GARNet Research Roundup: August 16th 2019

This holiday-time edition of the GARNet research roundup begins with two papers that include the late Ian Moore from the University of Oxford as a co-author. The first looks at the role of RAB-A5c in the control of cellular growth anisotropy whilst the second characterises the Transport Protein Particle II (TRAPPII) complex.

The third paper is a UK-wide collaboration that assesses the role of UVA signaling on stomatal development. Next is a paper from Cambridge and the JIC that has identified the TAF4b protein as a novel regulator of meiotic crossovers.

The fifth paper is from the University of York and characterizes a role for cis-12-oxo-phytodienoic acid (OPDA) during seed germination.

The next three papers feature scientists from the University of Leeds in research that investigates 1, a peroxisomal ABC transporter; 2, the role of LRR-RLKs in plasmodesmata development and 3, the cell wall characteristics of banana and mango fruit.

The ninth paper is from the University of Edinburgh and investigates the role of S-nitrosylation in the control of SUMO conjugation.

The next two papers include Steve Penfield at the JIC as a corresponding author; the first looks at the role of endosperm-expressed transcriptional factors during seed dormancy and the second, in collaboration with researchers at the University of Warwick, identifies novel QTLs involved in seed dormancy.

The penultimate study is from Lancaster and presents a surprising outcome resulting from the overexpression of the wheat CA1Pase gene. The final paper includes Alison Tidy and Zoe Wilson from University of Nottingham as co-authors on a study that looks at male fertility in Arabidopsis.


Kirchhelle C, Garcia-Gonzalez D, Irani NG, Jérusalem A, Moore I (2019) Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. Elife. pii: e47988. doi: 10.7554/eLife.47988

Open Access

Charlotte Kirchhelle leads this work that was conducted in the lab of the late Ian Moore at the University of Oxford. She investigates the role of the plant-specific small GTPase RAB-A5c during growth anisotropy in lateral roots, which involves coordinated orientations of cellulose microfibrils (CMFs) and by cortical microtubules (CMTs). They identify RAB-A5c dependent and independent mechanisms to control cellular growth anisotropy in this growing tissue.

From https://elifesciences.org/articles/47988

Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF (2019) Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. Plant J. doi: 10.1111/tpj.14442

This German-led study includes Monika Kalde from the University of Oxford as first author as well Ian Moore as co-author. They characterize the components and function of the Transport Protein Particle II (TRAPPII) complex. TRAPPII plays multiple roles in intra-cellular transport and this study identified 13 subunits, including several that were previously uncharacterised.


Isner JC, Olteanu VA, Hetherington AJ, Coupel-Ledru A, Sun P, Pridgeon AJ, Jones GS, Oates M, Williams TA, Maathuis FJM, Kift R, Webb AR, Gough J, Franklin KA, Hetherington AM (2019). Short- and Long-Term Effects of UVA on Arabidopsis Are Mediated by a Novel cGMP Phosphodiesterase. Curr Biol.29(15):2580-2585.e4. doi: 10.1016/j.cub.2019.06.071

Open Access

Jean-Charles Isner is the first author on this collaboration between labs in Bristol, York, Oxford and Cambridge. They show that UVA radiation (which represents 95% of the UV radiation reaching earth) inhibits stomatal opening through a process that involves a reduction in the cytosolic level of cGMP. The AtCN-PDE1 gene (a cGMP-activated phosphodiesterase) is needed to decrease cGMP levels in Arabidopsis. This response is present across the tree of life except in metazoans. They show AtCN-PDE1 is needed for the UVA response and that prolonged UVA exposure causes increased growth yet reduced water use efficiency.


Lawrence EJ, Gao H, Tock AJ, Lambing C, Blackwell AR, Feng X, Henderson IR (2019) Natural Variation in TBP-ASSOCIATED FACTOR 4b Controls Meiotic Crossover and Germline Transcription in Arabidopsis. Curr Biol. pii: S0960-9822(19)30844-9. doi: 10.1016/j.cub.2019.06.084

Open Access

This work from Ian Henderson’s lab in Cambridge and Xiaoqi Feng’s lab at the JIC is led by Emma Lawrence and isolates a novel modifier of meiotic crossover frequency, TBP-ASSOCIATED FACTOR 4b (TAF4b), which encodes a subunit of the RNA polymerase II general transcription factor TFIID. They show TAF4b expression is enriched in meiocytes, compared to the more general expression of its paralog TAF4. Ultimately they reveal TAF4b drives a novel mode of meiotic recombination control through its activity as a general transcription factor.


Barros-Galvão T, Dave A, Cole A, Harvey D, Langer S, Larson TR, Vaistij FE, Graham IA (2019) cis-12-oxo-phytodienoic acid represses Arabidopsis thaliana seed germination in shade light conditions. J Exp Bot. pii: erz337. doi: 10.1093/jxb/erz337

Open Access

Thiago Barros-Galvão is first author on this study from Ian Graham’s lab at the University of York. They investigate how the jasmonic acid pre-cursor cis-12-oxo-phytodienoic acid (OPDA) contributes to control of seed germination, particularly under shade conditions. OPDA acts through the activity of the transcription factor MOTHER-OF-FT-AND-TFL1 (MFT).

From https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz337/5536641

Carrier DJ, van Roermund CWT, Schaedler TA, Rong HL, IJlst L, Wanders RJA, Baldwin SA, Waterham HR, Theodoulou FL, Baker A (2019) Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose. Sci Rep. 9(1):10502. doi: 10.1038/s41598-019-46685-9

Open Access

Alison Baker at the University of Leeds is the corresponding author of this UK, Dutch collaboration that includes David Carrier as first author. They characterise the peroxisomal ABC transporter, Comatose (CTS) through mutagenesis of key residues responsible for the proteins intrinsic acyl-CoA thioesterase (ACOT) activity. Ultimately they show that ACOT activity depends of endogenous ATPase activity but that these activities could be functional separated by mutagenesis of key residues.


Grison M, Kirk P, Brault M, Wu XN, Schulze WX, Benitez-Alfonso Y, Immel F, Bayer EMF (2019). Plasma membrane-associated receptor like kinases relocalize to plasmodesmata in response to osmotic stress. Plant Physiol. pii: pp.00473.2019. doi: 10.1104/pp.19.00473

Open Access

GARNet advisory committee member Yoselin Benitez-Alfonso and members of her research group are co-authors on the next two studies. This work is led by Magali Grison in Emmanuelle Bayer’s lab in Bordeaux. They show that the PM-localised Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs), QSK1 and IMK2 relocate and cluster to the plasmodesmata under osmotic stress conditions. Through a variety of assays that focuses on QSK1 the authors show that reorganisation of RLKs can be important for the regulation of callose deposition at plasmodesmata and under osmotic stress this can have a functional effect on lateral root development.


Rongkaumpan G, Amsbury S, Andablo-Reyes E, Linford H, Connell S, Knox JP, Sarkar A, Benitez-Alfonso Y, Orfila C (2019) Cell Wall Polymer Composition and Spatial Distribution in Ripe Banana and Mango Fruit: Implications for Cell Adhesion and Texture Perception. Front Plant Sci. 10:858. doi: 10.3389/fpls.2019.00858

Open Access

Ganittha Rongkaumpan is first author on this interdisciplinary collaborative research from multiple departments at the University of Leeds. They characterise the composition of the cell wall in two fruits, banana and mango, which soften during ripening. The authors compared structural information, obtained using Atomic Force Microscopy and biochemical analysis, with data from rheology and tribology assays to understand why these fruits feel different in the mouth during ingestion.


Skelly MJ, Malik SI, Le Bihan T, Bo Y, Jiang J, Spoel SH, Loake GJ (2019) A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity Proc Natl Acad Sci U S A. pii: 201900052. doi: 10.1073/pnas.1900052116

Michael Skelly from the University of Edinburgh is the lead author of this study from the labs of Gary Loake and GARNet chairman Steven Spoel. They investigate the mechanism through which nitric oxide signaling after pathogen recognition stimulates inhibitory S-nitrosylation of the Arabidopsis SUMO E2 enzyme, SCE1. S-nitrosylation occurs on the evolutionary conserved Cys139 of SCE1 and they investigate the wider significant of this residue in the control of immune responses across eukaryotes.


MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, Lopez-Molina L, Penfield S (2019) ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. Plant J. 98(2):277-290. doi: 10.1111/tpj.14211

Open Access

Dana MacGregor (now at Rothamsted Research) leads this work from the lab of Steve Penfield at the JIC that investigates the extent of control on depth of primary dormancy that is mediated by the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1). These effects are additive and independent of their role in endosperm development since the dormancy defect in ice1 and zou mutants can be ameliorated without altering seed morphology. They show that ICE1 acts primarily through control of ABA INSENSITIVE 3 (ABI3).


Footitt S, Walley PG, Lynn JR, Hambidge AJ, Penfield S, Finch-Savage WE (2019) Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. doi: 10.1111/nph.16081

This research is a collaboration between the John Innes Centre and the Universities Liverpool and Warwick, from which Steven Footitt is first author. They used two Arabidopsis ecotypes that have differences in the timing of seedling emergence to identify new QTLs involved in depth of seed dormancy and Seedling Emergence Timing (SET). They revealed that DOG1 is important for determining depth of dormancy. In addition they identified three new SET QTLs, which are each physically close to DOG1, that play a role in the control of SET in the field.


Lobo AKM, Orr D, Gutierrez MO, Andralojc J, Sparks C, Parry MAJ, Carmo-Silva E (2019) Overexpression of ca1pase decreases Rubisco abundance and grain yield in wheat. Plant Physiol. pii: pp.00693.2019. doi: 10.1104/pp.19.00693

Open Access

This research from Lancaster Environmental Centre and their Brazilian collaborators is led by Ana Karla Lobo and demonstrates that overexpression of 2-carboxy-D-arabinitol-1-phosphate phosphatase (CA1Pase) in wheat causes a reduction in above ground biomass and compromises wheat grain yields. As CA1Pase is involved in removing inhibitors of Rubisco activity this result is contrary to the anticipated outcome. This suggests that Rubisco inhibitors might actually protect enzyme activity, thus maintaining the number of active sites that the enzyme is able to support.


Zhao SQ, Li WC, Zhang Y, Tidy AC, Wilson ZA (2019) Knockdown of Arabidopsis ROOT UVB SENSITIVE4 Disrupts Anther Dehiscence by Suppressing Secondary Thickening in the Endothecium. Plant Cell Physiol. doi: 10.1093/pcp/pcz127

Shu-Qing Zhao is the lead author on this China-UK collaboration that includes Alison Tidy and Zoe Wilson from the University of Nottingham. They show that using an artificial microRNA to reduce levels of the RUS4 gene in Arabidopsis causes a decline in male fertility. They perform a detailed analysis of the RUS4 expression module and how it impacts fertility.

GARNet Research Roundup: July 26th 2019

This summer-time-reading bumper edition of the GARNet Research Roundup begins with two papers from the University of Sheffield that each use advanced imaging techniques. Firstly Andrew Fleming’s group leads a study on the link between stomatal function and mesophyll space morphology. Second is a study from Matthew Johnson’s group that looks at the dynamic arrangement of thylakoid stacks.

Next are two papers that include Alison Smith from the JIC as a corresponding author. The first also includes Vasilios Andriotis from the University of Newcastle and looks at the role of the plastidial pentose phosphate pathway during post-germination growth. Second uses a gene-editing strategy to generate potatoes with altered starch morphologies.

The fifth paper also looks at starch; researchers from Cambridge and Norwich are involved in a study that characterises the role of the LIKE SEX4 1 protein in starch degradation.

The sixth paper is from Aberystwyth University and identifies a transcription factor that alters secondary cell wall composition in Brachypodium and maize. Next is research from the University of Bath that looks at the role of a protein S-acyl transferase during seed germination.

The eighth and ninth papers are led by Spanish research groups and include contributions from UK-based co-authors in Cambridge and Nottingham, working on photoperiod perception or phosphate signaling respectively.

The tenth paper features work from Cardiff University and looks at the role of heterologous expression of the Arabidopsis WEE1 protein. The Bancroft lab from the University of York leads the next paper that investigates glucosinolate signaling in Brassica napus.

The final three manuscripts are methods papers. The first from Edinburgh introduces a new NanoLUC reporter whilst the other two include techniques involved in the investigation of light-regulated growth processes.


Lundgren MR, Mathers A, Baillie AL, Dunn J, Wilson MJ, Hunt L, Pajor R, Fradera-Soler M, Rolfe S, Osborne CP, Sturrock CJ, Gray JE, Mooney SJ, Fleming AJ (2019) Mesophyll porosity is modulated by the presence of functional stomata. Nat Commun. doi: 10.1038/s41467-019-10826-5

Open Access

This UK-wide study is led from Andrew Fleming’s lab in Sheffield and includes Marjorie Lundgren as first author (now working in Lancaster). They use microCT imaging alongside more traditional measurements linked to analysis of gas exchange to show that mesophyll airspace formation is linked to stomatal function in both Arabidopsis and wheat. This allows the authors to propose that coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops.

https://www.nature.com/articles/s41467-019-10826-5

Wood WH, Barnett SFH, Flannery S, Hunter CN, Johnson MP (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with photosystem I. Plant Physiol. doi: 10.1104/pp.19.00503

Open Access

William Wood is the first author on this study from the University of Sheffield that uses 3D structured illumination microscopy (3D-SIM) to look at the dynamics of thylakoid stacking in both Arabidopsis and spinach. They show that the processes they observe are dependent on light harvesting complex II phosphorylation.

http://www.plantphysiol.org/content/early/2019/06/11/pp.19.00503.long

Andriotis VME, Smith AM (2019) The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1908556116

Open Access

Vasilios Andriotis (now at the University of Newcastle) is the lead author of this work performed in Alison Smith’s lab at the JIC. They look at the role of the plastidial oxidative pentose phosphate pathway (OPPP) during embryo development. This involved demonstrating that production of ribose-5-phosphate (R5P), which in turn leads to synthesis of purine nucleotides, is a critical function of the OPPP.


Tuncel A, Corbin KR, Ahn-Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol J. doi: 10.1111/pbi.13137

Open Access

Alison Smith and Nicola Patron who work in Norwich Research Park are corresponding authors of this study that includes Aytug Tuncel as first author. They have used Cas9-mediated gene editing to generate potato plants that have a range of different tuber starch structures. This shows that gene-editing techniques allows the transgene-free alteration to generate potentially healthier crops.


Schreier TB, Umhang M, Lee SK, Lue WL, Shen Z, Silver D, Graf A, Müller A, Eicke S, Stadler M, Seung D, Bischof S, Briggs SP, Kötting O, Moorhead GB, Chen J, Zeeman SC (2019) LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation. Plant Cell. doi: 10.1105/tpc.19.00089

Open Access

Tina Schreier from the University of Cambridge is the first author on this international study led from Switzerland that also includes Alexander Graf and David Seung from the JIC as co-authors. This study defines a precise role for the LIKE SEX FOUR 1 (LSF1) protein that binds starch and is required for normal starch degradation. Through a variety of experiments they show that the glucan binding, rather than phosphatase activity, is required for LSF1 function during starch degradation.


Bhatia R, Dalton S, Roberts LA, Moron-Garcia OM, Iacono R, Kosik O, Gallagher JA, Bosch M (2019) Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Sci Rep. doi: 10.1038/s41598-019-45225-9

Open Access

Rakesh Bhatia is the first author on this work from the lab of Maurice Bosch at Aberystwyth University. They overexpress the maize MYB transcription factor ZmMYB167 in both Brachypodium and maize. Both species show increased lignin content with Brachypodium but not maize showing a biomass deficit. This indicates that ZmMYB167 could be a useful molecular tool for the alteration of secondary cell wall biosynthesis.

https://www.nature.com/articles/s41598-019-45225-9

Li Y, Xu J, Li G, Wan S, Batistic O, Sun M, Zhang Y, Scott R, Qi B (2019) Protein S-acyl Transferase 15 is Involved in Seed Triacylglycerol Catabolism during Early Seedling Growth in Arabidopsis (2019) J Exp Bot. doi: 10.1093/jxb/erz282

First author on this UK-Chinese collaboration is Yaxiao Li who works with Baoxiu Qi at the University of Bath. The authors characterise the function of Arabidopsis Protein Acyl Transferase 15, AtPAT15. This protein is involved in essential β-oxidation of triacylglycerols during post-germination growth.


Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao M, Jaeger KE, Wigge PA, Allona I, Perales M (2019) LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Curr Biol. doi: 10.1016/j.cub.2019.06.003

Open Access

This Spanish-led study includes co-authors from the Sainsbury Laboratory in Cambridge and attempts to define the factors that control photoperiod perception in trees, using poplar as a model system. FLOWERING LOCUS T2 (FT2) has been previously shown to be involved in this process and this study builds on that work to show that night-length information is transmitted by the clock gene LATE ELONGATED HYPOCOTYL 2 (LHY2) and is able to control FT2 expression.

https://www.cell.com/current-biology/fulltext/S0960-9822(19)30696-7?

Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, Del Pozo JC (2019) Role of cis-zeatin in root responses to phosphate starvation. New Phytol. doi: 10.1111/nph.16020

Ranjan Swarup from the University of Nottingham is a co-author on this Spanish-led study that has Javier Silva-Navas as first author. Through analysis of dark-grown seedlings they have identified a set of new genes involved in root phosphate signaling. In addition they provide evidence of a links between cytokinin and phosphate signaling through modulation of the cell cycle.


Siciliano I, Lentz Grønlund A, Ševčíková H, Spadafora ND, Rafiei G, Francis D, Herbert RJ, Bitonti MB, Rogers HJ, Lipavská H (2019) Expression of Arabidopsis WEE1 in tobacco induces unexpected morphological and developmental changes. Sci Rep. 2019 Jun 18;9(1):8695. doi: 10.1038/s41598-019-45015-3

Open Access

Ilario Siciliano leads this work that includes colleagues from Hilary Rogers’ lab at Cardiff University. The WEE1 protein regulates the cell cycle across eukaryote lineages. In this work they show that overexpression of AtWEE1 in tobacco causes precocious flowering and increased shoot morphogenesis of stem explants whilst in cell culture this WEE1 OX causes smaller cell sizes.


Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I (2019) Genetic architecture of glucosinolate variation in Brassica napus. J Plant Physiol. doi: 10.1016/j.jplph.2019.06.001

Open Access

This study from the Bancroft lab at the University of York is led by Varanya Kittipol. Through use of Associative Transcriptomics (AT) across a diversity panel of 288 Brassica napus genotypes they are able to identify a set of genes involved in synthesis of glucosinate hydrolysis products.


Urquiza-García U, Millar AJ (2019). Expanding the bioluminescent reporter toolkit for plant science with NanoLUC. Plant Methods. doi: 10.1186/s13007-019-0454-4

Open Access

This study from the University of Edinburgh introduces NanoLUC, a new more stable luciferase-based reporter for use by the plant community.

The final two papers are methods papers that focus on different aspects of light-regulated growth. These are from the University of Southampton and University of York.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0454-4

Terry MJ, Kacprzak SM (2019) A Simple Method for Quantification of Protochlorophyllide in Etiolated Arabidopsis Seedlings. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_14

Oakenfull RJ, Ronald J, Davis SJ (2019) Measuring Phytochrome-Dependent Light Input to the Plant Circadian Clock. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_15

GARNet Research Roundup: April 29th 2019

This edition of the GARNet research roundup features fundamental plant science research conducted in a range of experimental organisms. Firstly Liam Dolan’s lab in Oxford looks at the function of bHLHs proteins in cell differentiation across land plant evolution. Secondly Anthony Hall’s group at the Earlham Institute have identified a novel RecQ helicase involved in work exclusively conducted in wheat. Thirdly researchers from Nottingham work with Arabidopsis to characterise an EXPANSIN protein essential for lateral root development.

The fourth paper is the first of two that look at germination and uses a new model, Aethionema arabicum, to study the role of light in seed dormancy. This work includes research from Royal Holloway. The second ‘dormancy’ paper is from Peter Eastmond’s lab at Rothamsted and further characterises the DOG1 gene in Arabidopsis. The penultimate paper includes co-authors from Warwick and Leeds and introduces a novel chemical inhibitor of auxin transport. The final paper from researchers in Birmingham introduces the 3DCellAtlas Meristem, a powerful tool for cellular annotation of the shoot apical meristem.


Bonnot C, Hetherington AJ, Champion C, Breuninger H, Kelly S, Dolan L (2019) Neofunctionalisation of basic helix loop helix proteins occurred when embryophytes colonised the land. New Phytol. doi: 10.1111/nph.15829 https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15829

Clemence Bonnot is lead author on this study from Liam Dolan’s lab at the University of Oxford in which the authors assess the role of ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes during evolution of plant development. They look at the function of a member of this bHLH transcription factor family called CbbHLHVIII identified in the charophyceaen alga Chara braunii. This gene is expressed at specific morphologically important regions in the algae and cannot rescue the function of related RSL genes in Marchantia or Arabidopsis. This suggests that the function of RSL proteins in cell differentiation has evolved by neofunctionalisation through land plant lineages.


Gardiner LJ, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, Higgins JD, Hall N, Griffiths S, Clavijo BJ, Hall A (2019) Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol. 20(1):69. doi: 10.1186/s13059-019-1675-6 https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1675-6

Open Access

Laura Gardiner and Anthony Hall lead this work that was conducted at the Earlham Institute and uses a bespoke set of bioinformatic tools that allow fundamental questions to be asked in hexaploid wheat. They looked at crossover and gene conversion frequencies in 13 recombinant inbred mapping populations and were able to identity an important QTL and confirm functionality for a novel RecQ helicase gene. This gene does not exist in Arabidopsis and therefore this discovery-motivated research needed to be conducted in wheat. They hope that this identification will provide future opportunities to tackle the challenge of linkage drag when attempting to develop new crops varieties.


Ramakrishna P, Ruiz Duarte P, Rance GA, Schubert M, Vordermaier V, Vu LD, Murphy E, Vilches Barro A, Swarup K, Moirangthem K, Jørgensen B, van de Cotte B, Goh T, Lin Z, Voβ U, Beeckman T, Bennett MJ, Gevaert K, Maizel A, De Smet I (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci U S A. 2019 Apr 3. pii: 201820882. doi: 10.1073/pnas.1820882116 https://www.pnas.org/content/early/2019/04/02/1820882116.long

Open Access

This pan-European study is led by Priya Ramakrishna at the University of Nottingham and includes co-authors from the UK, Belgium, Germany and Denmark. The authors look at the lateral root development and characterise the function of the EXPANSIN A1 protein. This protein influences the physical changes in the cell wall that are needed to enable the asymmetry cell divisions that define the location of a new lateral root. Plants lacking EXPA1 function do not properly form lateral roots and are unable to correctly respond to an inductive auxin signal. This clearly demonstrates an important requirement for the activity of genes that transmit cell signals into the physical relationships that exist between cells.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

Mérai Z, Graeber K, Wilhelmsson P, Ullrich KK, Arshad W, Grosche C, Tarkowská D, Turečková V, Strnad M, Rensing SA, Leubner-Metzger G, Scheid OM (2019) Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. pii: erz146. doi: 10.1093/jxb/erz146

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz146/5428144

Open Access

This paper includes authors from the UK, Germany, Austria and the Czech Republic including Kai Graeber and Gerhard Leubner-Metzger at Royal Holloway. They introduce the Brassica Aethionema arabicum as a new model to investigate the mechanism of germination inhibition by light as they have identified accessions that are either light-sensitive or light-neutral. In contrast germination in Arabidopsis is stimulated by light. Transcriptome analysis of Aethionema arabicum accessions reveal expression changes in key hormone-regulated genes. Overall they show that largely the same module of molecular components are involved in control of of seed dormancy irrespective of the effect of light on germination. Therefore any phenotypic changes likely result from changes in the activity organisms-specific of these genes.

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz146/5428144

Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ (2019) Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR 67 transactivates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell. pii: tpc.00892.2018. doi: 10.1105/tpc.18.00892 http://www.plantcell.org/content/early/2019/04/08/tpc.18.00892.long

Open Access

http://www.plantcell.org/content/early/2019/04/08/tpc.18.00892.long

Fiona Bryant is lead author on this research from Rothamsted Research that investigates the factors that control expression of the DOG1 gene, which is a key regulator of seed dormancy. They show that LEUCINE ZIPPER TRANSCRIPTION FACTOR67 (bZIP67) regulates DOG1 expression and have uncovered a mechanism that describes the temperature-dependent regulation of DOG1 expression. Finally they identity a molecular change that explains known allelic difference in DOG1 function, which informs different levels of dormancy in different accessions.


Oochi A, Hajny J, Fukui K, Nakao Y, Gallei M, Quareshy M, Takahashi K, Kinoshita T, Harborough SR, Kepinski S, Kasahara H, Napier RM, Friml J, Hayashi KI (2019) Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiol. 2019 Apr 1. pii: pp.00201.2019. doi: 10.1104/pp.19.00201 http://www.plantphysiol.org/content/early/2019/04/01/pp.19.00201.long

Open Access

http://www.plantphysiol.org/content/early/2019/04/01/pp.19.00201.long

This Japanese-led study includes co-authors from the Universities of Warwick and Leeds and describes the identification of a novel positive chemical modulator of auxin cellular efflux. This aptly named PInStatic Acid (PISA) prevents PIN protein internalization yet does not impact the SCFTIR1/AFB signaling cascade. Therefore the authors hope that PISA will be a useful tool for unpicking the cellular mechanisms that control auxin transport.


Montenegro-Johnson T, Strauss S, Jackson MDB, Walker L, Smith RS, Bassel GW. (2019) 3D Cell Atlas Meristem: a tool for the global cellular annotation of shoot apical meristems. Plant Methods. 15:33. doi: 10.1186/s13007-019-0413-0

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

Open Access

Thomas Montenegro-Johnson, Soeren Strauss, Matthew Jackson and Liam Walker lead this methods paper that was prepared following research that took place at the University of Birmingham and the Max Planck Institute for Plant Breeding Research in Cologne. They describe the 3DCellAtlas Meristem, a tool allows the complete cellular annotation of cells within a shoot apical meristem (SAM), which they have successfully tested in both Arabidopsis and tomato. The authors state that ‘this provides a rapid and robust means to perform comprehensive cellular annotation of SAMs and digital single cell analyses, including cell geometry and gene expression’.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

GARNet Research Roundup: March 7th 2019

This edition of the GARNet research roundup begins with a study into the genetic basis of fertility in barley led by Sarah McKim from Dundee. Second is a study from Oxford and Leicester that characterizes the proteolytic control of chloroplast import. The third paper from Levi Yant’s group at JIC and Nottingham that attempts to discover the influence of polyploidism on population genomic effects whilst the fourth paper from Juliet Coates’ lab in Birmingham uses the growth of Arabidopsis to assess the potential of algal biomass as a biofertiliser. The next two papers include co-authors from Oxford and Warwick respectively and investigate different factors that control seed viability in Arabidopsis and Brassica oleracea. The final paper includes Seth Davies from York as a co-author on a study that looks at control of the circadian clock in field-grown Arabidopsis.


Zwirek M, Waugh R, McKim SM (2019) Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytol. doi: 10.1111/nph.15548

Open Access

Current GARNet committee members Sarah McKim is the leader of this study in which first author is Monica Zwirek. They investigate the mechanism through which the barley VRS genes contribute to spikelet fertility. They undercover the epistatic relationship between five VRS genes that explains how they contribute to controlling fertility of lateral spikelets. Importantly they demonstrate that various vrs mutant combinations improve fertility in a variety of ways, information that will be useful during the generation of new varieties of barley.

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15548

Ling Q, Broad W, Trösch R, Töpel M, Demiral Sert T, Lymperopoulos P, Baldwin A, Jarvis RP (2019) Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science. doi: 10.1126/science.aav4467

Qihua Ling and William Broad are the first authors on this study from the Universities of Oxford and Leicester. They investigate the role of proteolysis in the functional control of chloroplast-envelope translocases, which are required for the transport of proteins from nucleus-encoded genes into the chloroplast. They identify two newly characterised proteins that function in the same pathway as the known ubiquitin E3 ligase SP1. These novel proteins, SP2 and CDC48, are both required for the movement of ubiquitinated proteins from the chloroplast outer envelope membrane (OEM) into the cytosol, where they are degraded by the proteolytic machinery. This process of chloroplast-associated protein degradation (CHLORAD) maintains tight control of the activity of OEM proteins and is essential for organelle function.

http://science.sciencemag.org/content/363/6429/eaav4467.long

Monnahan P, Kolář F, Baduel P, Sailer C, Koch J, Horvath R, Laenen B, Schmickl R, Paajanen P, Šrámková G, Bohutínská M, Arnold B, Weisman CM, Marhold K, Slotte T, Bomblies K, Yant L (2019) Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol. doi: 10.1038/s41559-019-0807-4.

Patrick Monnahan at the John Innes Centre is first author on this study from the Yant lab that has recently moved to the University of Nottingham. In this collaboration with colleagues in the US, Austria, Sweden, the Czech Republic and Slovakia, they have performed large scale sequencing on 39 populations of Arabidopsis arenosa. These plants have differing levels of ploidy and they are attempting to understand how ploidy effects population genomics. They demonstrate that the ploidy effects are subtle but significant and that masking of deleterious mutations, faster substitution rates and interploidy introgression will likely impact the evolution of populations where polyploidy is common.


Ghaderiardakani F, Collas E, Damiano DK, Tagg K, Graham NS, Coates J (2019) Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci Rep. doi: 10.1038/s41598-018-38093-2

Open Access

This work from the Coates lab at the University of Birmingham is led by Fatemeh Ghaderiardakani and looked into the potential of algal extracts as biofertiliser. They showed that at >0.1%, extracts taken from the common green seaweed Ulva intestinalis inhibit Arabidopsis seed germination and root elongation. At lower concentrations primary root elongation was promoted albeit with a complete loss of lateral root formation. Elemental analysis allows the authors to suggest that this effect was mediated via a novel mechanism involving aluminium. Overall the authors caution against the use of algal biofertilisers due to potential unforeseen negative effects on plant growth.


Viñegra de la Torre N, Kaschani F, Kaiser M, van der Hoorn RAL, Soppe WJJ, Misas Villamil JC (2019) Dynamic hydrolase labelling as a marker for seed quality in Arabidopsis seeds. Biochem J. doi: 10.1042/BCJ20180911.

GARNet Committee member Renier van der Hoorn is a co-author on this German-led study that investigates how the activity of seed-localised proteases can affect Arabidopsis seed germination. This study has clear real-world application regarding the storage of economically important seed stocks. They show that vacuolar processing enzymes (VPEs) become more active during aging whilst the activity of serine hydrolases declines alongside seed quality. This information has allowed the authors to develop protease-activity-based markers that will provide information about seed quality.


Schausberger C, Roach T, Stöggl WM, Arc E, Finch-Savage WE, Kranner I (2019) Abscisic acid-determined seed vigour differences do not influence redox regulation during ageing. Biochem J. doi: 10.1042/BCJ20180903

William Finch-Savage from the University of Warwick is a co-author on this Austrian-led study that looks at the effect of aging on the quality of Brassica oleracea seeds stored at two oxygen concentrations. Higher O2 causes a more rapid decrease in seed quality through aging yet in contrast aging did not alter the impact of the hormone ABA on seed viability. This study enables the authors to uncover two mechanisms that control seed quality that appear to act through different mechanisms.


Rubin MJ, Brock MT, Davis SJ, Weinig C (2019) QTL Underlying Circadian Clock Parameters Under Seasonally Variable Field Settings in Arabidopsis thaliana G3 (Bethesda). doi: 10.1534/g3.118.200770

Open Access

Seth Davies from the University of York is a co-author on this study led by Matthew Rubin from the University of Wyoming. They looked at the growth of Arabidopsis thaliana recombinant inbred lines grown in field conditions and found an extremely nuanced relationship regarding how QTLs that influence the circadian clock respond to environmental conditions. For example the authors showed that plant growth in June, July and September is controlled by different QTL architecture, demonstrating the complex regulation of the circadian clock in these field growth plants.

GARNet Research Roundup: Jan 11th 2019

The inaugural GARNet Research Roundup of 2019 firstly includes a paper from the University of Sheffield that has identified new pericentromeric epigenetic loci that affect the pathogen response. Secondly is a collaboration between researchers in Birmingham, Nottingham and Oxford that has identified a new mode of regulation of the VRN2 protein. Next are two papers from Jonathan Jones’ lab at The Sainsbury Laboratory in Norwich that firstly provides a toolkit for gene editing in Arabidopsis and secondly characterise the role of the NRG1 gene in the defense response. The penultimate paper is from Paul Devlin’s lab at RHUL and investigates the role of the circadian clock in the control of leaf overtopping whilst the final paper is a meeting report from a recent GARNet workshop on gene editing.


Furci L, Jain R, Stassen J, Berkowitz O, Whelan J, Roquis D, Baillet V, Colot V, Johannes F, Ton J (2019) Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. Elife. doi: 10.7554/eLife.40655.

Open Access

Leonardo Furci and Ritushree Jain are the lead authors on this study conducted at the University of Sheffield. The authors used a population of epigenetic recombinant inbred lines (epiRILs) to screen for resistance to the oomycete pathogen Hyaloperonospora arabidopsidis. These lines each share genetic information but have varied epigenetic changes. This analysis enabled the identification of plants with hypomethylated pericentromeric regions that were primed to better respond to the presence of this pathogen. The authors discuss the mechanism through which this might affect the defence response albeit without altering other aspects of plant growth.

https://elifesciences.org/articles/40655

Gibbs DJ, Tedds HM, Labandera AM, Bailey M, White MD, Hartman S, Sprigg C, Mogg SL, Osborne R, Dambire C, Boeckx T, Paling Z, Voesenek LACJ, Flashman E, Holdsworth MJ (2018) Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun. doi: 10.1038/s41467-018-07875-7

Open Access

This collaboration between the Universities of Birmingham, Nottingham, Oxford and colleagues in Utrecht is led by Daniel Gibbs. They demonstrate that the amount of VRN2 protein, which is a member of the Polycomb Repressive Complex2, is controlled by the N-end rule pathway and that this regulation responses to both cold and hypoxia stress. Whilst the VRN2 gene is expressed throughout the plant, the N-end rule degradation pathway ensures that the protein is restricted to meristematic regions until the plant senses the appropriate abiotic stress. Classically VRN2 has been linked to the regulation of flowering time by altering gene expression at the FLC locus so this study introduces new complexity into this process through the involvement of the N-end rule pathway. More information on this linkage will undoubtedly follow over the coming years.

Daniel kindly discusses this paper on the GARNet YouTube channel.


Castel B, Tomlinson L, Locci F, Yang Y, Jones JDG (2019) Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS One. doi: 10.1371/journal.pone.0204778

Open Access

Baptiste Castel is lead author of this work conducted at the Sainsbury Laboratory, Norwich in Jonathan Jones’ group. They have conducted a detailed analysis of the factors that contribute to successful gene editing by CRISPR-Cas9, specifically in Arabidopsis. This includes assessing the efficacy of different promotor sequences, guideRNAs, versions of Cas9 enzyme and associated regulatory sequences in the editing of a specific locus. Given that researchers are finding that different plants have different requirements when it comes to successful gene editing, this type of analysis will be invaluable for anyone who plans to conduct a gene editing experiment in Arabidopsis.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204778

Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG (2018) Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. doi: 10.1111/nph.15659

In this second paper led by Baptiste Castel, they used the techniques outlined in the paper above to generate a set of CRISPR mutants deficient in NRG1, which is a RPW8-NLR resistance (R) gene. These nrg1 mutants have compromised signalling in all tested downstream TIR-NLR resistance genes. In addition the authors demonstrate that this signalling is needed for resistance to oomycete but not bacterial infection. Therefore this study reveals some significant details regarding the components of the disease response that are influenced by the activity of NRG1.


Woodley Of Menie MA, Pawlik P, Webb MT, Bruce KD, Devlin PF (2018) Circadian leaf movements facilitate overtopping of neighbors. Prog Biophys Mol Biol. doi: 10.1016/j.pbiomolbio.2018.12.012

This work is led by Michael Woodley Of Menie from Paul Devlin’s lab at Royal Holloway College and investigates the role of circadian leaf movements during shade avoidance and overtopping. Arabidopsis plants were grow in a grid system that meant leaves would interact with their neighbours and the authors show that plants with a normal circadian rhythm gained an advantage over those adapted to a longer period in which they were grown. This overtopping was additive to the advantage gained through shade avoidance and overall this paper shows that maintainance of clock-aligned leaf movements are beneficial to growth.


Parry G, Harrison CJ (2019) GARNet gene editing workshop. New Phytol. doi: 10.1111/nph.15573

Open Access

GARNet advisory committee member Jill Harrison and GARNet coordinator Geraint Parry are authors on this meeting report resulting from a GARNet organised workshop on gene editing that took place in March 2018 at the University of Bristol. Coincidentally part of the paper discusses the work that was presented at the meeting by Baptiste Castel, which is published in the paper described above.

GARNet Research Roundup: November 1st 2018

This week’s GARNet research roundup again features papers on a variety of topics. First is work from the University of Leeds that investigates the physical properties of callose:cellulose hydrogels and the implication for cell wall formation. Second is work from the University of York that assesses the role of the HSP90.2 protein in control of the circadian clock. The third paper features GARNet committee member Sarah McKim and looks at the genetic control of petal number whilst the next paper from the Universities of Warwick and Glasgow includes a proteomic analysis of different types of secretory vesicles.

The next two papers look at different aspects of hormone signaling. Firstly Alistair Hetherington from the University of Bristol is a co-author on a study that looks at the role of the BIG protein whilst Simon Turner’s lab in Manchester investigates the role of ABA in xylem fibre formation.

The penultimate paper includes Lindsey Turnbull from the University of Oxford and looks at the stability of epialleles across 5 generations of selection. Finally is a paper that includes researchers from TSL in Norwich who have contributed to a phosphoproteomic screen to identify phosphorylated amino acids that influence the defence response.


Abou-Saleh R, Hernandez-Gomez M, Amsbury S, Paniagua C, Bourdon M, Miyashima S, Helariutta Y, Fuller M, Budtova T, Connell SD, Ries ME, Benitez-Alfonso Y (2018) Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nature Communications DOI: 10.1038/s41467-018-06820-y

https://www.nature.com/articles/s41467-018-06820-y

Open Access
Radwa Abou-Saleh is lead author on this work from Yoselin Benitez-Alfonso’s lab at the University of Leeds. (1,3)-β-glucans such as callose play an important role in plant development yet their physical properties are largely unknown. This study analyses a set of callose:cellulose hydrogel mixtures as a proxy for different cell wall conditions. They show that callose:cellulose hydrogels are more elastic than those composed of only cellulose, providing evidence that the interactions between cellulose and callose are important for the structural features of cell walls.


Davis AM, Ronald J, Ma Z, Wilkinson AJ, Philippou K, Shindo T, Queitsch C, Davis SJ (2018) HSP90 Contributes To Entrainment of the Arabidopsis Circadian Clock via the Morning Loop. Genetics. doi: 10.1534/genetics.118.301586

http://www.genetics.org/content/early/2018/10/18/genetics.118.301586.long

Open Access
Amanda Davies is the first author on this study from Seth Davies’ lab at the University of York in which they assess the role of the molecular chaperone HSP90.2 on function of the circadian clock. The show hsp90.2-3 mutant plants have a lengthened circadian period with a specific defect in the morning. This data allows the authors to better understand the pathway through which HSP90.2 functions to entrain the circadian clock.


Monniaux M, Pieper B, McKim SM, Routier-Kierzkowska AL, Kierzkowski D, Smith RS, Hay A. The role of APETALA1 in petal number robustness. Elife. doi: 10.7554/eLife.39399

https://elifesciences.org/articles/39399

Open Access
GARNet committee member Sarah McKim is a co-author on this paper, that is led by Marie Monniaux, which includes research from her time at the University of Oxford. This work from the Hay lab in Cologne compares petal number in Arabidopsis thaliana, in which the number is invariant, and Cardamine hirsute, in which it varies. They show that petal number robustness can be attributed to the activity of the APETALA1 (AP1) floral regulator and that AP1 masks the activity of several genes in Arabidopsis but not in Cardamine.


Waghmare S, Lileikyte E, Karnik RA, Goodman JK, Blatt MR, Jones AME (2018) SNAREs SYNTAXIN OF PLANTS 121 (SYP121) and SYP122 mediate the secretion of distinct cargo subsets . Plant Physiol. doi: 10.1104/pp.18.00832

http://www.plantphysiol.org/content/early/2018/10/23/pp.18.00832.long

Open Access

This collaboration between the Universities of Glasgow and Warwick is led by Sakharam Waghmare, who works with Mike Blatt in Glasgow. This study uses proteomic approaches to characterise the secretory cargos within vesicles decorated with either of the SNARE proteins SYNTAXIN OF PLANTS 121 (SYP121) or SYP122. Genetic analysis suggests that SYP121 and SYP122 have redundant functions but this new research is able to identify cargo proteins that are either contained within both types of vesicle or that are specific to one or the other.


Zhang RX, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng YQ, Xiong L, Li C, Hetherington AM, Liang YK (2018) BIG regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytol. doi: 10.1111/nph.15568

Alistair Hetherington is a co-author on this China-based study led by Ruo‐Xi Zhang from Wuhan. This work adds to some recent interest in the BIG protein; in this study showing that it is involved in the interaction between JA and ethylene signaling during stress responses. In a complex set of interactions they show that the BIG protein differently alters opposing arms of the JA signaling pathway providing additional evidence that this protein is a key regulator of plant hormone signaling, albeit by a set of as yet unknown mechanisms.


Campbell L, Etchells JP, Cooper M, Kumar M, Turner SR. An essential role for Abscisic acid in the regulation of xylem fibre differentiation. Development. doi: 10.1242/dev.161992

This work from Simon Turner’s lab at the University of Manchester is led by Liam Campbell and identifies a novel role for ABA in the formation of xylem fibres during secondary thickening of the Arabidopsis hypocotyl. The action of ABA doesn’t alter the xylem:phloem ratio but rather the activity focuses on the formation of fibres within the already defined xylem tissue.


Schmid MW, Heichinger C, Coman Schmid D, Guthörl D, Gagliardini V, Bruggmann R, Aluri S, Aquino C, Schmid B, Turnbull LA, Grossniklaus U (2018) Contribution of epigenetic variation to adaptation in Arabidopsis. Nat Commun. doi: 10.1038/s41467-018-06932-5

https://www.nature.com/articles/s41467-018-06932-5

Open Access
Lindsey Turnbull (University of Oxford) is a co-author on this paper from Ueli Grossniklaus’ group in Zurich. Marc Schmid is lead author of the study that investigates the inheritance of Arabidopsis epialleles over 5 generations during conditions of simulated selection. The authors show that variations in methylation state are subject to selection and do indeed contribute to adaptive responses


Kadota Y, Liebrand TWH, Goto Y, Sklenar J, Derbyshire P, Menke FLH, Torres MA, Molina A, Zipfel C, Coaker G, Shirasu K (2018) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol. doi: 10.1111/nph.15523

Members of Cyril Zipfel’s group at The Sainsbury lab in Norwich are co-authors on this paper led by Yasuhiro Kadota from the RIKEN in Yokohama. They use a phosphoproteomic screen to identify a set of newly identified phosphorylation sites on membrane-associated proteins involved in effector-triggered immunity (ETI). Some of these phosphosites overlap with those known to be important for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), indicating a convergence of signaling control of both these pathways to certain key residues.

GARNet Research Roundup: July 16th

This week’s GARNet research roundup begins with a set of papers looking at aspects of the plant defence response with a focus on the cell wall. Firstly work from Mike Deeks’ lab in Exeter assesses the role of FORMIN4 during pre-invasion cell wall apposition. Secondly Sara Pose and Paul Knox (Leeds) are involved with a study looking at how altered cell wall lignin composition alters the defense response. Finally Joe McKenna and Cyril Zipfel are co-authors on a Norwegian-led study that looks at the influence of plant cell wall integrity maintenance in immune signalling.

Relatedly is a study from the Devoto lab at RHUL looks at the role of the defence hormone methyl jasmonate in Arabidopsis cell culture.

Next are two papers that research different aspects of the plant ER. Verena Kriechbaumer (Oxford Brookes) looks at plant ER-localised Lunapark proteins whilst a study from the University of Warwick provides a preliminary structural analysis of the RTNLB13 reticulon protein.

The seventh and eight papers are involved with the plant response to different growth conditions. Research from University of Nottingham looks at the response of the cortical cell layer of the root meristem to low phosphate conditions whilst work from University of Southampton investigates the relationship between nitrate and copper signaling.

The next paper is from Emily Flashman’s lab at the University of Oxford and looks at the role of plant cysteine oxidases as oxygen sensors whilst the tenth paper features John Doonan (Aberystwyth University) as a co-author and investigates how a histone acetyltransferase affects trichome development.

Finally is a paper from Pierre Baudal and Kirsten Bomblies (John Innes Centre) that uses Arabidopsis arenosa as a model to investigate the emergence of novel flowering time alleles in populations that have colonised along railway corridors.


Sassmann S, Rodrigues C, Milne SW, Nenninger A, Allwood E, Littlejohn GR, Talbot NJ, Soeller C, Davies B, Hussey PJ, Deeks MJ (2018) An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants. Curr Biol. doi: 10.1016/j.cub.2018.05.014

https://www.sciencedirect.com/science/article/pii/S096098221830616X?via%3Dihub

Open Access

Stefan Sassmann is the lead author of this paper from Mike Deeks’s lab in Exeter. They investigate the role of the membrane-integrated FORMIN4 protein in the process of cell wall apposition, which occurs as part of the plant immune response and is dependent on actin dynamics. FORMIN4 is stably localised apart from the active traffic of the endomembrane system and removing its function compromises the defense response, presumably by altering actin distribution at sites of cell wall apposition. This work demonstrates that FORMIN4 acts as a key component of the pre-invasion defense response.


Gallego-Giraldo L, Posé S, Pattathil S, Peralta AG, Hahn MG, Ayre BG, Sunuwar J, Hernandez J, Patel M, Shah J, Rao X, Knox JP, Dixon RA (2018) Elicitors and defense gene induction in plants with altered lignin compositions. New Phytol. doi: 10.1111/nph.15258

Open Access

Sara Pose and Paul Knox (University of Leeds) are co-authors on this US-led study that investigates how lignin composition can influence the defence response. Plants with the same lignin content but changed lignin compositions show altered expression in genes involved with different arms of the defense response. This indicates that cell wall lignin composition plays a significant role in the plants ability to response to different sources of pathogen attack.


Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal. doi: 10.1126/scisignal.aao3070

Joe McKenna (Imperial College, now Oxford Brookes University) and Cyril Zipfel (The Sainsbury Laboratory, Norwich) are co-authors on this Norwegian-led study that looks at the plant cell wall integrity maintenance mechanism and how it responses to the challenges of growth, development and environmental stresses. They identified a set of receptor-like kinases that are key for the responses elicted by cell wall damage (CWD). Conversely they showed that the components of the pattern-triggered immunity (PTI) signaling pathway repress responses to CWD. This study provides insights into how cell wall responses interact with downstream gene expression changes following pathogen challenge.


Bömer M, O’Brien JA, Pérez-Salamó I, Krasauskas J, Finch P, Briones A, Daudi A, Souda P, Tsui TL, Whitelegge JP, Paul Bolwell G, Devoto A (2018) COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in Arabidopsis. Ann Bot. doi: 10.1093/aob/mcy109

Open Access

Moritz Bömer works with Alessandra Devoto at Royal Holloway University of London and leads this research that looks at the effect of MeJA treatment on growth and gene expression in Arabidopsis cell culture. They demonstrate that both MeJA treatment or COI1 overexpression causes changes in the abundance of proteins involved in cell wall loosening as well as altered levels of primary metabolites alanine, serine and succinic acid. This work demonstrates a close link between hormone signaling, the defence response and the metabolic profile of Arabidopsis cells.

Dr Devoto and her academic colleagues at RHUL are profiled in the latest GARNish newsletter available for download from the GARNet website.


Kriechbaumer V, Breeze E, Pain C, Tolmie F, Frigerio L, Hawes C (2018) Arabidopsis Lunapark proteins are involved in ER cisternae formation. New Phytol. doi: 10.1111/nph.15228

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15228

Open Access

Verena Kriechbaumer from Oxford Brookes University leads this research that investigates the in planta function of novel ER network-shaping proteins called Lunaparks (LNP). They show that these proteins localise to the entire ER network in Arabidopsis. They use confocal microscopy to show that altering the level of LNP gene expression changes ER morphology, possibly by regulating the formation of ER cisternae.


Chow M, Sklepari M, Frigerio L, Dixon AM (2018) Bacterial expression, purification and biophysical characterization of the smallest plant reticulon isoform, RTNLB13 Protein Expr Purif. doi: 10.1016/j.pep.2018.06.015

Open Access

Michael Chow worked with Lorenzo Frigerio and Ann Dixon at the University of Warwick to provide a preliminary structure and topology analysis of the plant RTNLB13 reticulon protein. This ER-associated integral membrane protein was expressed in bacteria and then a variety of analysis techniques were used to suggest that RTNLB13 has a high level of self-association and protein-membrane interactions.


Janes G, von Wangenheim D, Cowling S, Kerr I, Band L, French AP, Bishopp A (2018) Cellular Patterning of Arabidopsis Roots Under Low Phosphate Conditions Front Plant Sci. doi: 10.3389/fpls.2018.00735

https://www.frontiersin.org/articles/10.3389/fpls.2018.00735/full

Open Access

George Janes works with Anthony Bishopp at the University of Nottingham and leads this study that looks at root meristem development under low phosphate conditions. They show that in phosphate-limiting conditions the cortex layer of the root meristem contains almost double the number of cells, which results in a greater number of root hair-forming epidermal cells. As this change can occur within 24hrs the rapidity of the response represents a significant adaptation to a changing root environment.


Hippler FWR, Mattos-Jr D, Boaretto RM, Williams LE (2018) Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression J Plant Physiol. doi: 10.1016/j.jplph.2018.06.005

https://www.sciencedirect.com/science/article/pii/S0176161718302888

Open Access

Franz Hippler (University of Southampton) leads this UK-Brazil collaboration showing that growth of Arabidopsis plants in excess copper conditions causes a downregulation in nitrate uptake. This is due to both direct and indirect changes on the gene expression of nitrate transporters as well as a reduction in transcript level of the plasma membrane proton pump, AHA2. This effect was altered when copper levels were reduced demonstrating that copper toxicity acts at the level of nitrate transport and homeostasis.


White MD, Kamps JJAG, East S, Taylor Kearney LJ, Flashman E (2018) The Plant Cysteine Oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors J Biol Chem.

doi: 10.1074/jbc.RA118.003496

Open Access

Mark White is the lead author on this work from the lab of Emily Flashman at the University of Oxford in which they look at the role of plant cysteine oxidases (PCOs) as oxygen sensors. They assessed the kinetics of each of AtPCO1 to AtPCO5 proteins and show that the most catalytically competent isoform is AtPCO4, in terms of both responding to O2, and oxidizing hypoxic responsive proteins. This work validates an O2-sensing role for the PCOs and provides evidence for functional differences between members of this enzyme family.


Kotak J, Saisana M, Gegas V, Pechlivani N, Kaldis A, Papoutsoglou P, Makris A, Burns J, Kendig AL, Sheikh M, Kuschner CE, Whitney G, Caiola H, Doonan JH, Vlachonasios KE, McCain ER, Hark AT (2018) The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis. Planta. doi: 10.1007/s00425-018-2923-9 Open Access

John Doonan (Aberystwyth University) is a co-author on this manuscript led by Jenna Kotak and Amy Herd in the USA. They investigate plants that have mutations in the histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b. These genes have been previously demonstrated as being involved in endoreduplication and trichome branching. They show that these mutants have alterations in the number and patterning of trichome-branches and that ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.


Baduel P, Hunter B, Yeola S, Bomblies K. Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa (2018) PLoS Genet.

doi: 10.1371/journal.pgen.1007510 Open Access

Pierre Baduel and Kirsten Bomblies (John Innes Centre) lead this work that was conducted prior to Kirsten’s move to Norwich. In this study they follow the colonization of populations of Arabidopsis arenosa along mountain railway corridors. They demonstrate that selective pressure has occurred on novel alleles of flowering time genes and discuss the implications for ruderal communities linked to railways as allele conduits linked to local adaptations.

Arabidopsis Research Roundup: December 18th

This festive Arabidopsis Research Roundup begins with a commentary article from a global consortium of plant scientists who propose a framework of future training for researchers who will take advantage of the experimental tools available in Arabidopsis. Secondly is study from Caroline Dean (JIC) that defines the role of the LHP1 protein in epigenetic control of gene expression. Thirdly John Doonan (Aberystwyth) is a co-author of work that defines an important component of mitotic spindle formation. Next is a study led by Zinnia Gonzalez-Carranza in Nottingham that offers further insights into the function of the HWS gene. The fifth study comes from the lab of Alexander Ruban (QMUL), further investigating the importance of NPQ in photosynthetic control. The sixth paper from the Van Ooijen lab (Edinburgh) characterises the role of sumoylation in the control of CCA1 activity. The penultimate paper from the Harberd lab in Oxford defines the importance of DNA mismatch repair on genome sequence integrity whilst the final paper characterises the next phase in the long story of Arabidopsis ALF4 function and includes Charles Melynk (SLCU) as a co-author.


Friesner J et al (2017) The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiol. doi: 10.1104/pp.17.01490. Open Access

The current GARNet PI Jim Murray and past GARNet coordinator Ruth Bastow are authors in this international consortium that suggests future directions for the global Arabidopsis community. This consortium is led by Joanna Friesner and concludes that it is critical that the next generation of plant scientists receive appropriate training in bioinformatics and quantitative biology so as to take advantage of the remarkable array of datasets that are now available to Arabidopsis researchers.


Berry S, Rosa S, Howard M, Bühler M, Dean C (2017) Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression Genes Dev. doi: 10.1101/gad.305227.117 Open Access

Caroline Dean (John Innes Centre) leads this study that investigates the role of the polycomb associated protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in the regulation of the repressive histone mark H3K27me3. They demonstrate that the intrinsically disordered hinge region of LHP1 is responsible for RNA-binding and that disruption of this region prevents the formation of sub-nuclei foci, provides a potential link to wider epigenetic regulation.


Lee YJ, Hiwatashi Y, Hotta T, Xie T, Doonan JH, Liu B (2017) The Mitotic Function of Augmin Is Dependent on Its Microtubule-Associated Protein Subunit EDE1 in Arabidopsis thaliana. Current Biol. doi: 10.1016/j.cub.2017.11.030

Open Access

John Doonan and colleagues at Aberystwyth University are co-authors on this study regarding the role of the Microtubule-Associated Protein Subunit EDE1, which is a member of the Augmin complex, during mitosis. EDE1 specifically localised with the augmin complex during spindle formation, a role that cannot be replaced by the homologous protein AUG8. This work reveals that specificity of the augmin complex can be determined by interaction with subunits that only contribute to complex function during particular phases of the cell cycle.


Zhang X, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH (2017) The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One. doi: 10.1371/journal.pone.0189788 Open Access

Zinnia Gonzalez-Carranza (Nottingham) is the corresponding author on this study that follows on from work published earlier in 2017 regarding the role of the HAWAIIAN SKIRT gene is plant development. In this latest work they identify mutations in the previously characterized Exportin-5 HASTY gene as suppressors of the hws mutant phenotype. Further investigation shows that HWS genetically interacts with other genes involved in miRNA pathway indicates that HWS somehow interacts with biogenesis, accumulation or function of these small RNAs.


Townsend AJ1, Ware MA1, Ruban AV (2017) Dynamic interplay between photodamage and photoprotection in photosystem II. Plant Cell Environ doi: 10.1111/pce.13107

In this paper Alexander Ruban (QMUL) is the corresponding author on work that expands his groups contribution to the understanding of the role non-photochemical quenching (NPQ) plays during photoinhibition. In this work they compare the activity of NPQ versus endogenous photosystemI repair mechanisms in the maintenance of photosynthetic activity during photoinhibitory conditions. Overall they conclude that NPQ is a more important mechanism for photoprotection under short periods of illumination.


Hansen LL, Imrie L, Le Bihan T, van den Burg HA, van Ooijen G (2017) Sumoylation of the Plant Clock Transcription Factor CCA1 Suppresses DNA Binding. J Biol Rhythms doi: 10.1177/0748730417737695 Open Access

This paper from the Van Ooijen lab accompanies one that was featured in last weeks ARR and extends their finding that sumoylation plays an important role in control of the circadian clock. In this paper they show that the CCA1 clock protein is sumoylated and that perturbing this modification alters the binding of CCA1 to a target promotor, even though it’s localization or stability were unaffected. Using an in vitro system they show that sumoylation is a direct determinant of CCA1 binding to its target promotor suggesting that this PTM fine tunes the activity of this key circadian control element.


Belfield EJ, Ding ZJ, Jamieson FJC, Visscher AM, Zheng SJ, Mithani A, Harberd NP (2017) DNA mismatch repair preferentially protects genes from mutation. Genome Res. doi: 10.1101/gr.219303.116

Past GARNet Advisory board member Nick Harberd (Oxford) leads this multi-generational study on the effect of DNA mismatch repair (MMR) on maintenance of an entire genome. They perform whole genome sequencing across five generations of Arabidopsis plants with a mutation in the MMR pathway and show that particular types of nucleotide error are more prevelant amongst the total 9000 mutations that accumulate. Interestingly they show that single nucleotide variants are more likely to accumulate in genic regions, indicating that protein coding areas of the genome are preferentially protected from damage.


Bagchi R, Melnyk CW, Christ G, Winkler M,, Kirchsteiner K, Salehin M, Mergner J, Niemeyer M, Schwechheimer C, Calderón Villalobos LIA, Estelle M (2017) The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J. doi: 10.15252/embj.201797159

During his time as a research fellow at the Sainsbury lab in Cambridge. Charles Melynk contributed to this research that is a throwback to the early day of Arabidopsis mutant analysis. The alf4 was first described as a possible auxin mutant in 1995 and this work brings this study full circle by characterising the ALF4 protein as a novel regulator of SCF complexes, which are known to be involved in auxin and GA signaling. ALF4 specifically functions by interacting with the SCF-core component RBX1. Future work will determine whether this effect is specific to SCFs involved in hormone signaling or whether it is a more general effect.

«page 1 of 3

Follow Me
TwitterRSS
GARNetweets
September 2019
M T W T F S S
« Aug    
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Welcome , today is Thursday, September 19, 2019