In research published this week in PNAS, Steve Penfield (formerly Exeter, now John Innes Centre) and Ian Graham (CNAP, York) and collaborators have shown that ‘mother’ plants remember seasons and use this memory to program germination time into their seeds.
Working on Arabidopsis thaliana, Penfield found that the mother plant plays an important role in sensing temperature and forms a long term temperature memory, which she uses to control the behaviour of her progeny seeds. These temperature memories enable seeds to determine time of year and modify their germination rates to ensure that their growth and development is coordinated with the seasons.
If the mother experiences warmer temperatures, it produces more of a protein called Flowering Locus T (FT) which in the fruit of the plant, represses production of tannins, making seed coats thinner, increasing their permeability, meaning they will germinate more quickly.
Conversely if the mother plant experiences cooler temperatures prior to flowering it will produce less FT protein in its fruit and therefore produce more tannins. Seed coats will be thicker and less permeable and will germinate later. In this way the mother plant can manipulate seed germination to be optimal for the time of year.
If the environment during seed production is not optimal this can result in poor germination. With climate change making suboptimal conditions more frequent, having a better understanding how plants program progeny dormancy and germination will help researchers optimise seed quality for crops and domestic use.
Steve Penfield said: “By understanding how the mother plant uses temperature information to influence the vigour of her seeds we can begin to develop strategies for breeding seeds with more resilience to climate change.”
Highlighted paper: Min Chen, Dana R. MacGregor, Anuja Dave, Hannah Florance, Karen Moore, Konrad Paszkiewicz, Nicholas Smirnoff, Ian A. Graham, and Steven Penfield. 2014. Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. PNAS published ahead of print December 16, 2014, doi:10.1073/pnas.1412274111.
This article is adapted from a news release from the John Innes Centre. The image is c/o John Innes Centre.