines Primordia Flanking and Central Zones. Plant Cell. 2015 May 5. pii: tpc.114.132993.

The biology of lateral root (LR) formation has been well researched over the past decade although a full robust regulatory network that controls this process has remained elusive. CPIB at the University of Nottingham, together with European collaborators have used a series of transcriptomic datasets to develop a time-delay correlation algorithm (TDCor) to infer the gene expression network (GRN) controlling LR initiation. The GRNs associated with AUXIN RESPONSE FACTOR7 and ARF5 predict a mutual inhibition and a patterning mechanism that controls flanking and central zone specification of LR primordia.

Berry S, Hartley M, Olsson TS, Dean C, Howard M Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. Elife. 2015 May 8;4. doi: 10.7554/eLife.07205.

Epigenetic ‘memory’ allows plant cells to retain a memory of past environmental or development events. One key regulator of this process is the Polycomb Repressive Complex2 (PRC2). Histone proteins that are modified by the PRC2 can be inherited through cell division. The groups of Mark Howard and Caroline Dean at the JIC investigated whether this inheritance directs long term memory in a cis or trans manner. Two copies of the Arabidopsis FLC gene, which is a target for PRC2, were monitored in the same plant. Interestingly they reveal that one FLC copy could be silenced but the other remained active, providing evidence that epigenetic memory, at least of FLC, is stored in trans but not in cis.

Bush SJ, Kover PX, Urrutia AO. Lineage-specific sequence evolution and exon edge conservation partially explain the relationship of evolutionary rate and expression level in A. thaliana. Mol Ecol. 2015 Apr 30. doi: 10.1111/mec.13221.

Alongside genetic changes in response to phenotypic adaptation, the elements of a genes DNA structure can also affect evolutionary rates. In Arabidopsis the ‘edge’ of exons, which flank introns and contain splice enhancers are known to have a higher degree of evolutionary conservation compared to coding regions. Dr Arazi Urrutia and collaborators from the University of Bath assessed selective pressure (measured by dN/dS) and showed that exon edge conservation partially explains the relationship between rates of protein evolution and expression level. Without any consideration of exon-edge conservation can potentially increase the number of genes designated as being under adaptive selection. Therefore the authors conclude that exon-edge conversation should be an important consideration when assessing overall dN/dS ratios.

A few funding opportunities for UK plant scientists

Here are the details of a few funding opportunities we have recently came across for early career and more established researchers – some of the deadlines are quite soon so if you’re interested, be quick!

Royal Society Research Grants

The Royal Society invites applications for its research grants. These provide seed-corn funding for early-career UK scientists for research within the society’s remit in the natural sciences, including the history of science. The aim is to increase the availability of specialised equipment and consumables for high quality research, and to enable scientists to further develop their new projects by obtaining funding from other sources.

Applicants should have a PhD or equivalent status, be working as independent researchers within five years of their first academic position and be resident in the UK. Non-tenured researchers and retired scientists may apply if the application is related to the history of science and the applicant works in association with an eligible institution. Eligible organisations are UK universities and non-profit research organisations, including institutes funded by the UK Research Councils.

Two types of grants are available for a maximum period of 12 months: grants of up to £15,000 for specialised equipment, essential consumable materials and services, and travel and subsistence for essential field research; and grants of up to £5,000 for the publication of scholarly works on the history of science.

Deadline: 26th May 2015

 

BBSRC Future Leader Fellowship

The Biotechnology and Biological Sciences Research Council and the Food Standards Agency invite applications for their future leader fellowship. This enables early-career researchers to undertake independent research on any area within biotechnology and biological sciences, and to gain leadership skills.

Applications that align with the following strategic priorities are particularly welcome:

  • animal health;
  • bioenergy – generating new replacement fuels for a greener, sustainable future;
  • combating antimicrobial resistance;
  • data driven biology;
  • food, nutrition and health;
  • healthy ageing across the lifecourse;
  • new strategic approaches to industrial biotechnology;
  • reducing waste in the food chain;
  • replacement, refinement and reduction in research using animals;
  • sustainably enhancing agricultural production;
  • synthetic biology;
  • systems approaches to the biosciences;
  • technology development for the biosciences;
  • welfare of managed animals.

In addition, the FSA will co-fund proposals that have the potential to impact on issues highlighted in its emerging strategy 2015–2020 and underpinning science, evidence and information strategy. A particular interest is for proposals that aim to realise the potential of utilising big data approaches to address complex issues that will ultimately lead to benefits for consumers. Fellows whose proposals are co-funded by the FSA may undertake a short term placement with the agency.

Applicants should have a PhD, or be expecting to have passed their viva prior to 30 November 2015. They should have no more than five years’ postdoctoral research employment by this point.

Approximately 12 fellowships are available. Each fellowship is worth up to £250,000 over a period of three years. Awards include personal salary as well as support for travel and subsistence, training activities and research consumables.

Deadline: 4th June 2015

 

Rank Prize Nutrition Fund New Lecturer Award

The Rank Prize Funds’ nutrition committee invites applications for its new lecturer awards. These support scientists who are conducting research in an area of human nutrition or crop science in order to further their careers.

Newly-appointed lecturers, researchers of equivalent status who are based in research institutes, or fellows with their own independent support who are working in a UK institution, may apply. The post must have been started at the earliest in 2013, and applicants should normally be three to nine years from their PhD. Postdoctoral scientists supported on a senior investigator’s funding are not eligible.

Awards are worth up to £20,000 each for a period of up to two years. Funding may be used for consumables, equipment or a contribution towards a salary or student support.

Deadline: 28 August 2015

«page 37 of 67»

Follow Me
TwitterRSS
GARNetweets
Categories
November 2025
M T W T F S S
 12
3456789
10111213141516
17181920212223
24252627282930

Welcome , today is Tuesday, November 11, 2025