Great British Success in ERA-CAPS

The ERA-CAPS funding call was a major EU initiative that was focused on plant sciences. Recently the second set of successfully funded projects were announced, even though the funding levels have not been confirmed. Amongst these twelve successful bids, eight feature UK plant scientists (including four from the JIC). These successful projects are highlighted below:
logo-era-caps
Project Name: DesignStarch, Designing starch: harnessing carbohydrate polymer synthesis in plants

The UK representative Rob Field is a biochemist based at the John Innes Centre. The objective of this project is to ‘gain a profound understanding of the regulation and control of the biophysical and biochemical processes involved in the formation of the complex polymeric structure that is the starch granule’, which will involve in vitro analysis of the enzymology of starch formation with the ultimate aim of transferring their findings back into plants.

EfectaWheat: An Effector- and Genomics-Assisted Pipeline for Necrotrophic Pathogen Resistance Breeding in Wheat

James Cockram (NIAB) is the project leader on this grant that proposes to investigate the economically important wheat leaf spot group (LSG) of necrotrophic pathogens. The project will use a range of techniques such as high-density genotyping, pathogen re-sequencing and advanced virulence diagnosis to deliver a genomics- and effector-based pipeline for the genetic dissection of LSG host-pathogen interactions across Europe.

EVOREPRO: Evolution of Sexual Reproduction in Plants

Both David Twell (Leicester) and Jose Gutierrez-Marcos (Warwick) are included in this seven-group consortium that aims to investigate the origin of the mechanisms that predate double fertilization in plants. The project will take a comparative gene expression-based approach to investigate gametogenesis across Marchantia, Physcomitrella, Amborella, Arabidopsis and a range of crop species. The expected findings will allow the identification of specific mechanisms that are targeted by environmental stresses during sexual reproduction in crops and will assist in the selection of stress-resistant cultivars.

INTREPID: Investigating Triticeae Epigenomes for Domestication

GARNet advisory board member Anthony Hall (Liverpool) leads this group which includes long time collaborator Mike Bevan (JIC). This project will look at variations in the epigenome across eight diverse wheat lines with the aim of determined how epigenetic marks are re-set and stabilized during the formation of new wheat hybrids and how they might influence gene expression.

MAQBAT: Mechanistic Analysis of Quantitative Disease Resistance in Brassicas by Associative Transcriptomics

John Innes Centre scientist Chris Ridout leads this six PI consortium that will look at pathogen resistance in Brassica napus, where diseases are a major limiting factor in growth success. Almost 200 lines of B.napus will be screened against a range of specific and general pathogens in the aim of discovering important disease resistance loci. One proposed aspect of the work will look at the role of glucosinolates in both disease resistace and seed quality. The project also includes UK B.napus expert Bruce Fitt (Hertfordshore).

PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops

Karen Halliday (Edinburgh) leads this three-PI group that will investigate the link between phytochrome signaling and resource allocation in both Arabidopsis and B.rapa. One aim of the project will be to build models that predict the dual action of phytochrome and photosynthesis on resource management and biomass production.

RegulaTomE: Regulating Tomato quality through Expression

Cathie Martin (JIB) leads this largest successful consortium of 8 labs that aim to link transcriptional regulation of metabolic pathways with tomato quality. Loci contributing to abiotic stress tolerance will also be identified toward the combined goals of obtaining more nutritious, stable and sustainable crops. The project will lead to regulatory gene identification (an important advance in terms of fundamental understanding), and provide new tools for metabolic engineering of fruit quality.

SOURSI: Simultaneous manipulation of source and sink metabolism for improved crop yield

Lee Sweetlove (Oxford) leads this group that aims to understand the linkages between source and sink tissues in the assimilation of carbon and nitrogen. The project claims to implement a metabolic engineering strategy of unprecedented scale in plants exploiting the new technique of biolistic combinatorial co-transformation.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
September 2017
M T W T F S S
« Aug    
 123
45678910
11121314151617
18192021222324
252627282930  

Welcome , today is Monday, September 25, 2017