GARNet Research Roundup: October 17th 2019

This edition of the GARNet Research Roundup includes a superb selection of papers by scientists from across the UK. First is work from the Spoel lab in Edinburgh that characterizes the fine-tuning of NPR1 activity during the plant immune response. Second is work from SLCU and the University of Helsinki that is an extensive investigation into the molecular basis of cambial development. Next is research from Nottingham that looks at the importance of soil macro-structures during the growth of wheat roots.

Fourth are three papers that highlight the breadth of research occurring at the John Innes Centre. The first paper is from Enrico Coen’s lab that applies their expertise in computational modeling to leaf development in the carnivorous plant Utricularia gibba. Second is work from Saskia Hogenhout’s lab that looks at immunity to infection by Phytoplasma pathogens. Last is work from Lars Ostergaard’s lab that characterises the role of Auxin Binding promoter elements in floral development.

The seventh paper from Bristol and Glasgow looks at shade avoidance signaling via PIF5, COP1 and UVR8 whilst the eighth paper, which is from Rothamsted, demonstrates how metabolic engineering in Arabidopsis seeds can result in a high proportion of human milk fat substitute. The next paper is from the University of Durham and investigates how the composition of the Arabidopsis cell wall impacts freezing tolerance. The first author of this paper, Dr Paige Panter discusses the paper on the GARNet community podcast.

The tenth paper is from Julia Davies’s lab at the University of Cambridge and introduces an uncharacterised response to extracellular ATP signals in Arabidopsis roots. The next paper is from Mike Blatt’s group at University of Glasgow and characterises a new interaction between vesicular transport and ion channels. The penultimate entry includes co-authors from the JIC on a Chinese-led study that demonstrates improved seed vigour in wheat through overexpression of a NAC transcription factor. Finally are two methods papers taken from a special journal issue on ‘Plant Meiosis’.


Skelly MJ, Furniss JJ, Grey HL, Wong KW, Spoel SH (2019) Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. Elife. doi: 10.7554/eLife.47005
Open Access

Michael Skelly is lead author on this paper from the lab of current GARNet chair Steven Spoel. In it they investigate the mechanisms that fine-tune the function of NPR1, a key player in the plant immune response. Progressive ubiquitination of NPR1 by an E3 ligase causes both its interaction with target genes and its subsequent degradation by an E4 ligase. This latter occurrence is opposed by the deubiquitinase activity of UBP6/7, setting up a complex regulatory environment that allows the plant to rapidly response to pathogen attack.


Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damén T, Joung JG, Yun JY, Lee JH, Ragni L, Barbier de Reuille P, Ahnert SE, Lee JY, Mähönen AP, Helariutta Y (2019) Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat Plants. doi: 10.1038/s41477-019-0522-9

This pan-European-Korean collaboration has Jing Zhang from the University of Helsinki and the Sainsbury Laboratory, University of Cambridge as first author. They use cambium cell-specific transcript profiling and follow-on network analysis to discover 62 new transcription factors involved in cambial development in Arabidopsis. This information was used to engineer plants with increased radial growth through ectopic cambial activity as well as to generate plants with no cambial activity. This understanding provides a platform for possible future improvements in production of woody biomass.


Atkinson JA, Hawkesford MJ, Whalley WR, Zhou H, Mooney SJ (2019) Soil strength influences wheat root interactions with soil macropores. Plant Cell Environ. doi: 10.1111/pce.13659
This work is led from the University of Nottingham by John Atkinson and Sacha Mooney. They use X-ray Computed Tomography to investigate a trait called trematotropism, which applies to the ability of deep rooting plants to search out macropores and avoid densely packed soil. They show root colonisation of macropores is an important adaptive trait and that strategies should be put in place to increase these structures within the natural soil environment.


Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E (2019) Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol. doi: 10.1371/journal.pbio.3000427
Open Access

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000427

Karen Lee, Claire Bushell and Yohei Koide are co-first authors on this work led by Enrico Coen at the John Innes Centre and Minlong Cui at the Zhejiang Agriculture and Forestry University in China. This study uses 3D imaging, cellular and clonal analysis, combined with computational modelling to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. They identify growth ansiotrophies that result in the final leave shape that develops from an initial near-spherical form. These processes have some similarities to the polar growth seen in Arabidopsis leaves. Overall they show that ‘simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies’.


Pecher P, Moro G, Canale MC, Capdevielle S, Singh A, MacLean A, Sugio A, Kuo CH, Lopes JRS, Hogenhout SA (2019) Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize. PLoS Pathog. doi: 10.1371/journal.ppat.1008035
Open Access

This work from Saskia Hogenhout’s lab at the John Innes Centre is led by Pascal Pecher and Gabriele Moro. They look at the effect of SAP11 effectors from Phytoplasma species that infect either Arabidopsis or maize. They demonstrate that although both related versions of SAP11 destabilise plant TCP transcription factors, their modes of action have significant differences. Please look out for Saskia discussing this paper on the GARNet Community podcast next week.


Kuhn A, Runciman B, Tasker-Brown W, Østergaard L 92019) Two Auxin Response Elements Fine-Tune PINOID Expression During Gynoecium Development in Arabidopsis thaliana. Biomolecules. doi: 10.3390/biom9100526
Open Access

Andre Kuhn is first author of this research from Lars Østergaard’s lab at the John Innes Centre. They functional characterise two Auxin-responsive Elements (AuxRE) within the promotor of the PINOID gene, which are bound by the ETITIN/ARF3 Auxin Response Factor. Alteration of this AuxRE causes phenotypic changes during flower development demonstrating that even with a complex regulatory environment, small changes to cis-elements can have significant developmental consequences.


Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, Jenkins GI, Franklin KA (2019) UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun. doi: 10.1038/s41467-019-12369-1
Open Access

Ashutosh Sharma is first author of this UK-Spanish-Germany collaboration led by Keara Franklin at University of Bristol. They have characterised the interaction between three significant molecular players that function during the shade avoidance response in Arabidopsis; PIF5, UVR8 and COP1. In shaded conditions, UVR8 indirectly promotes rapid degradation of PIF5 through their interactions with the E3 ubiquitin ligase COP1.


van Erp H, Bryant FM, Martin-Moreno J, Michaelson LV, Bhutada G, Eastmond PJ (2019) Engineering the stereoisomeric structure of seed oil to mimic human milk fat. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907915116

Open Access

Harrie Van Arp and Peter Eastmond at Rothamsted Research lead this extremely translational study in which they have modified the metabolic pathway for triacylglycerol (TAG) biosynthesis. By modifying the location of one biosynthesis enzyme and removing the activity of another, the fats produced in these Arabidopsis seeds are enriched to contain TAGs that are similar to those found in human milk. They propose that this technology could be used to develop a source of plant-derived human milk fat substitute.


Panter PE, Kent O, Dale M, Smith SJ, Skipsey M, Thorlby G, Cummins I, Ramsay N, Begum RA, Sanhueza D, Fry SC, Knight MR, Knight H (2019) MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. New Phytol. doi: 10.1111/nph.16209

Paige Panter led this work as part of her PhD at the University of Durham in the lab of Heather Knight. They characterise the role of the MUR1 protein in the control of cell wall fucosylation and how this contributes to plant freezing tolerance. Paige discusses this paper and the long history of MUR1 on the GARNet Community podcast. Please check it out!


Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM (2019) Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. Front Plant Sci. doi: 10.3389/fpls.2019.01064.

Open Access

The UK-French collaboration is led by Limin Wang from Julia Davies’s lab in Cambridge. They use patch clamp electrophysiology to identify previously uncharacterized channel conductances that respond to extracellular ATP across the root elongation zone epidermal plasma membrane.


Waghmare S, Lefoulon C, Zhang B, Lileikyte E, Donald NA, Blatt MR (2019) K+ channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. doi: 10.1104/pp.19.00919

Open Access

This work from Mike Blatt’s lab in Glasgow is led by Sakharam Waghmare. They look at the interaction between SNARE proteins, which are involved in vesicular fusion and K+ channels, which help control turgor pressure during cell expansion. Through combining analysis of protein-protein interactions and electrophysiological measurement they have found that this interaction requires the activity of the regulatory protein SEC11.


Li W, He X, Chen Y, Jing Y, Shen C, Yang J, Teng W, Zhao X, Hu W, Hu M, Li H, Miller AJ, Tong Y (2019) A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytol. doi: 10.1111/nph.16234
Wenjing Li is first author of this Chinese study that includes Yi Chen and Anthony Miller from the John Innes Centre as co-authors. This research shows that seed vigour and nitrate accumulation in wheat is regulated by the TaNAC2 transcriptions factor through its control of the TaNRT2.5 nitrate transporter. The authors suggest that both genes could be used as potential future targets to increase grain yield and nitrogen use efficiency.


The Special Issue of Methods in Molecular Biology on Plant Meiosis includes papers from the University of Cambridge, led by Christophe Lambing and the James Hutton Institute, led by Benoit Darrier.

Lambing C, Choi K, Blackwell AR, Henderson IR (2019) Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_16
Darrier B, Arrieta M, Mittmann SU, Sourdille P, Ramsay L, Waugh R, Colas I (2019) Following the Formation of Synaptonemal Complex Formation in Wheat and Barley by High-Resolution Microscopy. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_15

GARNet Research Roundup: September 24th 2019

Due to a significant delay this GARNet Research Roundup is a bumper overview of recent(ish) publications across discovery-led plant science, which have at least one contributor from a UK institution.

These can be (very) loosely separated into the following categories:

Circadian Clock: Greenwood et al, PloS Biology. Belbin et al, Nature Communications.

Environmental responses: Rodríguez-Celma et al, PNAS. Walker and Bennett, Nature Plants. Conn et al, PLoS Comput Biology. de Jong et al,PLoS Genetics. Molina-Contreras et al,The Plant Cell.

Defence signaling: Van de Weyer et al, Cell.Hurst et al, Scientific Reports. Xiao et al, Nature. Wong et al, PNAS.

Cell Biology: Miller et al, The Plant Cell. Coudert et al, Current Biology. Burgess et al,The Plant Cell. Harrington et al, BMC Plant Biology.

Metabolism: Jia et al, J Biol Chem. Perdomo et al, Biochem J. Gurrieri et al, Frontiers in Plant Science. Mucha et al, The Plant Cell. Atkinson et al, JXBot.

Cell Wall Composition: Wightman et al, Micron. Milhinhos et al, PNAS.

Signaling: Hartman et al, Nature Communications. Dittrich et al, Nature Plants. Villaécija-Aguilar et al, PLoS Genetics


Greenwood M, Domijan M, Gould PD, Hall AJW, Locke JCW (2019) Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biol. 17(8):e3000407. doi: 10.1371/journal.pbio.300040 Open Access

Lead author is Mark Greenwood. UK contribution from The Sainsbury lab University of Cambridge, University of Liverpool and Earlham Institute. Using a mixture of experimental and modeling this paper shows that individual organs have circadian clocks that runs at different speeds.


Belbin FE, Hall GJ, Jackson AB, Schanschieff FE, Archibald G, Formstone C, Dodd AN (2019) Plant circadian rhythms regulate the effectiveness of a glyphosate-based herbicide. Nat Commun. 2019 Aug 16;10(1):3704. doi: 10.1038/s41467-019-11709-5 Open Access

Lead author is Fiona Belbin. UK contribution from University of Bristol and Syngenta Jealott’s Hill. Activity of the circadian clock determines that the plant response to the herbicide glyphosate is lessened at dusk, promoting the idea of agricultural chronotherapy. Fiona discusses this paper on the GARNet Community Podcast.


Rodríguez-Celma J, Connorton JM, Kruse I, Green RT, Franceschetti M, Chen YT, Cui Y, Ling HQ, Yeh KC, Balk J (2019) Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907971116 Open Access

Lead author is Jorge Rodríguez-Celma. UK contribution from John Innes Centre, University of East Anglia.The Arabidopsis E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2 target the FIT transcription factor for degradation, altering the plant response to harmful level of iron.


Walker CH, Bennett T (2019) A distributive ‘50% rule’ determines floral initiation rates in the Brassicaceae. Nat Plants. doi: 10.1038/s41477-019-0503-z
Lead author Catriona Walker. UK contribution from the University of Leeds. The authors introduce the 50%-rule that defines the relationshop between the total number of flowers the number of secondary inflorescences


Conn A, Chandrasekhar A, Rongen MV, Leyser O, Chory J, Navlakha S (2019) Network trade-offs and homeostasis in Arabidopsis shoot architectures. PLoS Comput Biol. doi: 10.1371/journal.pcbi.100732 Open Access

Lead author is Adam Conn. UK contribution from Sainsbury Laboratory, University of Cambridge. This study performed 3D scanning of 152 Arabidopsis shoot architectures to investigate how plants make trade-offs between competing objectives.


de Jong M, Tavares H, Pasam RK, Butler R, Ward S, George G, Melnyk CW, Challis R, Kover PX, Leyser O (2019) Natural variation in Arabidopsis shoot branching plasticity in response to nitrate supply affects fitness. PLoS Genet. doi: 10.1371/journal.pgen.1008366 Open Access

Lead author is Maaike de Jong. UK contribution from the Sainsbury Laboratory, University of Cambridge, the University of York and the University of Bath. This study looks at phenotypic plasticity of shoot branching in Arabidopsis diversity panels grown until different nitrate concentrations.


Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, Morelli L, Roig-Villanova I, Jenkins H, Hallab A, Gan X, Gómez-Cadenas A, Tsiantis M, Rodriguez-Concepcion M, Martinez-Garcia JF (2019) Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell. doi: 10.1105/tpc.19.00275 Open Access

Lead author is Maria Jose Molina-Contreras. UK contribution from the University of Oxford. The authors looks at the response to different light conditions and how they contribute to phenotypic determination in Cardamine and Arabidopsis seedlings.


Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F (2019) A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell. doi: 10.1016/j.cell.2019.07.038 Open Access

Lead author is Anna-Lena Van de Weyer. UK contribution from The Sainsbury Laboratory, Norwich. Using sequence enrichment and long-read sequencing the authors present the pan-NLRome constructed from 40 Arabidopsis accessions.


Hurst CH, Wright KM, Turnbull D, Leslie K, Jones S, Hemsley PA (2019) Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does not necessarily impact upon function. Sci Rep. doi: 10.1038/s41598-019-49302-x Open Access

Lead author is Charlotte Hurst. UK contribution from the James Hutton Institute and the University of Dundee. They look at the functional role of post-translational modification S-acylation with a focus on the plant pathogen perceiving receptor-like kinase FLS2.


Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai J (2019) Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature. doi: 10.1038/s41586-019-1409-7
Lead author is Yu Xiao. UK contribution from The Sainsbury Laboratory, Norwich. This study investigates how RAPID ALKALINIZATION FACTOR (RALF) peptides induce receptor complex formation to regulate immune signaling.


Wong JEMM, Nadzieja M, Madsen LH, Bücherl CA, Dam S, Sandal NN, Couto D, Derbyshire P, Uldum-Berentsen M, Schroeder S, Schwämmle V, Nogueira FCS, Asmussen MH, Thirup S, Radutoiu S, Blaise M, Andersen KR, Menke FLH, Zipfel C, Stougaard J (2019). A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1815425116
Open Access

Lead author is Jaslyn Wong. UK contribution from The Sainsbury Laboratory, University of East Anglia. This work was conducted in the legume Lotus and after a proteomic screen, the authors identified NFR5-interacting cytoplasmic kinase 4 that is involved in control of Nod factor perception.


Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan MW (2019) Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size and crop yield in Brassica napus. Plant Cell. doi: 10.1105/tpc.18.00577
Open Access

Lead author in Charlotte Miller. UK contribution from the John Innes Centre. Activity of the Brassica napus HECT E3 ligase gene BnaUPL3 controls seed weight per pod through degradation of LEC2, a master transcriptional regulator of seed maturation and reveals a potential target for crop improvement


Coudert Y, Novák O, Harrison CJ (2019) A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants. Curr Biol. 2019 Aug 19;29(16):2743-2750.e5. doi: 10.1016/j.cub.2019.06.083

Lead author is Yoan Coudert. UK contribution from the University of Cambridge and University of Bristol. Class I KNOX gene activity is shown to be necessary for axis extension from an intercalary region of determinate moss shoots, in part through promotion of cytokinin biosynthesis.


Burgess SJ, Reyna-Llorens I, Stevenson SR, Singh P, Jaeger K, Hibberd JM (2019) Genome-wide transcription factor binding in leaves from C3 and C4 grasses Plant Cell.  doi: 10.1105/tpc.19.00078 Open Access

Lead author is Steven Burgess. UK contribution from University of Cambridge, The Sainsbury lab University of Cambridge, University of Leeds The authors use DNaseI-SEQ to assess the similarities and differences in transcription factor binding sites in the leaves across a set of four C3 and C4 grasses.


Harrington SA, Overend LE, Cobo N, Borrill P, Uauy C (2019) Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biol. doi: 10.1186/s12870-019-2022-
Lead author is Sophie Harrington. UK contributions from the John Innes Centre and University of Birmingham. The authors used a wheat TILLING resource to investigate mutrant allele with the NAC domain of the NAM-A1 transcription factor and their contribution to phenotypes in lab and field.


Jia Y, Burbidge CA, Sweetman C, Schutz E, Soole K, Jenkins C, Hancock RD, Bruning JB, Ford CM (2019) An aldo-keto reductase with 2-keto- L-gulonate reductase activity functions in L-tartaric acid biosynthesis from vitamin C in Vitis vinifera. J Biol Chem. doi: 10.1074/jbc.RA119.010196 Open Access

Lead author Yong Jia. UK contribution from the James Hutton Institute. This work conducted in grape reveals the mechanism by which an aldo-keto reductase functions in tartaric acid biosynthesis.


Perdomo JA, Degen GE, Worrall D, Carmo-Silva E (2019) Rubisco activation by wheat Rubisco activase isoform 2β is insensitive to inhibition by ADP. Biochem J. doi: 10.1042/BCJ2019011 Open Access

Lead author is Juan Alejandro Perdomo. UK contribution from Lancaster University. They show through analysis of site-directed mutations across three isoforms of wheat Rubisco activase that these isoforms have different sensitivities to ADP.


Gurrieri L, Distefano L, Pirone C, Horrer D, Seung D, Zaffagnini M, Rouhier N, Trost P, Santelia D, Sparla F (2019) The Thioredoxin-Regulated α-Amylase 3 of Arabidopsis thaliana Is a Target of S-Glutathionylation. Front Plant Sci. doi: 10.3389/fpls.2019.00993 Open Access

Lead author is Libero Gurrieri. UK contribution from John Innes Centre. The chloroplastic α-Amylases, AtAMY3 is post-translationally modified by S-glutathionylation in response to oxidative stress.


Mucha S, Heinzlmeir S, Kriechbaumer V, Strickland B, Kirchhelle C, Choudhary M, Kowalski N, Eichmann R, Hueckelhoven R, Grill E, Kuster B, Glawischnig E (2019) The formation of a camalexin-biosynthetic metabolon. Plant Cell. doi: 10.1105/tpc.19.00403 Open Access

Lead author is Stefanie Mucha. UK contribution from Oxford Brookes University and University of Warwick. The authors performed two independent untargeted co-immunoprecipitations to identify components involved in biosynthesis of the antifungal phytoalexin camalexin.


Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ (2019) The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. J Exp Bot. doi: 10.1093/jxb/erz275
Open Access

Lead author is Nicky Atkinson. UK contribution from the University of Edinburgh. This study uses Arabidopsis-Chlamydomonas to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1).


Wightman R, Busse-Wicher M, Dupree P (2019) Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron. doi: 10.1016/j.micron.2019.102733
Lead author Raymond Wightman. UK contribution from the Sainsbury Laboratory, University of Cambridge and the University of Cambridge. This study uses applies a novelmethod of correlative FLIM-confocal-Raman imaging to analyse lignin composition in Arabidopsis stems.


Milhinhos A, Vera-Sirera F, Blanco-Touriñán N, Mari-Carmona C, Carrió-Seguí À, Forment J, Champion C, Thamm A, Urbez C, Prescott H, Agustí J (2019) SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1807863116
Lead author is Ana Milhinho. UK contribution from the University of Oxford. The authors used GWAS in Arabidopsis to identify the SOBIR1/EVR as an important regulator of the control of secondary growth in xylem fibers.


Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW, Visser EJW, Bailey-Serres J, Theodoulou FL, Hebelstrup KH, Gibbs DJ, Holdsworth MJ, Sasidharan R, Voesenek LACJ (2019) Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun. doi: 10.1038/s41467-019-12045-4 Open Access

Lead author is Sjon Hartman. UK contribution from the University of Nottingham, Rothamsted Research and the University of Birmingham. This multinational collaboration looks into the relationship of how ethylene mediated nitric-oxide signaling responds to environmental signals.


Dittrich M, Mueller HM, Bauer H, Peirats-Llobet M, Rodriguez PL, Geilfus CM, Carpentier SC, Al Rasheid KAS, Kollist H, Merilo E, Herrmann J, Müller T, Ache P, Hetherington AM, Hedrich R (2019) The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants. doi: 10.1038/s41477-019-0490-0
Lead author Marcus Dittrich. UK contribution from the University of Bristol. This work looks at the role of ABA signaling in stomatal responses and that the multiple ABA receptors can be modulated differentially in a stimulus-specific manner.


Villaécija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmid C, Dawid C, Bennett T, Gutjahr C (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet. doi: 10.1371/journal.pgen.1008327 Open Access

Lead author Jose Antonio Villaécija-Aguilar. UK contribution from the University of Leeds and The Sainsbury lab, University of Cambridge. This demonstrates that KAI2 signalling through SMAX1/SMXL2 , is an important new regulator of root hair and root development in Arabidopsis.

Mike Skelly talks to GARNet

Tags: No Tags
Comments: No Comments
Published on: September 11, 2019

Michael Skelly from the University of Edinburgh talks to GARNet about a paper published in PNAS titled ‘A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity‘. Thanks Mike! 11/9/19

GARNet Research Roundup: July 26th 2019

This summer-time-reading bumper edition of the GARNet Research Roundup begins with two papers from the University of Sheffield that each use advanced imaging techniques. Firstly Andrew Fleming’s group leads a study on the link between stomatal function and mesophyll space morphology. Second is a study from Matthew Johnson’s group that looks at the dynamic arrangement of thylakoid stacks.

Next are two papers that include Alison Smith from the JIC as a corresponding author. The first also includes Vasilios Andriotis from the University of Newcastle and looks at the role of the plastidial pentose phosphate pathway during post-germination growth. Second uses a gene-editing strategy to generate potatoes with altered starch morphologies.

The fifth paper also looks at starch; researchers from Cambridge and Norwich are involved in a study that characterises the role of the LIKE SEX4 1 protein in starch degradation.

The sixth paper is from Aberystwyth University and identifies a transcription factor that alters secondary cell wall composition in Brachypodium and maize. Next is research from the University of Bath that looks at the role of a protein S-acyl transferase during seed germination.

The eighth and ninth papers are led by Spanish research groups and include contributions from UK-based co-authors in Cambridge and Nottingham, working on photoperiod perception or phosphate signaling respectively.

The tenth paper features work from Cardiff University and looks at the role of heterologous expression of the Arabidopsis WEE1 protein. The Bancroft lab from the University of York leads the next paper that investigates glucosinolate signaling in Brassica napus.

The final three manuscripts are methods papers. The first from Edinburgh introduces a new NanoLUC reporter whilst the other two include techniques involved in the investigation of light-regulated growth processes.


Lundgren MR, Mathers A, Baillie AL, Dunn J, Wilson MJ, Hunt L, Pajor R, Fradera-Soler M, Rolfe S, Osborne CP, Sturrock CJ, Gray JE, Mooney SJ, Fleming AJ (2019) Mesophyll porosity is modulated by the presence of functional stomata. Nat Commun. doi: 10.1038/s41467-019-10826-5

Open Access

This UK-wide study is led from Andrew Fleming’s lab in Sheffield and includes Marjorie Lundgren as first author (now working in Lancaster). They use microCT imaging alongside more traditional measurements linked to analysis of gas exchange to show that mesophyll airspace formation is linked to stomatal function in both Arabidopsis and wheat. This allows the authors to propose that coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops.

https://www.nature.com/articles/s41467-019-10826-5

Wood WH, Barnett SFH, Flannery S, Hunter CN, Johnson MP (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with photosystem I. Plant Physiol. doi: 10.1104/pp.19.00503

Open Access

William Wood is the first author on this study from the University of Sheffield that uses 3D structured illumination microscopy (3D-SIM) to look at the dynamics of thylakoid stacking in both Arabidopsis and spinach. They show that the processes they observe are dependent on light harvesting complex II phosphorylation.

http://www.plantphysiol.org/content/early/2019/06/11/pp.19.00503.long

Andriotis VME, Smith AM (2019) The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1908556116

Open Access

Vasilios Andriotis (now at the University of Newcastle) is the lead author of this work performed in Alison Smith’s lab at the JIC. They look at the role of the plastidial oxidative pentose phosphate pathway (OPPP) during embryo development. This involved demonstrating that production of ribose-5-phosphate (R5P), which in turn leads to synthesis of purine nucleotides, is a critical function of the OPPP.


Tuncel A, Corbin KR, Ahn-Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol J. doi: 10.1111/pbi.13137

Open Access

Alison Smith and Nicola Patron who work in Norwich Research Park are corresponding authors of this study that includes Aytug Tuncel as first author. They have used Cas9-mediated gene editing to generate potato plants that have a range of different tuber starch structures. This shows that gene-editing techniques allows the transgene-free alteration to generate potentially healthier crops.


Schreier TB, Umhang M, Lee SK, Lue WL, Shen Z, Silver D, Graf A, Müller A, Eicke S, Stadler M, Seung D, Bischof S, Briggs SP, Kötting O, Moorhead GB, Chen J, Zeeman SC (2019) LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation. Plant Cell. doi: 10.1105/tpc.19.00089

Open Access

Tina Schreier from the University of Cambridge is the first author on this international study led from Switzerland that also includes Alexander Graf and David Seung from the JIC as co-authors. This study defines a precise role for the LIKE SEX FOUR 1 (LSF1) protein that binds starch and is required for normal starch degradation. Through a variety of experiments they show that the glucan binding, rather than phosphatase activity, is required for LSF1 function during starch degradation.


Bhatia R, Dalton S, Roberts LA, Moron-Garcia OM, Iacono R, Kosik O, Gallagher JA, Bosch M (2019) Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Sci Rep. doi: 10.1038/s41598-019-45225-9

Open Access

Rakesh Bhatia is the first author on this work from the lab of Maurice Bosch at Aberystwyth University. They overexpress the maize MYB transcription factor ZmMYB167 in both Brachypodium and maize. Both species show increased lignin content with Brachypodium but not maize showing a biomass deficit. This indicates that ZmMYB167 could be a useful molecular tool for the alteration of secondary cell wall biosynthesis.

https://www.nature.com/articles/s41598-019-45225-9

Li Y, Xu J, Li G, Wan S, Batistic O, Sun M, Zhang Y, Scott R, Qi B (2019) Protein S-acyl Transferase 15 is Involved in Seed Triacylglycerol Catabolism during Early Seedling Growth in Arabidopsis (2019) J Exp Bot. doi: 10.1093/jxb/erz282

First author on this UK-Chinese collaboration is Yaxiao Li who works with Baoxiu Qi at the University of Bath. The authors characterise the function of Arabidopsis Protein Acyl Transferase 15, AtPAT15. This protein is involved in essential β-oxidation of triacylglycerols during post-germination growth.


Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao M, Jaeger KE, Wigge PA, Allona I, Perales M (2019) LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Curr Biol. doi: 10.1016/j.cub.2019.06.003

Open Access

This Spanish-led study includes co-authors from the Sainsbury Laboratory in Cambridge and attempts to define the factors that control photoperiod perception in trees, using poplar as a model system. FLOWERING LOCUS T2 (FT2) has been previously shown to be involved in this process and this study builds on that work to show that night-length information is transmitted by the clock gene LATE ELONGATED HYPOCOTYL 2 (LHY2) and is able to control FT2 expression.

https://www.cell.com/current-biology/fulltext/S0960-9822(19)30696-7?

Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, Del Pozo JC (2019) Role of cis-zeatin in root responses to phosphate starvation. New Phytol. doi: 10.1111/nph.16020

Ranjan Swarup from the University of Nottingham is a co-author on this Spanish-led study that has Javier Silva-Navas as first author. Through analysis of dark-grown seedlings they have identified a set of new genes involved in root phosphate signaling. In addition they provide evidence of a links between cytokinin and phosphate signaling through modulation of the cell cycle.


Siciliano I, Lentz Grønlund A, Ševčíková H, Spadafora ND, Rafiei G, Francis D, Herbert RJ, Bitonti MB, Rogers HJ, Lipavská H (2019) Expression of Arabidopsis WEE1 in tobacco induces unexpected morphological and developmental changes. Sci Rep. 2019 Jun 18;9(1):8695. doi: 10.1038/s41598-019-45015-3

Open Access

Ilario Siciliano leads this work that includes colleagues from Hilary Rogers’ lab at Cardiff University. The WEE1 protein regulates the cell cycle across eukaryote lineages. In this work they show that overexpression of AtWEE1 in tobacco causes precocious flowering and increased shoot morphogenesis of stem explants whilst in cell culture this WEE1 OX causes smaller cell sizes.


Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I (2019) Genetic architecture of glucosinolate variation in Brassica napus. J Plant Physiol. doi: 10.1016/j.jplph.2019.06.001

Open Access

This study from the Bancroft lab at the University of York is led by Varanya Kittipol. Through use of Associative Transcriptomics (AT) across a diversity panel of 288 Brassica napus genotypes they are able to identify a set of genes involved in synthesis of glucosinate hydrolysis products.


Urquiza-García U, Millar AJ (2019). Expanding the bioluminescent reporter toolkit for plant science with NanoLUC. Plant Methods. doi: 10.1186/s13007-019-0454-4

Open Access

This study from the University of Edinburgh introduces NanoLUC, a new more stable luciferase-based reporter for use by the plant community.

The final two papers are methods papers that focus on different aspects of light-regulated growth. These are from the University of Southampton and University of York.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0454-4

Terry MJ, Kacprzak SM (2019) A Simple Method for Quantification of Protochlorophyllide in Etiolated Arabidopsis Seedlings. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_14

Oakenfull RJ, Ronald J, Davis SJ (2019) Measuring Phytochrome-Dependent Light Input to the Plant Circadian Clock. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_15

XV Cell Wall Meeting 2019

Tags: No Tags
Comments: No Comments
Published on: July 23, 2019

By Christian Donohoe (@donohoho), University of Edinburgh

For my first conference since starting this PhD I attended the triennial XV Cell Wall Meeting, which in its latest iteration was at the University of Cambridge, with Professor Paul Dupree as the chair of the local organising committee. Along with my lab the Edinburgh Cell Wall Group and my supervisor Professor Stephen C. Fry, we came down for the week to present posters on our work and for Stephen to give a talk.

Stephen C. Fry showing Thuryya Al Hinai’s work studying  the enzymes behind fruit ripening

The meeting covers all disciplines related to plant cell wall research so there was a diverse mix of expertise in attendance, ranging from physicists studying secondary cell wall structure in poplar wood using atomic force microscopy, to geneticists over-expressing or supressing genes to uncover the effect of certain enzymes on cell wall structure. Even though I come from a mainly chemistry background this was of no hindrance as the 15-minute talks were all well designed and approachable for anyone with a scientific background.


Posters were hung and left standing all week to allow for casual browsing/lurking during lunches and coffee breaks. This relaxed ambiance carried across into the poster presentations, allowing for easy introductions and bustling halls of conversation throughout each session. I managed to engage with many posters and their presenters, mainly focusing on cell wall structure but the posters themselves were again were well written, so even the mass spec analysis posters that spared no detail were understandable when guided by the author.

Christian proudly presents his poster @donohoho

Throughout the years the meeting has been running there have been certain themes as the field has progressed, and currently it is said to be the ‘practical age’ of plant cell wall research – taking the tools and discoveries from the past 40 years and applying them in fields such as modifying cotton cell walls for physical improvements of the collected fibres, or the genetic optimisation of crop development for biofuel production. A particular highlight was from PhD student James Cowley from the University of Adelaide, looking the utilisation of seed mucilage of the plantago for better gluten-free bread.


Another highlight for me was the focus on personal workplace responsibility, equalities, and ethics that were discussed in busy well-attended sessions. Starting with Dame Professor Athene Donald and keeping pace from there, the talks covered a wide range of important issues that are usually only quietly acknowledged, and it was good to see open challenges to the biases of today people face, with clear instructions for how to help those around you. #just1action4WIS

From a early postgrad perspective, the diversity at the senior levels of research does not reflect the broad range of PhD students currently studying or graduating – by discussing these issues, putting in the time to listen, and vigilant self – criticism we can all work to improve this.

Edinburgh Cell Wall Group
Back: Marie Rapin, Ninni Nuorti, Stephen C. Fry
Front: Christian Donohoe, Thuryya Al Hinai, Lenka Frankova, Rifat Ara Bergum
Photo @donohoho

In all, it was a pleasure and a privilege to attend such a meeting, special thanks to the GARNet travel grant for helping me afford to attend the meeting. For the next meeting I am greatly looking forward to presenting my entire PhD work in 2022, when the meeting will be held in beautiful Malaga, Spain.   

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
December 2019
M T W T F S S
« Nov    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Welcome , today is Wednesday, December 11, 2019