GARNet Research Roundup: July 17th 2020

This edition of GARNet Research Roundup begins with a remarkable four papers that include work from Caroline Dean’s lab at the John Innes Centre. The first two papers are collaborations with members of Martin Howard’s lab and look at the molecular mechanisms that control long-term cold sensing or the antisense regulation of FLC respectively. The third paper looks at the function of the ICU1-associated PRC2 complex while the final ‘Dean-lab’ paper is a collaboration with Judith Irwin and looks at regulation of flowering time in Brassica napus.

The next three papers also feature authors from the John Innes Centre. The first looks at the role of mRNA methylation in the control of leaf organogenesis; the second paper investigates how AXR1 functions in the methylation of transposable elements and the final paper characterises a new method for the automated measurement of seeds.

The first non-JIC paper in this Roundup is led by Robert Caine from the University of Sheffield and characterises stomatal development in Physcomitrium patens. Andrea Harper at the University of York leads the next paper that applies an associative transcriptomics approach to the genome of Brassica juncea.

The next paper includes co-authors from Aberystwyth and characterises a molecular interaction from pollen tubes that can stimulate ectopic programmed cell death. The final two papers include co-authors from the University of Oxford. Firstly Paul Jarvis is involved with a Japanese study that looks at chloroplast autophagy and ubiquitination. Finally Nick Harberd is co-author on a Chinese study looking at iron accumulation in Arabidopsis seeds.


Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M (2020) Temperature-dependent growth contributes to long-term cold sensing Nature; 10.1038/s41586-020-2485-4. doi:10.1038/s41586-020-2485-4

Yusheng Zhao is first author on this work from the Howard and Dean labs at the John Innes Centre. They reveal a molecular mechanism that underpins the ability of plants to sense the winter period. They show that abundance of the transcription factor NTL8 is critical for the control of expression of the VERNALIZATION INSENSITIVE 3 protein, which in turn epigenetically silences FLC throughout the winter.

https://www.nature.com/articles/s41586-020-2485-4

Fang X, Wu Z, Raitskin O, et al (2020) The 3′ processing of antisense RNAs physically links to chromatin-based transcriptional control Proc Natl Acad Sci U S A. 2020;202007268. doi:10.1073/pnas.2007268117

Open Access

Xiaofeng Feng works with the Howard and Dean labs at the John Innes Centre and is lead author on this research. The authors provide molecular detail to the complex control of antisense RNA regulation of the FLC locus, which provides a link to epigenetic silencing via the Polycomb Repressive Complex 2.


Bloomer RH, Hutchison CE, Bäurle I, et al (2020) The Arabidopsis epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2 Proc Natl Acad Sci U S A. 2020;201920621. doi:10.1073/pnas.1920621117 Open Access

Rebecca Bloomer is first author on this collaboration between researchers at the John Innes Centre and the University of Edinburgh. They identify INCURVATA11 (ICU11) as a Polycomb Repressive Complex 2 (PRC2) accessory protein that co-localises with the core components of the PRC2. The ICU1-associated PRC2 complex controls H3K36me3 demethylation at the FLC locus, revealing an additional mechanism for the control of flowering time.


Tudor EH, Jones DM, He Z, et al (2020) QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus) Plant Biotechnol J. 2020;10.1111/pbi.13421. doi:10.1111/pbi.13421 Open Access

Eleri Tudor is first author on this work from the Dean and Irwin labs at the John Innes Centre. They characterise the key floral regulators FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING LOCUS T (BnaFT.A02) in Brassica napus, showing that allelic variation at these loci is importance for the close-association between vernalisation and flowering time.

https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.13421

Arribas-Hernández L, Simonini S, Hansen MH, et al (2020) Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis Development. doi:10.1242/dev.189134 Open Access

Laura Arribas-Hernández is lead author on this Danish-UK collaboration that includes Sara Simonini and Lars Ostergaard from the John Innes Centre as co-authors. They look at the role of YTH-domain proteins ECT2, ECT3 and ECT4 during leaf development. They show that the methylated mRNA (m6A)-binding site of these proteins is essential for their function, highlighting the m6A-ECT2/ECT3/ECT4 axis as an important module to stimulate plant organogenesis.

https://dev.biologists.org/content/early/2020/06/30/dev.189134.long

Christophorou N, She W, Long J, et al (2020) AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization PLoS Genet. 16(6):e1008894. doi:10.1371/journal.pgen.1008894 Open Access

This collaboration between Université Paris-Saclay and the John Innes Centre includes Nicolas Christophorou as first author. They investigate the role of the well-characterised NEDD8/RUB1 E1 ligase AXR1 in DNA methylation of transposable elements. This links the role of AXR1 with its previously characterised effects in hormone signalling and in the control of the formation of meiotic crossovers.


Colmer J, O’Neill CM, Wells R, et al (2020) SeedGerm: a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination New Phytol. 10.1111/nph.16736. doi:10.1111/nph.16736 Open Access

This UK-Chinese-Dutch collaboration is led by Joshua Colmer and introduces a new phenotyping platform that was tested against a diverse panel of Brassica napus varieties. This SeedGerm hardware and software measures seed germination, automates seed imaging and is a platform for machine-learning based phenotypic analysis. This will hopefully be a useful tool for the investigation of critical seed phenotypes.

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16736

Caine RS, Chater CCC, Fleming AJ, Gray JE (2020) Stomata and Sporophytes of the Model Moss Physcomitrium patens. Front Plant Sci. 2020;11:643. doi:10.3389/fpls.2020.00643 Open Access

Bobby Caine from the University of Sheffield is lead author on this research that characterises stomatal development in the model moss species Physcomitrium patens. Although they show key differences in stomatal development between Physcomitrium and Arabidopsis, key regulators of this process in higher plants also functions in mosses, providing important evolutionary insights.

https://www.frontiersin.org/articles/10.3389/fpls.2020.00643/full

Harper AL, He Z, Langer S, et al (2020) Validation of an Associative Transcriptomics platform in the polyploid crop species Brassica juncea by dissection of the genetic architecture of agronomic and quality traits Plant J. 2020;10.1111/tpj.14876. doi:10.1111/tpj.14876  Open Access

GARNet committee member Andrea Harper from the University of York leads this research that employs associative transcriptomics analysis in Brassica juncea. To generate this analysis platform they mapped transcriptome data from a diverse panel of B. juncea accessions to produce a pan-transcriptome reference. This will be a useful research for the mapping of loci involved in important agronomic traits.


Lin Z, Xie F, Trivino M, et al. (2020) Ectopic expression of a self-incompatibility module triggers growth arrest and cell death in vegetative cells Plant Physiol. doi:10.1104/pp.20.00292 Open Access

Zongcheng Lin is first author on this Belgium-led study that includes Marina Trivino and Maurice Bosch from IBERS, Aberystwyth University as co-authors. They look at the interaction between cognate PrsS and PrpS proteins that are involved in the pollen self-incompatibility response in poppy. By ectopic expression in Arabidopsis roots they show that this interaction can cause programmed cell death (PCD) in vegetative tissues. This signalling module may become an important tool for inducible PCD in other developmental contexts.

http://www.plantphysiol.org/content/early/2020/06/19/pp.20.00292.long

Kikuchi Y, Nakamura S, Woodson JD, et al (2020) Chloroplast autophagy and ubiquitination combine to manage oxidative damage and starvation responses Plant Physiol. 2020;pp.00237.2020. doi:10.1104/pp.20.00237 Open Access

Paul Jarvis from the University of Oxford is a co-author on this Japanese study led by Yuta Kikuchi. This work demonstrates that autophagy and chloroplast-associated ubiquitin ligase E3s cooperate for protein turnover, management of ROS accumulation, and adaptation to starvation.


Sun Y, Li JQ, Yan JY, et al (2020) Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor J Integr Plant Biol. 10.1111/jipb.12986. doi:10.1111/jipb.12986

Nick Harberd from the University of Oxford is a co-author on this Chinese study led by Ying Sun at Zhejiang University in Hangzhou. In this work they show that the ERF95 transcription factor regulates Arabidopsis seed Fe accumulation and through a series of investigations they are able to conclude that the gaseous hormone ethylene promotes seed Fe accumulation during seed maturation via an EIN3-ERF95-FER1-dependent signaling pathway.

GARNet Research Roundup: June 26th 2020

This edition of the GARNet Research Roundup begins with a study from Nottingham and Leeds that looks at the much-neglected subject of the control of floral arrest. The second paper from Edinburgh identifies a signaling role for the co-opted transposable elements ALP1 and ALP2 in Arabidopsis. Hans-Wilhelm Nützmann from the University of Bath leads the next study that looks at the co-regulation of clustered biosynthetic pathway genes. The fourth paper is from Cambridge and looks at the role of the ASY1 protein during meiotic recombination. The next paper is from Durham and looks at the role of GA-regulated DELLA proteins in the regulation of stomatal aperature.

The next five papers have a methods-type application that should be useful to other researchers. Firstly a research team led from Oxford highlights an improved protocol for the proteome-analysis technique of RNA interactome capture. Secondly researchers from UEA introduce the NATpare tool, which is a pipeline for high-throughput prediction and functional analysis of nat-siRNAs. The third ‘methods’ paper is from the University of Warwick where they have developed novel markers for protoplast-based analyses of hormone signaling. The fourth paper is a protocol for using CRISPR-Cas9 gene editing in Brachypodium. The final ‘methods-type’ paper is from Alison Smith’s group in Cambridge and has developed a riboswitch-based resource for use in the model alga Chlamydomonas reinhardtii.

The eleventh paper is led from the University of Glasgow and looks at the activity of the circadian clock in Arabidopsis roots. The next paper introduces genes from the parasitic plant Striga hermonthica into Arabidopsis to show that strigolactone signaling can replace GA signaling in the control of seed germination. The final two papers are focused on research in wheat, first led from the University of Leicester that looks at recombination in durum wheat and secondly from Rothamsted in which they have identified a whole family of NPF membrane transporter genes.


Ware A, Walker CH, Šimura J, et al (2020) Auxin export from proximal fruits drives arrest in temporally competent inflorescences Nat Plants. 2020;10.1038/s41477-020-0661-z. doi:10.1038/s41477-020-0661-z

Open Access with this link rdcu.be/b4rmT

Al Ware and Catriona Walker are co-first authors on this study from the Universities of Nottingham and Leeds. They have looked at the factors that control the timing of floral arrest in Arabidopsis. They discover that there is a minimum number and optimal positioning of fruits that is necessary for floral arrest, as well as looking into the role of auxin transport in this process.


Velanis CN, Perera P, Thomson B, et al (2020) The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2) PLoS Genet. 2020;16(5):e1008681. doi:10.1371/journal.pgen.1008681

Open Access

Christos Velanis is first author on this research led by the Goodrich group at the University of Edinburgh that looked at the function of the Arabidopsis ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) gene, which has arose by domestication of the Harbinger class of transposable elements (TEs). ALP1 is a component of the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) but yet its functional significance is not yet known. They also identify the related ALP2 gene and find that it interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1) as part of the PRC2.


Nützmann HW, Doerr D, Ramírez-Colmenero A, et al (2020) Active and repressed biosynthetic gene clusters have spatially distinct chromosome states Proc Natl Acad Sci U S A. 2020;201920474. doi:10.1073/pnas.1920474117

Hans-Wilhelm Nützmann is a now a member of faculty at the University of Bath but led this research as a member of the Osbourn group at the John Innes Centre. They use Hi-C and related techniques to study the control of expression of clustered biosynthetic pathway genes in Arabidopsis. This study reveals potential mechanisms that suggest gene clustering in the one-dimensional chromosome is accompanied by compartmentalization of the 3D chromosome.


Lambing C, Kuo PC, Tock AJ, Topp SD, Henderson IR (2020) ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis Proc Natl Acad Sci U S A. 2020;201921055. doi:10.1073/pnas.1921055117

Open Access

Christophe Lambing is first author on this study from the Henderson lab at the University of Cambridge that investigates the role of the ASY1 protein in the control of recombination frequency during meiosis. ASY1 is localized in an ascending telomere-to-centromere gradient and this informs the role that it plays to antagonize telomere-recombination to ensure this occurs in more gene-rich regions of the chromosomes.


Sukiran NA, Steel PG, Knight MR (2020) Basal stomatal aperture is regulated by GA-DELLAs in Arabidopsis J Plant Physiol. 2020;250:153182. doi:10.1016/j.jplph.2020.153182

Nur Afiqah Sukiran is the first author of this study from the Durham University that investigates the role of DELLA proteins in the regulation of stomatal aperature. They also find that the GID1 gibberellin receptor is necessary for optimal basal stomatal aperture.

Professor Marc Knight will be discussing his labs work on the #GARNetPresents webinar on June 30th 2020


Bach-Pages M, Homma F, Kourelis J, et al (2020) Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules. 2020;10(4):661 doi:10.3390/biom10040661

Open Access

Marcel Bach-Pages is first author on this research led from the University of Oxford that has improved the proteome-analysis technique of RNA interactome capture (RIC) to identify 717 RNA Binding Proteins (RBP) from Arabidopsis. Many of these RBPs exhibit unconventional modes of RNA binding and uncovered greater diversity in the number of proteins for which RNA binding is an important part of their function.


Thody J, Folkes L, Moulton V (2020) NATpare: a pipeline for high-throughput prediction and functional analysis of nat-siRNAs Nucleic Acids Res. 2020;gkaa448. doi:10.1093/nar/gkaa448

Joshua Thody leads this work from the University of East Anglia in which the authors present a new software pipeline, called NATpare, for prediction and functional analysis of Natural antisense transcript-derived small interfering RNAs (nat-siRNAs) using sRNA and degradome sequencing data. Although this tool could be used to analyse data from different experimental systems it is benchmarked using Arabidopsis data and the authors show that it could rapidly identify a comprehensive set of nat-siRNAs from different tissues and that are produced in response to different stresses.


Lehmann S, Dominguez-Ferreras A, Huang WJ, Denby K, Ntoukakis V, Schäfer P (2020) Novel markers for high-throughput protoplast-based analyses of phytohormone signaling. PLoS One. 2020;15(6):e0234154. doi:10.1371/journal.pone.0234154

Open Access

Silke Lehmann leads this work from the University of Warwick that has generated a community-resource of 18 promoter::luciferase constructs that respond to different phytohormones. In addition they suggest an experimental setup for high-throughput analyses in which these new reporter constructs might be used to screen for biological and environmental stimuli that effect hormone-mediated gene expression.


Hus K, Betekhtin A, Pinski A, et al (2020) A CRISPR/Cas9-Based Mutagenesis Protocol for Brachypodium distachyon and Its Allopolyploid Relative, Brachypodium hybridum. Front Plant Sci. 2020;11:614. doi:10.3389/fpls.2020.00614 Open Access

This Polish project is led by Karolina Hus and includes co-authors from Cambridge and Aberystwyth. They have developed a protocols for CRISPR-Cas9 gene editing in Brachypodia species. As proof of concept they target two cyclin-dependent kinases (CDKG1 and CDKG2) that are involved in DNA recombination.


Mehrshahi P, Nguyen GTDT, Gorchs Rovira A, et al (2020) Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas ACS Synth Biol. 2020;10.1021/acssynbio.0c00082. doi:10.1021/acssynbio.0c00082

Open Access

Payam Mehrshahi is the first author on this Academia-Industry collaboration led from the University of Cambrige. They have used a synthetic biology approach to assess the effectiveness of riboswitchs (RNA regulatory elements) in the control of gene expression in the model alga Chlamydomonas reinhardtii.


Nimmo HG, Laird J, Bindbeutel R, Nusinow DA (2020) The evening complex is central to the difference between the circadian clocks of Arabidopsis thaliana shoots and roots Physiol Plant. 2020;10.1111/ppl.13108. doi:10.1111/ppl.13108 Open Access

Hugh Nimmo from the University of Glasgow is lead author on this UK-USA collaboration that has looked at the operation of the circadian clock in root tissues and in particularly how it responds to light quality. They found that plants with mutations in certain genes that make up the circadian clock evening complex have root-specific effects, confirming that the shoot and root clocks response to differently to light signals.


Bunsick M, Toh S, Wong C, et al (2020) SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga Nat Plants. 2020;10.1038/s41477-020-0653-z. doi:10.1038/s41477-020-0653-z

Michael Bunsick is first author of this Canadian-led study that includes Julie Scholes from the University of Sheffield as a co-author. Leading from a curiosity about the relationship between host root exudates and the parasitic plant Striga hermonthica, they were led to find that expression of Striga strigolactone-hormone receptor proteins in Arabidopsis is able to bypass the requirement for GA in seed germination. This demonstrates both how the Striga might sense host signals and that there is no absolute requirement for GA-during seed germination.


Desjardins SD, Ogle DE, Ayoub MA, et al (2020) MutS homologue 4 and MutS homologue 5 maintain the obligate crossover in wheat despite stepwise gene loss following polyploidization Plant Physiol. 2020;pp.00534.2020. doi:10.1104/pp.20.00534

Open Access

Stuart Desjardins is first author on his research led from the University of Leicester. They work with allotetraploid (AABB) durum wheat and show that this plant undergoes two pathways of meiotic recombination. They show that the class I pathway requires the MSH4 and MSH5 (MutSγ) proteins and the authors show that these genes are absent in hexaploid (AABBDD) wheat. These findings enable the authors to speculate about the function of these proteins in allopolyploid wheat.


Wang H, Wan Y, Buchner P, King R, Ma H, Hawkesford MJ (2020) Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) in Triticum aestivum L J Exp Bot. 2020;eraa210. doi:10.1093/jxb/eraa210 Open Access

Huadun Wang is first author on this manuscript that is led from Rothamsted Research and includes Chinese collaborators. They investigate the 331 member family of wheat NPF genes that encode membrane transporters that transport a diverse range of substrates. Phylogenetically these wheat NPF genes are closely clustered with Arabidopsis, Brachypodium and rice orthologs and this study and lays the foundation for their further functional analysis in wheat.

GARNet Research Roundup: October 17th 2019

This edition of the GARNet Research Roundup includes a superb selection of papers by scientists from across the UK. First is work from the Spoel lab in Edinburgh that characterizes the fine-tuning of NPR1 activity during the plant immune response. Second is work from SLCU and the University of Helsinki that is an extensive investigation into the molecular basis of cambial development. Next is research from Nottingham that looks at the importance of soil macro-structures during the growth of wheat roots.

Fourth are three papers that highlight the breadth of research occurring at the John Innes Centre. The first paper is from Enrico Coen’s lab that applies their expertise in computational modeling to leaf development in the carnivorous plant Utricularia gibba. Second is work from Saskia Hogenhout’s lab that looks at immunity to infection by Phytoplasma pathogens. Last is work from Lars Ostergaard’s lab that characterises the role of Auxin Binding promoter elements in floral development.

The seventh paper from Bristol and Glasgow looks at shade avoidance signaling via PIF5, COP1 and UVR8 whilst the eighth paper, which is from Rothamsted, demonstrates how metabolic engineering in Arabidopsis seeds can result in a high proportion of human milk fat substitute. The next paper is from the University of Durham and investigates how the composition of the Arabidopsis cell wall impacts freezing tolerance. The first author of this paper, Dr Paige Panter discusses the paper on the GARNet community podcast.

The tenth paper is from Julia Davies’s lab at the University of Cambridge and introduces an uncharacterised response to extracellular ATP signals in Arabidopsis roots. The next paper is from Mike Blatt’s group at University of Glasgow and characterises a new interaction between vesicular transport and ion channels. The penultimate entry includes co-authors from the JIC on a Chinese-led study that demonstrates improved seed vigour in wheat through overexpression of a NAC transcription factor. Finally are two methods papers taken from a special journal issue on ‘Plant Meiosis’.


Skelly MJ, Furniss JJ, Grey HL, Wong KW, Spoel SH (2019) Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. Elife. doi: 10.7554/eLife.47005
Open Access

Michael Skelly is lead author on this paper from the lab of current GARNet chair Steven Spoel. In it they investigate the mechanisms that fine-tune the function of NPR1, a key player in the plant immune response. Progressive ubiquitination of NPR1 by an E3 ligase causes both its interaction with target genes and its subsequent degradation by an E4 ligase. This latter occurrence is opposed by the deubiquitinase activity of UBP6/7, setting up a complex regulatory environment that allows the plant to rapidly response to pathogen attack.


Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damén T, Joung JG, Yun JY, Lee JH, Ragni L, Barbier de Reuille P, Ahnert SE, Lee JY, Mähönen AP, Helariutta Y (2019) Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat Plants. doi: 10.1038/s41477-019-0522-9

This pan-European-Korean collaboration has Jing Zhang from the University of Helsinki and the Sainsbury Laboratory, University of Cambridge as first author. They use cambium cell-specific transcript profiling and follow-on network analysis to discover 62 new transcription factors involved in cambial development in Arabidopsis. This information was used to engineer plants with increased radial growth through ectopic cambial activity as well as to generate plants with no cambial activity. This understanding provides a platform for possible future improvements in production of woody biomass.


Atkinson JA, Hawkesford MJ, Whalley WR, Zhou H, Mooney SJ (2019) Soil strength influences wheat root interactions with soil macropores. Plant Cell Environ. doi: 10.1111/pce.13659
This work is led from the University of Nottingham by John Atkinson and Sacha Mooney. They use X-ray Computed Tomography to investigate a trait called trematotropism, which applies to the ability of deep rooting plants to search out macropores and avoid densely packed soil. They show root colonisation of macropores is an important adaptive trait and that strategies should be put in place to increase these structures within the natural soil environment.


Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E (2019) Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol. doi: 10.1371/journal.pbio.3000427
Open Access

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000427

Karen Lee, Claire Bushell and Yohei Koide are co-first authors on this work led by Enrico Coen at the John Innes Centre and Minlong Cui at the Zhejiang Agriculture and Forestry University in China. This study uses 3D imaging, cellular and clonal analysis, combined with computational modelling to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. They identify growth ansiotrophies that result in the final leave shape that develops from an initial near-spherical form. These processes have some similarities to the polar growth seen in Arabidopsis leaves. Overall they show that ‘simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies’.


Pecher P, Moro G, Canale MC, Capdevielle S, Singh A, MacLean A, Sugio A, Kuo CH, Lopes JRS, Hogenhout SA (2019) Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize. PLoS Pathog. doi: 10.1371/journal.ppat.1008035
Open Access

This work from Saskia Hogenhout’s lab at the John Innes Centre is led by Pascal Pecher and Gabriele Moro. They look at the effect of SAP11 effectors from Phytoplasma species that infect either Arabidopsis or maize. They demonstrate that although both related versions of SAP11 destabilise plant TCP transcription factors, their modes of action have significant differences. Please look out for Saskia discussing this paper on the GARNet Community podcast next week.


Kuhn A, Runciman B, Tasker-Brown W, Østergaard L 92019) Two Auxin Response Elements Fine-Tune PINOID Expression During Gynoecium Development in Arabidopsis thaliana. Biomolecules. doi: 10.3390/biom9100526
Open Access

Andre Kuhn is first author of this research from Lars Østergaard’s lab at the John Innes Centre. They functional characterise two Auxin-responsive Elements (AuxRE) within the promotor of the PINOID gene, which are bound by the ETITIN/ARF3 Auxin Response Factor. Alteration of this AuxRE causes phenotypic changes during flower development demonstrating that even with a complex regulatory environment, small changes to cis-elements can have significant developmental consequences.


Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, Jenkins GI, Franklin KA (2019) UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun. doi: 10.1038/s41467-019-12369-1
Open Access

Ashutosh Sharma is first author of this UK-Spanish-Germany collaboration led by Keara Franklin at University of Bristol. They have characterised the interaction between three significant molecular players that function during the shade avoidance response in Arabidopsis; PIF5, UVR8 and COP1. In shaded conditions, UVR8 indirectly promotes rapid degradation of PIF5 through their interactions with the E3 ubiquitin ligase COP1.


van Erp H, Bryant FM, Martin-Moreno J, Michaelson LV, Bhutada G, Eastmond PJ (2019) Engineering the stereoisomeric structure of seed oil to mimic human milk fat. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907915116

Open Access

Harrie Van Arp and Peter Eastmond at Rothamsted Research lead this extremely translational study in which they have modified the metabolic pathway for triacylglycerol (TAG) biosynthesis. By modifying the location of one biosynthesis enzyme and removing the activity of another, the fats produced in these Arabidopsis seeds are enriched to contain TAGs that are similar to those found in human milk. They propose that this technology could be used to develop a source of plant-derived human milk fat substitute.


Panter PE, Kent O, Dale M, Smith SJ, Skipsey M, Thorlby G, Cummins I, Ramsay N, Begum RA, Sanhueza D, Fry SC, Knight MR, Knight H (2019) MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. New Phytol. doi: 10.1111/nph.16209

Paige Panter led this work as part of her PhD at the University of Durham in the lab of Heather Knight. They characterise the role of the MUR1 protein in the control of cell wall fucosylation and how this contributes to plant freezing tolerance. Paige discusses this paper and the long history of MUR1 on the GARNet Community podcast. Please check it out!


Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM (2019) Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. Front Plant Sci. doi: 10.3389/fpls.2019.01064.

Open Access

The UK-French collaboration is led by Limin Wang from Julia Davies’s lab in Cambridge. They use patch clamp electrophysiology to identify previously uncharacterized channel conductances that respond to extracellular ATP across the root elongation zone epidermal plasma membrane.


Waghmare S, Lefoulon C, Zhang B, Lileikyte E, Donald NA, Blatt MR (2019) K+ channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. doi: 10.1104/pp.19.00919

Open Access

This work from Mike Blatt’s lab in Glasgow is led by Sakharam Waghmare. They look at the interaction between SNARE proteins, which are involved in vesicular fusion and K+ channels, which help control turgor pressure during cell expansion. Through combining analysis of protein-protein interactions and electrophysiological measurement they have found that this interaction requires the activity of the regulatory protein SEC11.


Li W, He X, Chen Y, Jing Y, Shen C, Yang J, Teng W, Zhao X, Hu W, Hu M, Li H, Miller AJ, Tong Y (2019) A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytol. doi: 10.1111/nph.16234
Wenjing Li is first author of this Chinese study that includes Yi Chen and Anthony Miller from the John Innes Centre as co-authors. This research shows that seed vigour and nitrate accumulation in wheat is regulated by the TaNAC2 transcriptions factor through its control of the TaNRT2.5 nitrate transporter. The authors suggest that both genes could be used as potential future targets to increase grain yield and nitrogen use efficiency.


The Special Issue of Methods in Molecular Biology on Plant Meiosis includes papers from the University of Cambridge, led by Christophe Lambing and the James Hutton Institute, led by Benoit Darrier.

Lambing C, Choi K, Blackwell AR, Henderson IR (2019) Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_16
Darrier B, Arrieta M, Mittmann SU, Sourdille P, Ramsay L, Waugh R, Colas I (2019) Following the Formation of Synaptonemal Complex Formation in Wheat and Barley by High-Resolution Microscopy. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_15

GARNet Research Roundup: July 26th 2019

This summer-time-reading bumper edition of the GARNet Research Roundup begins with two papers from the University of Sheffield that each use advanced imaging techniques. Firstly Andrew Fleming’s group leads a study on the link between stomatal function and mesophyll space morphology. Second is a study from Matthew Johnson’s group that looks at the dynamic arrangement of thylakoid stacks.

Next are two papers that include Alison Smith from the JIC as a corresponding author. The first also includes Vasilios Andriotis from the University of Newcastle and looks at the role of the plastidial pentose phosphate pathway during post-germination growth. Second uses a gene-editing strategy to generate potatoes with altered starch morphologies.

The fifth paper also looks at starch; researchers from Cambridge and Norwich are involved in a study that characterises the role of the LIKE SEX4 1 protein in starch degradation.

The sixth paper is from Aberystwyth University and identifies a transcription factor that alters secondary cell wall composition in Brachypodium and maize. Next is research from the University of Bath that looks at the role of a protein S-acyl transferase during seed germination.

The eighth and ninth papers are led by Spanish research groups and include contributions from UK-based co-authors in Cambridge and Nottingham, working on photoperiod perception or phosphate signaling respectively.

The tenth paper features work from Cardiff University and looks at the role of heterologous expression of the Arabidopsis WEE1 protein. The Bancroft lab from the University of York leads the next paper that investigates glucosinolate signaling in Brassica napus.

The final three manuscripts are methods papers. The first from Edinburgh introduces a new NanoLUC reporter whilst the other two include techniques involved in the investigation of light-regulated growth processes.


Lundgren MR, Mathers A, Baillie AL, Dunn J, Wilson MJ, Hunt L, Pajor R, Fradera-Soler M, Rolfe S, Osborne CP, Sturrock CJ, Gray JE, Mooney SJ, Fleming AJ (2019) Mesophyll porosity is modulated by the presence of functional stomata. Nat Commun. doi: 10.1038/s41467-019-10826-5

Open Access

This UK-wide study is led from Andrew Fleming’s lab in Sheffield and includes Marjorie Lundgren as first author (now working in Lancaster). They use microCT imaging alongside more traditional measurements linked to analysis of gas exchange to show that mesophyll airspace formation is linked to stomatal function in both Arabidopsis and wheat. This allows the authors to propose that coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops.

https://www.nature.com/articles/s41467-019-10826-5

Wood WH, Barnett SFH, Flannery S, Hunter CN, Johnson MP (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with photosystem I. Plant Physiol. doi: 10.1104/pp.19.00503

Open Access

William Wood is the first author on this study from the University of Sheffield that uses 3D structured illumination microscopy (3D-SIM) to look at the dynamics of thylakoid stacking in both Arabidopsis and spinach. They show that the processes they observe are dependent on light harvesting complex II phosphorylation.

http://www.plantphysiol.org/content/early/2019/06/11/pp.19.00503.long

Andriotis VME, Smith AM (2019) The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1908556116

Open Access

Vasilios Andriotis (now at the University of Newcastle) is the lead author of this work performed in Alison Smith’s lab at the JIC. They look at the role of the plastidial oxidative pentose phosphate pathway (OPPP) during embryo development. This involved demonstrating that production of ribose-5-phosphate (R5P), which in turn leads to synthesis of purine nucleotides, is a critical function of the OPPP.


Tuncel A, Corbin KR, Ahn-Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol J. doi: 10.1111/pbi.13137

Open Access

Alison Smith and Nicola Patron who work in Norwich Research Park are corresponding authors of this study that includes Aytug Tuncel as first author. They have used Cas9-mediated gene editing to generate potato plants that have a range of different tuber starch structures. This shows that gene-editing techniques allows the transgene-free alteration to generate potentially healthier crops.


Schreier TB, Umhang M, Lee SK, Lue WL, Shen Z, Silver D, Graf A, Müller A, Eicke S, Stadler M, Seung D, Bischof S, Briggs SP, Kötting O, Moorhead GB, Chen J, Zeeman SC (2019) LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation. Plant Cell. doi: 10.1105/tpc.19.00089

Open Access

Tina Schreier from the University of Cambridge is the first author on this international study led from Switzerland that also includes Alexander Graf and David Seung from the JIC as co-authors. This study defines a precise role for the LIKE SEX FOUR 1 (LSF1) protein that binds starch and is required for normal starch degradation. Through a variety of experiments they show that the glucan binding, rather than phosphatase activity, is required for LSF1 function during starch degradation.


Bhatia R, Dalton S, Roberts LA, Moron-Garcia OM, Iacono R, Kosik O, Gallagher JA, Bosch M (2019) Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Sci Rep. doi: 10.1038/s41598-019-45225-9

Open Access

Rakesh Bhatia is the first author on this work from the lab of Maurice Bosch at Aberystwyth University. They overexpress the maize MYB transcription factor ZmMYB167 in both Brachypodium and maize. Both species show increased lignin content with Brachypodium but not maize showing a biomass deficit. This indicates that ZmMYB167 could be a useful molecular tool for the alteration of secondary cell wall biosynthesis.

https://www.nature.com/articles/s41598-019-45225-9

Li Y, Xu J, Li G, Wan S, Batistic O, Sun M, Zhang Y, Scott R, Qi B (2019) Protein S-acyl Transferase 15 is Involved in Seed Triacylglycerol Catabolism during Early Seedling Growth in Arabidopsis (2019) J Exp Bot. doi: 10.1093/jxb/erz282

First author on this UK-Chinese collaboration is Yaxiao Li who works with Baoxiu Qi at the University of Bath. The authors characterise the function of Arabidopsis Protein Acyl Transferase 15, AtPAT15. This protein is involved in essential β-oxidation of triacylglycerols during post-germination growth.


Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao M, Jaeger KE, Wigge PA, Allona I, Perales M (2019) LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Curr Biol. doi: 10.1016/j.cub.2019.06.003

Open Access

This Spanish-led study includes co-authors from the Sainsbury Laboratory in Cambridge and attempts to define the factors that control photoperiod perception in trees, using poplar as a model system. FLOWERING LOCUS T2 (FT2) has been previously shown to be involved in this process and this study builds on that work to show that night-length information is transmitted by the clock gene LATE ELONGATED HYPOCOTYL 2 (LHY2) and is able to control FT2 expression.

https://www.cell.com/current-biology/fulltext/S0960-9822(19)30696-7?

Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, Del Pozo JC (2019) Role of cis-zeatin in root responses to phosphate starvation. New Phytol. doi: 10.1111/nph.16020

Ranjan Swarup from the University of Nottingham is a co-author on this Spanish-led study that has Javier Silva-Navas as first author. Through analysis of dark-grown seedlings they have identified a set of new genes involved in root phosphate signaling. In addition they provide evidence of a links between cytokinin and phosphate signaling through modulation of the cell cycle.


Siciliano I, Lentz Grønlund A, Ševčíková H, Spadafora ND, Rafiei G, Francis D, Herbert RJ, Bitonti MB, Rogers HJ, Lipavská H (2019) Expression of Arabidopsis WEE1 in tobacco induces unexpected morphological and developmental changes. Sci Rep. 2019 Jun 18;9(1):8695. doi: 10.1038/s41598-019-45015-3

Open Access

Ilario Siciliano leads this work that includes colleagues from Hilary Rogers’ lab at Cardiff University. The WEE1 protein regulates the cell cycle across eukaryote lineages. In this work they show that overexpression of AtWEE1 in tobacco causes precocious flowering and increased shoot morphogenesis of stem explants whilst in cell culture this WEE1 OX causes smaller cell sizes.


Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I (2019) Genetic architecture of glucosinolate variation in Brassica napus. J Plant Physiol. doi: 10.1016/j.jplph.2019.06.001

Open Access

This study from the Bancroft lab at the University of York is led by Varanya Kittipol. Through use of Associative Transcriptomics (AT) across a diversity panel of 288 Brassica napus genotypes they are able to identify a set of genes involved in synthesis of glucosinate hydrolysis products.


Urquiza-García U, Millar AJ (2019). Expanding the bioluminescent reporter toolkit for plant science with NanoLUC. Plant Methods. doi: 10.1186/s13007-019-0454-4

Open Access

This study from the University of Edinburgh introduces NanoLUC, a new more stable luciferase-based reporter for use by the plant community.

The final two papers are methods papers that focus on different aspects of light-regulated growth. These are from the University of Southampton and University of York.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0454-4

Terry MJ, Kacprzak SM (2019) A Simple Method for Quantification of Protochlorophyllide in Etiolated Arabidopsis Seedlings. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_14

Oakenfull RJ, Ronald J, Davis SJ (2019) Measuring Phytochrome-Dependent Light Input to the Plant Circadian Clock. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_15

GARNet Research Roundup: May 27th 2019

This bumper edition of the GARNet research roundup begins with a set of papers from the John Innes Centre. Anne Osbourn’s group is involved with two papers; firstly they discover how altering metabolic networks in the Arabidopsis root can cause changes in the associated microbiota. Second they characterise the role of a light-induced transcription factor in Artemisia. Next Caroline Dean’s group leads a global consortium that investigates the role of liquid-liquid phase separation in the formation of nuclear bodies. The final paper from the JIC is from Philippa Borrill and Cristobal Uauy, in which they identify novel transcription factors in wheat.

The fourth paper is led by Peter Etchells at Durham and characterises receptor kinase activity involved in vascular patterning in Arabidopsis.

The next two papers focus on stomatal patterning; firstly Julie Gray’s group at Sheffield looks at the stomatal responses to long-term pathogen infections. The second paper is from Glasgow and describes improvements in the OnGuard2 software, which models the factors controlling stomatal density.

Jose Gutierrez-Marcos is a co-author on a paper that uses FACS/ATAC-seq to define chromatin changes within cells of the shoot apical meristem. Richard Harrison leads the next paper that is also method-focused; describing use of CRISPR-Cas9 gene editing in Strawberry.

Andrew Miller at the University of Edinburgh is the corresponding author of the penultimate paper, which presents a whole-life-cycle, multi-model Framework that links many aspects of the Arabidopsis life cycle. The final paper is Seth Davies’s group at York and investigates the role of sucrose in the control of the circadian clock.


Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science. doi: 10.1126/science.aau6389

Ancheng Huang and Ting Jiang are first authors on this UK, Chinese and Belgian collaboration led by Anne Osbourn at the John Innes Centre. They reconstitute three biosynthesic pathways in the Arabidopsis roots and show how this affects the associated microbiota.


Hao X, Zhong Y, Nützmann HW, Fu X, Yan T, Shen Q, Chen M, Ma Y, Zhao J, Osbourn A, Li L, Tang K (2019) Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol. doi: 10.1093/pcp/pcz084

Anne Osbourn is a co-author on this Chinese-led study that has identified that the basic leucine zipper transcription factor (TF) AaHY5 regulated of light-induced biosynthesis of artemisinin in Artemisia annua.


Fang X, Wang L, Ishikawa R, Li Y, Fiedler M, Liu F, Calder G, Rowan B, Weigel D, Li P, Dean C (2019) Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature. doi: 10.1038/s41586-019-1165-8

Xiaofeng Fang, Liang Wang and Ryo Ishikawa are first authors of this UK, German and Chinese collaboration led by Caroline Dean’s lab at the John Innes Centre. They characterise the molecular factors that are required for the formation of nuclear bodies through liquid-liquid phase separation (PDF). These proteins are the Arabidopsis RNA-binding protein FCA and the coiled-coil protein FLL2.

From https://www.nature.com/articles/s41586-019-1165-8

Borrill P, Harrington SA, Simmonds J, Uauy C (2019) Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiol. doi: 10.1104/pp.19.00380

Open Access

Philippa Borrill, now a faculty member at the University of Birmingham, conducted this work with Cristobal Uauy at the John Innes Centre. They have developed a range of research tools for use in wheat and this paper describes the identification of novel transcription factors involved in senescence.


Wang N, Bagdassarian KS, Doherty RE, Kroon JT, Connor KA, Wang XY, Wang W, Jermyn IH, Turner SR, Etchells JP (2019) Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development. doi: 10.1242/dev.177105

Ning Wang works with Peter Etchells at Durham University where they have characterised the interactions between the receptor kinase gene families that regulate radial patterning in the development of vascular tissue.


Dutton C, Hõrak H, Hepworth C, Mitchell A, Ton J, Hunt L, Gray JE (2019) Bacterial infection systemically suppresses stomatal density. Plant Cell Environ. doi: 10.1111/pce.13570

Christian Dutton leads this work conducted at the University of Sheffield. They have investigated the longer-term systemic response to the presence of pathogens that involves reducing stomatal density. This process is mediated via salicylic acid signaling and slows disease progression.

From https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13570

Jezek M, Hills A, Blatt MR, Lew VL (2019) A constraint-relaxation-recovery mechanism for stomatal dynamics. Plant Cell Environ. doi: 10.1111/pce.13568

Mareike Jezek leads this work from the University of Glasgow in which they have updated the OnGuard2 modelling software that has demonstrated substantial predictive power to describe stomatal dynamics. Their improvements allow for the development of models that are more similar to in vivo observations.


Frerichs A, Engelhorn J, Altmüller J, Gutierrez-Marcos J, Werr W (2019) Specific chromatin changes mark lateral organ founder cells in the Arabidopsis thaliana inflorescence meristem. J Exp Bot. doi: 10.1093/jxb/erz181

Jose Gutierrez-Marcos from the University of Warwick is a co-author on this German study led by Anneke Frerichs in which they analysed the chromatin state of lateral organ founder cells (LOFCs) in the peripheral zone of the Arabidopsis inflorescence meristem in wildtype and apetala1-1 cauliflower-1 double mutants. Importantly they showed that the combined application of FACS/ATAC-seq is able to detect chromatin changes in a cell-type specific manner.


Wilson FM, Harrison K, Armitage AD, Simkin AJ, Harrison RJ (2019) CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods. doi: 10.1186/s13007-019-0428-6. eCollection 2019

Open Access

This paper is lead by Fiona Wilson at NIAB-EMR in which they present their methods to undertake gene editing in the challenging experimental system of diploid and octoploid strawberries.

From https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0428-6

Zardilis A, Hume A, Millar AJ (2019) A multi-model framework for the Arabidopsis life cycle. J Exp Bot. doi: 10.1093/jxb/ery394

Open Access

Argyris Zardilis conducted this modeling-focussed research at University of Edinburgh. The authors present a whole-life-cycle, multi-model Framework that links vegetative, inflorescence as fruit growth as well as seed dormancy in Arabidopsis. This Framework allows the authors to simulate at the population level in various genotype × environment scenarios.

From https://academic.oup.com/jxb/article/70/9/2463/5336616

Philippou K, Ronald J, Sánchez-Villarreal A, Davis AM, Davis SJ (2019) Physiological and Genetic Dissection of Sucrose Inputs to the Arabidopsis thaliana Circadian System. Genes (Basel). doi: 10.3390/genes10050334

Open Access

Koumis Philippou from Seth Davis’ research group the University of York leads this work that investigates the role of sucrose into the function of the circadian clock.

GARNet Research Roundup: Jan 11th 2019

The inaugural GARNet Research Roundup of 2019 firstly includes a paper from the University of Sheffield that has identified new pericentromeric epigenetic loci that affect the pathogen response. Secondly is a collaboration between researchers in Birmingham, Nottingham and Oxford that has identified a new mode of regulation of the VRN2 protein. Next are two papers from Jonathan Jones’ lab at The Sainsbury Laboratory in Norwich that firstly provides a toolkit for gene editing in Arabidopsis and secondly characterise the role of the NRG1 gene in the defense response. The penultimate paper is from Paul Devlin’s lab at RHUL and investigates the role of the circadian clock in the control of leaf overtopping whilst the final paper is a meeting report from a recent GARNet workshop on gene editing.


Furci L, Jain R, Stassen J, Berkowitz O, Whelan J, Roquis D, Baillet V, Colot V, Johannes F, Ton J (2019) Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. Elife. doi: 10.7554/eLife.40655.

Open Access

Leonardo Furci and Ritushree Jain are the lead authors on this study conducted at the University of Sheffield. The authors used a population of epigenetic recombinant inbred lines (epiRILs) to screen for resistance to the oomycete pathogen Hyaloperonospora arabidopsidis. These lines each share genetic information but have varied epigenetic changes. This analysis enabled the identification of plants with hypomethylated pericentromeric regions that were primed to better respond to the presence of this pathogen. The authors discuss the mechanism through which this might affect the defence response albeit without altering other aspects of plant growth.

https://elifesciences.org/articles/40655

Gibbs DJ, Tedds HM, Labandera AM, Bailey M, White MD, Hartman S, Sprigg C, Mogg SL, Osborne R, Dambire C, Boeckx T, Paling Z, Voesenek LACJ, Flashman E, Holdsworth MJ (2018) Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun. doi: 10.1038/s41467-018-07875-7

Open Access

This collaboration between the Universities of Birmingham, Nottingham, Oxford and colleagues in Utrecht is led by Daniel Gibbs. They demonstrate that the amount of VRN2 protein, which is a member of the Polycomb Repressive Complex2, is controlled by the N-end rule pathway and that this regulation responses to both cold and hypoxia stress. Whilst the VRN2 gene is expressed throughout the plant, the N-end rule degradation pathway ensures that the protein is restricted to meristematic regions until the plant senses the appropriate abiotic stress. Classically VRN2 has been linked to the regulation of flowering time by altering gene expression at the FLC locus so this study introduces new complexity into this process through the involvement of the N-end rule pathway. More information on this linkage will undoubtedly follow over the coming years.

Daniel kindly discusses this paper on the GARNet YouTube channel.


Castel B, Tomlinson L, Locci F, Yang Y, Jones JDG (2019) Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS One. doi: 10.1371/journal.pone.0204778

Open Access

Baptiste Castel is lead author of this work conducted at the Sainsbury Laboratory, Norwich in Jonathan Jones’ group. They have conducted a detailed analysis of the factors that contribute to successful gene editing by CRISPR-Cas9, specifically in Arabidopsis. This includes assessing the efficacy of different promotor sequences, guideRNAs, versions of Cas9 enzyme and associated regulatory sequences in the editing of a specific locus. Given that researchers are finding that different plants have different requirements when it comes to successful gene editing, this type of analysis will be invaluable for anyone who plans to conduct a gene editing experiment in Arabidopsis.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204778

Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG (2018) Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. doi: 10.1111/nph.15659

In this second paper led by Baptiste Castel, they used the techniques outlined in the paper above to generate a set of CRISPR mutants deficient in NRG1, which is a RPW8-NLR resistance (R) gene. These nrg1 mutants have compromised signalling in all tested downstream TIR-NLR resistance genes. In addition the authors demonstrate that this signalling is needed for resistance to oomycete but not bacterial infection. Therefore this study reveals some significant details regarding the components of the disease response that are influenced by the activity of NRG1.


Woodley Of Menie MA, Pawlik P, Webb MT, Bruce KD, Devlin PF (2018) Circadian leaf movements facilitate overtopping of neighbors. Prog Biophys Mol Biol. doi: 10.1016/j.pbiomolbio.2018.12.012

This work is led by Michael Woodley Of Menie from Paul Devlin’s lab at Royal Holloway College and investigates the role of circadian leaf movements during shade avoidance and overtopping. Arabidopsis plants were grow in a grid system that meant leaves would interact with their neighbours and the authors show that plants with a normal circadian rhythm gained an advantage over those adapted to a longer period in which they were grown. This overtopping was additive to the advantage gained through shade avoidance and overall this paper shows that maintainance of clock-aligned leaf movements are beneficial to growth.


Parry G, Harrison CJ (2019) GARNet gene editing workshop. New Phytol. doi: 10.1111/nph.15573

Open Access

GARNet advisory committee member Jill Harrison and GARNet coordinator Geraint Parry are authors on this meeting report resulting from a GARNet organised workshop on gene editing that took place in March 2018 at the University of Bristol. Coincidentally part of the paper discusses the work that was presented at the meeting by Baptiste Castel, which is published in the paper described above.

GARNet Research Roundup: December 7th 2018

The first four papers in this GARNet Research Roundup includes research from Norwich Research Park. Firstly members of Jonathan Jones’ lab have identified a new Avr gene from Hyaloperonospora arabidopsidis. Secondly Anne Osbourn’s lab characterises two novel arabinosyltransferases that are involved in the plant defence response. Thirdly Cathie Martin’s group is involved in a study that investigates the biosynthesis of the metabolite ubiquinone. Finally in research from NRP is from Silke Robatzek’s lab, where they use a novel quantitative imaging system to characterise stomatal mutants.

The next two papers arise from work at SLCU, firstly looking at the possible role of a novel transposon family during gene-shuffling and secondly a paper that investigates the structure of an important component of the strigolactone signaling pathway.

The seventh paper from Peter Eastmond’s lab at Rothamsted Research identifies a novel gene involved in seed oil composition. The penultimate paper is from Peter Unwin at the University of Leeds and assesses the cell wall composition of ‘giant’ root cells induced by nematode Meloidogyne spp. Finally is a methods paper that describes how microCT imaging can be used to measure different leaf parameters.


Asai S, Furzer O, Cavik V, Kim DS, Ishaque N, Goritschnig S, Staskawicz B, Shirasu K, Jones JDG (2018) A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nature Communications doi: 10.1038/s41467-018-07469-3

https://www.nature.com/articles/s41467-018-07469-3

Open Access

Shuta Asai from Jonathan Jones’ lab at The Sainsbury Lab, Norwich is the lead-author on this study that looks at co-evolution of host and pathogen resistance genes. The relationship between Hyaloperonospora arabidopsidis (Hpa) and Arabidopsis is defined by the gene-for-gene model of host Resistance (R) genes and pathogen Avirulence (AVR) genes. In this study the authors identify the HaRxL103Emoy2 AVR gene that is recognised by the R gene RPP4 and how this resistance is broken by altered expression or cellular localization.


Louveau T, Orme A, Pfalzgraf H, Stephenson M, Melton RE, Saalbach G, Hemmings  AM, Leveau A, Rejzek M, Vickerstaff RJ, Langdon T, Field R, Osbourn AE (2018) Analysis of two new arabinosyltransferases belonging to the carbohydrate-active enzyme (CAZY) glycosyl transferase family 1 provides insights into disease resistance and sugar donor specificity. Plant Cell. doi: 10.1105/tpc.18.00641

Open Access

This research from the John Innes Centre, East Maling and Aberystwyth University is led by Thomas Louveau and Anne Osbourn and characterises two new arabinosyltransferases from oat and soybean. These enzymes are involved in the production of saponins that are involved in defence responses. These enzymes normally transfer arabinose to their substrates but through targeted mutations the authors modified one of them to instead transfer glucose. This study provides insights into the specifics of ‘sugar-donation’ and has identified potential novel targets for manipulating defence responses in two crop species.


Soubeyrand E, Johnson TS, Latimer S, Block A, Kim J, Colquhoun TA, Butelli E,  Martin C, Wilson MA, Basset G (2018) The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants. Plant Cell. 2018 Nov 14. pii: tpc.00688.2018. doi: 10.1105/tpc.18.00688

Open Access

This US-led study includes members of Cathie Martin’s lab at the John Innes Centre as co-authors in which they investigate the flavonoid-biosynthesis pathway, in particular the land-plant-specific synthesis of ubiquinone. They used Arabidopsis and tomato mutants to dissect the ubiquinone biosynthesis pathway, revealing that the B-ring of the specalised metabolite kaempferol is incorporated into the primary metabolite ubiquinone.


Bourdais G, McLachlan DH, Rickett LM, Zhou J, Siwoszek A, Häweker H, Hartley M, Kuhn H, Morris RJ, MacLean D, Robatzek S (2018) The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure. Traffic. doi: 10.1111/tra.12625

This work from both Norwich Research Park and the University of Bristol is led by Gildas Bourdais and describes a high-throughput quantitative imaging, reverse genetic screen to characterize known stomatal mutants on the basis of their effect on the endomembrane system. This screen allowed them to precisely define the point in the signaling pathway at which each mutant was affected, providing a genetic framework for the control of stomatal closure. This image-based tool should be a valuable addition to future studies that aim to use quantitative image analysis.


https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky1196/5198529

Catoni M, Jonesman T, Cerruti E, Paszkowski J (2018) Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling (2018) Nucleic Acids Res. doi: 10.1093/nar/gky1196

Open Access

This work was performed at SLCU in Jerzy Paszkowski’s lab by current University of Birmingham lecturer Marco Catoni and analyses the genomic impact of the mobilisation of Pack-TYPE transposons. They track the movement of these transposons over multiple generations, showing that they can insert into genic regions and that their subsequent incomplete excisions can cause deleterious effect on gene function. Over evolutionary time the action of this type of mobile element might therefore importantly influence gene shuffling.


Shabek N, Ticchiarelli F, Mao H, Hinds TR, Leyser O, Zheng N (2018) Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling. Nature. doi: 10.1038/s41586-018-0743-5

Nitzan Shabek is the lead author on his US-led paper that includes Fabrizio Ticchiarelli and Ottoline Leyser from SLCU as co-authors. This paper reveals the structure of the interaction between the Arabidopsis α/β hydrolase D14 and the D3 F-box protein, which is important for multiple aspects of strigolactone signaling. They show that structural plasticity of the D3 C-terminal α-helix, which can switch between two different forms, enables the interaction between D14 and the D53 repressor protein. Providing insight into these specific interactions is key to increasing understanding of how the D14-D3 complex influences strigolactone signaling.


Menard GN, Bryant FM, Kelly AA, Craddock CP, Lavagi I, Hassani-Pak K, Kurup S, Eastmond PJ (2018) Natural variation in acyl editing is a determinant of seed storage oil composition. Sci Rep. doi: 10.1038/s41598-018-35136-6

Open Access

This work is led from Rothamsted Research with Guillaume Menard as first author and uses the Arabidopsis MAGIC population to identify novel genetic loci involved in seed oil composition. They identified multiple QTLs associated with the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), showing that the enzyme LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE 2 (LPCAT2), which is involved in the acyl-editing pathway, was the primary QTL. Subsequently they show LPCAT2 expression was key for varying seed 20:1 content and that natural variation in the capacity for acyl editing is an important determinant of oil content.


Bozbuga R, Lilley CJ, Knox JP, Urwin PE (2018) Host-specific signatures of the cell  wall changes induced by the plant parasitic nematode, Meloidogyne incognita (2018). Sci  Rep. doi: 10.1038/s41598-018-35529-7

https://www.nature.com/articles/s41598-018-35529-7

Open Access

Refik Bozbuga at the University of Leeds is first author on this study that investigates the cell wall composition of nutrient-supplying ‘giant cells’ that are induced in roots following infection with Meloidogyne spp nematodes. They analysed the cell walls of giant cells from three species (Arabidopsis, maize and aduki bean) as well as using a set of Arabidopsis mutants to characterise the possible cell wall components that might influence infection rates.


Mathers AW, Hepworth C, Baillie AL, Sloan J, Jones H, Lundgren M, Fleming AJ,  Mooney SJ, Sturrock CJ (2018) Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography. Plant Methods. doi:  10.1186/s13007-018-0367-7

Open Access
This paper from the Universities of Nottingham, Sheffield and Lancaster provides a methodology that uses a microCT image pipeline to measure leaf intercellular airspace and to provide quantitative data on descriptors of leaf cellular architecture. They measured 6 different plant species, showing that this 3D method generates an improved dataset when compared to traditional 2D methods of measurement.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-018-0367-7

GARNet Research Roundup: November 22nd 2018

This GARNet Research Roundup begins with two studies from the University of Sheffield. First is research from Jurriaan Ton’s lab that looks at the interaction between CO2 concentration, the soil microbiome and plant growth. The second paper from Matt Davey and Peter Quick looks at the effect of cold acclimation on freezing tolerance in Arabidpsis lyrata.

The third study includes authors from Dundee and Durham and also looks at an impact of altered CO2 concentrations, in this case on nitrogen assimilation.

The next paper looks at the role of a GA signaling module on endosperm expansion during seed germination and includes authors from Nottingham and Birmingham.

The fifth paper includes Richard Morris at the JIC as a co-author and looks at the relationship between calcium signaling and changes in cellular pH. The penultimate study features co-authors from Warwick and Exeter in work that looks at the role of 3′-O-β-D-ribofuranosyladenosine during plant immunity. Finally is a paper that includes Steve Long from Lancaster and characterises the rubisco-chaperone BSD2.


Williams A, Pétriacq P, Beerling DJ, Cotton TEA, Ton J (2018) Impacts of Atmospheric CO(2) and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. Front Plant Sci. doi: 10.3389/fpls.2018.01493

https://www.frontiersin.org/articles/10.3389/fpls.2018.01493/full

Open Access

Alex Williams is the lead author of this paper and works with Jurriaan Ton at the University of Sheffield. The impact of the soil rhizosphere on plant growth is emerging as an important growth determinant. In this paper the authors assess the role of altered [CO2] and soil carbon (C) and nitrogen (N) concentration in the colonisation of Arabidopsis roots by two different bacteria. Firstly they showed that altered [CO2] did not change the growth dynamics of the saprophytic bacteria Pseudomonas putida KT2440 and was independent of soil C or N. In contrast growth of the rhizobacterial strain Pseudomonas simiae WCS417 was sensitive to both changing [CO2] and soil composition. These results show the importance of the interaction between atmospheric CO2 and soil nutritional status during plant interactions with soil bacteria.


Davey MP, Palmer BG, Armitage E, Vergeer P, Kunin WE, Woodward FI, Quick WP (2018) Natural variation in tolerance to sub-zero temperatures among populations of Arabidopsis lyrata ssp. petraea. BMC Plant Biol. doi: 10.1186/s12870-018-1513-0

Open Access

Matthew Davey, now working in Cambridge, collaborated with Peter Quick at the University of Sheffield on this research that looks at the tolerance of Arabidopsis lyrata to freezing. They showed that populations from locations with colder winter climates were better able to survive subzero temperatures, particular when they have been acclimated at near zero for longer periods. This demonstrates that the adaptation of plants to cold temperatures allows them to better survive freezing, although surprisingly this effect is lessened when this acclimation period does not occur.


Andrews M, Condron LM, Kemp PD, Topping JF, Lindsey K, Hodge S, Raven JA (2018) Effects of elevated atmospheric [CO2] on nitrogen (N) assimilation and growth of C3 vascular plants will be similar regardless of N-form assimilated. J Exp Bot. doi: 10.1093/jxb/ery371

This UK-New Zealand collaboration is led by Mitchell Andrews and looks at the effect of elevated [CO2] on the nitrogen (N) assimilation when the plant is exposed to a variety of different N-sources. They show that in C3 plants the overall N assimilated will be the same whether the plant is under ammonium (NH4+) nutrition or under nitrate (NO3-) nutrition. These results are contrary to previous results that suggest elevated [CO2] reduces plant growth under NO3- nutrition.


Sánchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gómez L, Holdsworth MJ, Bassel G, Oñate-Sánchez L (2018) A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Mol Plant. doi: 10.1016/j.molp.2018.10.009 

https://www.sciencedirect.com/science/article/pii/S1674205218303356

Open Access

This Spanish-led project includes authors from the Universites of Nottingham and Birmingham. They look at the influence of a GA signalling module on endosperm cell separation, which is essential for Arabidopsis seed germination. They show the NAC transcription factors NAC25 and NAC1L control expression of the EXPANSION2 gene and that the GA signalling component RGL2 has a controlling influence by repressing this activity.


Behera S, Xu Z, Luoni L, Bonza C, Doccula FG, DeMichelis MI, Morris RJ, Schwarzländer M, Costa A (2018) Cellular Ca2+ signals generate defined pH signatures in plants. Plant Cell. doi: 10.1105/tpc.18.00655

Open Access

Richard Morris (John Innes Centre) is a co-author on this Italian-led study that investigates the role of Calcium ions in cell signalling. They use a set of genetically-encoded fluorescent sensors to visualise a link between Ca2+ signaling and changes in pH. If this link is maintained across all cell types it might represent an extra layer of complexity and control of cellular signal transduction.


Drenichev MS, Bennett M, Novikov RA, Mansfield J, Smirnoff N, Grant M, Mikhailov S (2018) A role for 3′-O-β-D-ribofuranosyladenosine in altering plant immunity. Phytochemistry. doi: 10.1016/j.phytochem.2018.10.016

https://www.sciencedirect.com/science/article/pii/S0031942218301997?via%3Dihub

This Russian-led study includes UK-based researchers Mark Bennett, Murray Grant, Nick Smirnoff and John Mansfield as co-authors. They show that the natural disaccharide nucleoside, 3′-O-β-D-ribofuranosyladenosine accumulated in plants infected with the bacterial pathogen P. syringae. Perhaps surprisingly the application of this nucleoside to the plant doesn’t effect bacterial multiplication, indicating that adds a significant metabolic burden to plants already battling new infections.


Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM (2018) BSD2 is a Rubisco specific assembly chaperone, forms intermediary hetero-oligomeric complexes and is non-limiting to growth in tobacco. Plant Cell Environ. doi: 10.1111/pce.13473

Steve Long is a Professor at Lancaster Environment Centre and is a co-author on this Australia-led study that characterizes the role of the Rubisco chaperone BSD2 during Rubisco biogenesis. These results suggest this is the sole role of BSD2 and its activity is non-limiting to tobacco growth.

«page 1 of 2

Follow Me
TwitterRSS
GARNetweets
Categories
December 2024
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Welcome , today is Wednesday, December 4, 2024