Arabidopsis Research Roundup: August 19th

This weeks Arabidopsis Research Roundup includes broad representation from Norwich Research Park with Caroline Dean, Enrico Coen and Cyril Zipfel each leading studies that focus respectively on the regulation of transcriptional state, auxin patterning that defines leaf shape or the molecular basis of the PAMP response.

Elsewhere Liam Dolan (Oxford) leads, and Malcolm Bennett (CPIB) is the principal UK contributor on studies that look into different aspects of the key molecular signals in either root hair or lateral root development.

Finally Richard Napier is a co-author on a study that better characterises the molecular basis of the well-used plant growth inhibitor MDCA.

Yang H, Howard M, Dean C (2016) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC PNAS http://dx.doi.org/10.1073/pnas.1605733113

Dame Caroline Dean and Martin Howard (JIC) lead this follow-on work from a paper highlighted in an ARR from the start of 2016. Here they use the FLOWERING LOCUS C (FLC) locus as a model to study the trans factors that control methylation state. They find a physical interaction between the H3K36 methyltransferase SDG8 (which promotes the active H3K36me3 mark) and the H3K27me3 demethylase ELF6 (which removes the silencing H3K27me3 mark). SDG8 also associated with RNA polymerase II and the PAF1 transcriptional regulatory complex. Therefore the authors suggest that the addition of active histone marks coincides with transcription at the locus whilst SDG8 and ELF6 exhibit co-dependent localisation to FLC chromatin. Therefore this interaction links activation and derepression and coordinates active transcription whilst preventing ectopic silencing.

Abley K, Sauret-Güeto S, Marée AF, Coen E (2016) Formation of polarity convergences underlying shoot outgrowths. Elife. http://dx.doi.org/10.7554/eLife.18165.

Open Access
elife-18165-fig7-v1
Enrico Coen (JIC) is the corresponding author on this investigation that had generated models that predict locations of leaf outgrowth linked to auxin biosynthesis and transport. They use live imaging in wildtype and kanadi1kanadi2 mutants to show that the cellular polarity of the PIN1 auxin transporter is orientated so as to move auxin away from regions with high levels of biosynthesis. In turn, this moves auxin toward regions with high expression of AUX/LAX auxin importers. This data allows the generation of detailed models that describe the processes that control auxin-mediated tissue-patterning (and are impossible to describe in a single paragraph).

Couto D, Niebergall R, Liang X, Bücherl CA, Sklenar J, Macho AP, Ntoukakis V, Derbyshire P, Altenbach D, Maclean D, Robatzek S, Uhrig J, Menke F, Zhou JM, Zipfel C (2016) The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1 PLoS Pathog. http://dx.doi.org/10.1371/journal.ppat.1005811

Open Access

Cyril Zipfel is the lead investigator on this study that links researchers at TSL with colleagues in China and Germany. The focus of this work is the cytoplasmic kinase BIK1, which is a target of several pattern recognition receptors (PRRs) that are involved in the defence response, and the novel protein phosphatase PP2C38, which acts as a negative regulator of BIK1. Under non-inductive conditions PP2C38 prevents BIK1 activity but following pathogen-associated molecular patterns (PAMP) perception, it is phosphorylated and dissociates from BIK1, allowing full activity. This study provides another layer of detail into the complex central immune response that allows plants to response to a vast array of pathogenic microorganisms.

Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M, Mimura T, Weijers D, Fukaki H, Laplaze L, Bennett MJ, Guyomarc’h S (2016) Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor Development. http://dx.doi.org/10.1242/dev.135319

Open Access

Malcolm Bennett and Darren Wells (CPIB) are authors on this international collaboration that links UK, Japanese, French and Dutch researchers. The essential role of the central organizer center (the quiescent center, QC) is well known in primary root meristem development but its role during lateral root (LR) formation remained unclear. LR formation is characterised by biphasic growth that involves early morphogenesis from the central stele and subsequent LR meristem formation. This study uses 3D imaging to demonstrate that LR QC cells originate from outer cell layers of early primordial, in a SCARECROW (SCR) dependent manner. Perturbing SCR function causes incorrect formation of the LR QC and prevents wildtype LR patterning. The manuscript also contains some excellent videos of growing LRs that are very informative.
AUX1-YFPKim CM, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon PLoS Genet.

http://dx.doi.org/10.1371/journal.pgen.1006211 Open Access

This study comes from Liam Dolan’s lab at the University of Oxford and moves their research focus on root hair development from Arabidopsis into the grass Brachypodium distachyon. ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix genes are expressed in cells that develop root hair fate in Arabidopsis and this study indentifies 3 RSl1 genes in Brachypodium which, when ecoptically expressed, are sufficient for the development of root hairs in all cell files. The function of these RSL proteins is conserved as the Brachypodium versions are able to restore a wildtype phenotype to root hair-less Arabidopsis mutants. Even though root hair patterning is significantly different in Brachypodium and Arabidopsis, this study shows the role of the RSL genes is conserved.
RootHairPic
Steenackers WJ, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novak O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology http://dx.doi.org/10.1104/pp.15.01972

Open Access

Richard Napier (Warwick) is the UK PI on this pan-European study that investigates the molecular basis behind the physiological role of the compound phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA), which inhibits the phenylpropanoid pathway, important in lignin formation. MDCA causes inhibition of primary root growth and increase proliferation of lateral roots, not through lignin perturbation but due to a disruption in auxin homeostasis. MS analysis demonstrates that MDCA causes overall changes in auxin biosynthesis, conjugation and catabolism, similar to changes observed in mutants involved in the phenylpropanoid pathways. These result link auxin and phenylpropanoid biosynthesis pathways and provide a new explanation for the well demonstrated phytotoxic properties of MDCA.

Arabidopsis Research Roundup: December 9th.

This December 9th Arabidopsis Research Roundup includes four rather different studies. Firstly we include an excellent audio description from David Salt about a new type of GWAS analysis that his lab was involved in developing. This allowed identification of new genetic loci involved in molybdenum signalling. Secondly Isabelle Carre’s group from Warwick presents a study into the interactions that define the functioning of the circadian clock. Thirdly Mike Blatt leads a study that models stomatal opening and finally we include an investigation of the DOG1 gene, that includes a contribution from Fuquan Liu.

Forsberg SK, Andreatta ME, Huang XY, Danku J, Salt DE, Carlborg Ö (2015) The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance PLoS Genet. e1005648. http://dx.doi.org/10.1371/journal.pgen.1005648 Open Access.

Current GARNet Chairman David Salt (Aberdeen) is the UK lead on this collaboration with the lab of Orjan Carlborg from Uppsala in Sweden. The novelty of this paper is in the development of a new technique to measure Genome-Wide Association using the variance in SNP differences instead of using the mean. Professor Salt explained this vGWA technique in the attached audio-file, which is especially useful for people not so familiar with GWAS. Using this vGWA technique the authors were able to re-analyse an old dataset to gain additional understanding of how certain genetic loci are regulated to explain differences in the production of the essential nutrient molybdenum. Overall this paper introduces an analysis technique that can hopefully be used by other members of the community to analyse/re-analyse their data with increased rigour.

This is the 10minute audio file where David explains the paper:

Adams S, Manfield I, Stockley P, Carré IA (2015) Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions. PLoS One.10(12):e0143943. http://dx.doi.org/ 10.1371/journal.pone.0143943 Open Access

This collaboration between the Universities of Warwick and Leeds is led by Isabelle Carré and investigates the Arabidopsis circadian clock. They analysed the in vivo interactions of the LATE ELONGATED HYPOCOTYL (LHY) protein with promotors of other clock components. This uncovered a novel regulatory loop between LHY and the CIRCADIAN CLOCK ASSOCIATED-1 (CCA1) gene. Furthermore they show LHY acts as a repressor of all other clock components, clearly placing this protein as a key regulatory component of the Arabidopsis clock.

Minguet-Parramona C, Wang Y, Hills A, Vialet-Chabrand S, Griffiths H, Rogers S, Lawson T, Lew V, Blatt MR (2015) An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells. Plant Physiol. http://dx.doi.org/10.1104/pp.15.01607 Open Access

Mike Blatt is the corresponding author for this collaboration between Glasgow, Cambridge and Essex Universities. There are a good number of UK researchers who investigate the factors that regulate stomatal opening and this study looks at the role of calcium oscillations in this process. They have used the Arabidopsis OnGuard model that faithfully reproduces the optimum 10minute period of Ca2+ oscillation in guard cells. They used experimentally derived kinetics to describe the activity of ion transporters in the plasma membrane and tonoplast. Overall they discovered that the calcium oscillations are actually a by-product of the ion transport that determines stomatal aperature and not the overall controlling factor.

Cyrek M, Fedak H, Ciesielski A, Guo Y, Śliwa A, Brzeźniak L, Krzyczmonik K, Pietras Z, Liu F, Kaczanowski S, Swiezewski S (2015) Seed dormancy in Arabidopsis thaliana is controlled by alternative polyadenylation of DOG1 Plant Physiol. http://dx.doi.org/10.1104/pp.15.01483

Fuquan Liu (Queens, Belfast) is the UK contributor to this Polish-led study focused on the DOG1 gene, which is a key regulator of Arabidopsis seed dormancy. Previously it had been shown that the C-terminus of DOG1 is not conserved in many other plant species. The DOG1 transcript is alternatively polyadenylated and the authors show that Arabidopsis mutants that lack current 3’ RNA processing also show defects in seed dormancy. The shorter version of DOG1 is able to rescue the dog1 phenotype, which allows the authors to propose that DOG1 is a key regulator of seed dormancy and that the phenotypes of RNA processing mutants are linked to the incorrect processing of this specific mRNA species.

Arabidopsis Research Roundup: November 25th

This weeks Arabidopsis Research Roundup contains four papers each with a different focus. Firstly is a large-scale investigation that attempts to define the transcriptional changes that occur in response to bacterial infection. Second is a study that investigates a newly proposed role for the chloroplast chaperone Hsp93. Thirdly is another piece of work that also involves University of Oxford researchers and investigates the genetic networks that control leaf morphology. Finally is an updated plant-specific protocol for the commonly used technique of Chromatin Immunoprecipitation.

Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Penfold CA, Jenkins DJ, Hill C, Baxter L, Kulasekaran S, Truman W, Littlejohn G, Prusinska J, Mead A, Steinbrenner J, Hickman R, Rand D, Wild DL, Ott S, Buchanan-Wollaston V, Smirnoff N, Beynon J, Denby K, Grant M (2015) Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000 Plant Cell. http://dx.doi.org/10.1105/tpc.15.00471 Open Access

This ‘Large Scale Biology’ publication is a collaboration between the Universities of Exeter and Warwick, led by Murray Grant and current GARNet Advisory board member Katherine Denby. This study investigates the transcriptional changes that occur over a long time course in response to infection by the pathogen Pseudomonas syringae pv tomato DC3000. The authors aim to differentiate between the changes associated with endogenous microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and those orchestrated by pathogen effectors. The responses to pathogenic and non-pathogenic P.syringae were compared and using novel computational analysis, it was shown that the majority of gene expression changes that contribute to disease or defense responses occurred within 6hour post-infection, well before pathogen multiplication. Broadly it was found that chloroplast-associated genes are suppressed by a MAMP-triggered response, presumably to restrict nutrient availability. Ultimately this manuscript identified specific promotor elements that are involved in either the MTI response or utilised by the infecting bacteria.

Corresponding author Professor Murray Grant kindly takes ten minutes to discuss the finding of this paper and the community resource that it represents. He also discusses another paper involving the Jasmonate response that resulted from this dataset and was recently highlighted in the Research Roundup. Interview end at 11m10s.

Flores-Pérez Ú1, Bédard J1, Tanabe N2, Lymperopoulos P2, Clarke AK3, Jarvis P (2015) Functional analysis of the Hsp93/ClpC chaperone at the chloroplast envelope Plant Physiology. http://dx.doi.org/10.1104/pp.15.01538 Open Access

Paul Jarvis (Oxford) is the corresponding author on this study in which his lab collaborates with Swedish researchers to investigate the role of the Hsp93/ClpC chaperone protein in protein import into the chloroplast. This recently postulated role for this protein has not yet been experimental tested so they generated a hsp93[P-] mutant that lacked a functional ClpP-binding motif (PBM), which confers the already determined role for Hsp93 in proteolysis that occurs in the chloroplast stroma. The hsp93[P-] mutant localises to the chloroplast envelope and associates with TIC transport machinery but was unable to complement the phenotypes of a hsp93 null mutant. This showed that the PBM domain was essential for its function. Expression of the Hsp93[P-] mutant in the hsp93 null background did not improve protein import so the authors concluded that these results do not confirm this newly postulated role for the protein and they suggest that its functional role occurs immediately after its substrate had been transported into the chloroplast.

Rast-Somssich MI, Broholm S, Jenkins H, Canales C, Vlad D, Kwantes M, Bilsborough G, Dello Ioio R, Ewing RM, Laufs P, Huijser P, Ohno C, Heisler MG, Hay A, Tsiantis M (2015) Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta Genes Dev. 29(22):2391-404 http://dx.doi.org/10.1101/gad.269050.115 Open Access

The study includes researchers from Oxford and Southampton Universities in collaboration with those from Italy, France and Germany in work that is led by Angela Hay and Miltos Tsiantis, who were both previously based in Oxford. This is familiar territory for this group as they compare leaf development between Arabidopsis, which has simple leaves, and the related , Cardamine hirsuta, which has dissected leaves. In this new work they transfer the SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes between the two species and investigate their ability to modify leaf form. In Cardamine, expression of BP is controlled by crosstalk between the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1) gene. However this regulatory network does not function in Arabidopsis and therefore leads to the establishment of differing regulatory networks that the authors propose are responsible for the alterations in organ geometry.

Posé D, Yant L (2016) DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants Methods Mol Biol. 1363:25-35. http://dx.doi.org/10.1007/978-1-4939-3115-6_3

Levi Yant is a new member of faculty at the John Innes Centre and is the lead author on this paper that introduces an updated protocol for Chromatin Immunoprecipitation in Plants (ChIP). They have used this technique in his lab to identify target genes for a number of transcriptional regulators that are involved in Arabidopsis floral development.

Arabidopsis Research Roundup: November 13th.

This weeks Arabidopsis Research Roundup presents a wide range of topics from researchers across the UK. Firstly we highlight a study that documents the early stages of a potential biotechnological/synthetic biology approach to improve higher plant photosynthesis using algal components. Corresponding author Alistair McCormick also takes five minutes to discuss this work. Secondly a team based mostly at Bath introduces the function of the PAT14 gene, which is involved in S-palmitoylation. Thirdly is a study that successfully transfers SI components between evolutionary diverged plant species and the final paper documents research that adds additional complexity to the signalling pathway that responses to strigolactones.

Atkinson N, Feike D, Mackinder LC, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ (2015) Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Plant Biotechnol J. http://dx.doi.org/10.1111/pbi.12497 Open Access

This work results from a collaborative effort between the four groups that make up the Combining Algal and Plant Photosynthesis (CAPP) consortium and include Howard Griffiths (Cambridge), Martin Jonikas (Carnegie Institute for Science), Alison Smith (JIC) and Alistair McCormick (Edinburgh). Here they attempt to express in higher plants a range of algal proteins that are involved in carbon-concentrating mechanisms (CCM). They initially confirmed the intracellular locations of ten algal CCM components and showed that these locations were largely conserved when the proteins were expressed transiently in tobacco or stably in Arabidopsis. Although the expression of these CCMs components in Arabidopsis didn’t enhance growth, the authors suggest that stacking of multiple CCM proteins might be needed to confer an increase in productivity.

Alistair takes five minutes to discuss this paper here:

Li Y, Scott RJ, Doughty J, Grant M, Qi B (2015) Protein S-acyltransferase 14: a specific role for palmitoylation in leaf senescence in Arabidopsis. Plant Physiology http://dx.doi.org/10.1104/pp.15.00448 Open Access

This Southwest-based study is led by Baoxiu Qi from the Plant-Lab at Bath University with input from Murray Grant (Exeter). They investigate Protein S-Acyl Transferase (PATs) protein, which are multi-pass transmembrane proteins that catalyze S-acylation (commonly known as S-palmitoylation). This process both confers correct protein localisation and is involved in signalling. These are 24 PATs in Arabidopsis and this study focuses on the novel PAT14, which they show has its predicted enzymatic role. Pat14 mutant plants show accelerated senescence that is associated with SA, but not JA or ABA-signaling. Therefore the authors suggest that AtPAT14 plays a pivotal role in regulating senescence via SA pathways and that this is the first published linkage between palmitoylation and leaf senescence.

Lin Z1, Eaves DJ1, Sanchez-Moran E1, Franklin FC1, Franklin-Tong VE1 (2015) The Papaver rhoeas S determinants confer self-incompatibility to Arabidopsis thaliana in planta Science 350(6261):684-7 http:/​/​dx.​doi.​org/​10.1126/science.aad2983

University of Birmingham researchers led by Noni Franklin- Tong publish this study in Science in which they transfer the elements that confer self-incompatibility (SI) in Papever rhoeas (Poppy) to Arabidopsis. They find that Arabidopsis pistils that express the self-determinant PrsS protein reject pollen that expresses the PrpS protein. This leads to a robust SI response in these plants, demonstrating that these two components are sufficient for the establishment of this interaction. Poppy and Arabidopsis are evolutionarily separated by 140million years so the authors suggest that the successful transfer of SI determinants between these divergent species will have potential utility in future crop production strategies.

Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis The Plant Cell http://dx.doi.org/10.1105/tpc.15.00562

Ottoline Leyser (SLCU) is the UK lead on this US-UK collaboration that investigates the plant response to butenolide signals, namely the plant hormone strigolactones and smoke-derived karrikins. It is known that these molecules are perceived by the F-box protein MORE AXILLARY GROWTH2 (MAX2) and that the Arabidopsis SUPPRESSOR OF MAX2 1 (SMAX1) protein acts downstream of this perception. This study documents an extensive genetic study that shows that the activity of the SMAX1-LIKE genes, SMXL6, SMXL7, and SMXL8 promote shoot branching. smxl6,7,8 mutant plants suppress several strigolactone-related phenotypes in max2, that focus on the response to auxin but not on germination or hypocotyl elongation responses, which are only suppressed in smax1 mutants. On a molecular level these responses are controlled by the MAX2-dependant degradation of the SMAX1/SMXL proteins, which result in changes in gene expression. Therefore this shows that the diversity of SMAX1/SMXL proteins allows the signaling pathway that responses to butenolide signals to bifurcate downstream of the initial perception.

Arabidopsis Research Roundup: November 5th

Academics from the John Innes Centre lead two of the papers featured in this week Arabidopsis Research Roundup. Firstly Veronica Grieneisen leads a study that combines modeling and experimental work to assess the factors that establish the root auxin maximum and secondly the structural biologist David Lawson heads up an investigation into the plastid-localised enzyme, DPE1. Seemingly a common theme in UK-Arabidopsis research focuses on the factors that control the dynamics of stomatal opening and this week Mike Blatt from Glasgow heads a team that investigates the role of potassium and nitric oxide in this process. Finally we present a paper that investigates proteins that interact within the ER.

El-Showk S, Help-Rinta-Rahko H, Blomster T, Siligato R, Marée AF, Mähönen AP, Grieneisen VA (2015) Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out PLoS Comput Biol. e1004450Picture

http://dx.doi.org/10.1371/journal.pcbi.1004450 Open Access

Veronica Grieneisen (JIC) is the UK-based leader of this work that was performed with her Finnish collaborators. They work on the modeling the processes that define the auxin maximum in the root meristem. This patterning is defined by the activity of the PIN-formed auxin efflux transport proteins and the AHP6 protein, an inhibitor of cytokinin signaling. The authors implement a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. They initially find that variation in cytokinin signaling, mediated by diffusion of the hormone is insufficient for patterning but rather it is an auxin-dependent modification of the cytokinin signal that can define the auxin maximum. Although the role that the PIN proteins play in root vascular patterning is well established, the authors experimentally verify a role for the AUX/LAX auxin influx carrier family of proteins. They also show that polar PIN localisation generates a flux of auxin flow that ultimately causes its own accumulation in the pericycle cells that signal for lateral root initiation. Finally their model confirms the supposition that these pericycle cells compete for auxin accumulation, therefore ensuring that lateral roots develop in the correct localisation. The associated figure is from this paper.

O’Neill EC, Stevenson CE, Tantanarat K, Latousakis D, Donaldson MI, Rejzek M, Nepogodiev SA, Limpaseni T, Field RA, Lawson DM (2015) Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Enzyme DPE1. Journal of Biological Chemistry http://dx.doi.org/10.1074/jbc.M115.682245 Open Access

This is another paper led by JIC researchers, this time in collaboration with Thai partners. This focuses on determining the structure of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1) that acts to convert two maltotriose molecules to a molecule of maltopentaose and a molecule of glucose, which, for different reasons, are both more functional useful molecules for the plant. They have used ligand soaking techniques to trap the DPE1 in a different set of conformational states and have found that it exists as a homodimer with a variety of interesting features. This includes a dynamic ‘gate’ loop that may play a role in substrate capture, subtle changes in which could alter the efficacy of the active site. The structural insights provided by this study allow the authors to confidently delineate the complete AtDPE1 disproportionation cycle

Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, García-Mata C, Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt MR (2015) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis New Phytol.http://dx.doi.org/10.1111/nph.13714 Open Access

<a href="http://www.gla cialis vente en france.ac.uk/researchinstitutes/biology/staff/michaelblatt/” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘http://www.gla.ac.uk/researchinstitutes/biology/staff/michaelblatt/’, ‘Mike Blatt’]);” target=”_blank”>Mike Blatt (Glasgow) is the lead on this UK-Sino-Australino-Argentine collaboration that investigates the role of nitrate reductase enzyme in potassium flux in guard cells. This flux is necessary for a plants adaption to the environment and is controlled by the activity of ABA via the activity of H2O2 and Nitric Oxide (NO). The authors showed that multiple responses to ABA were impaired in nia1nia2 nitrate reductase mutants, which includes the K+ IN current in guard cells, required for stomatal closure. This response was rescued by exogenous NO and allowed the authors to demonstrate that there exists a complex interaction involving ABA, NO, potassium nutrition and nitrogen metabolism that is necessary to ensure correct stomatal responses.

Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C (2015) Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane Plant Physiol. 169(3):1933-45 http://dx.doi.org/10.1104/pp.15.01153

This proteomic analysis of endoplasmic reticulum components is a collaboration between the Central Laser Facility at Didcot, Warwick, Edinburgh and Oxford Brookes Universities, led by Professor Chris Hawes. Plant Reticulon proteins (RTNLB) specifically populate and tubulate the ER, mediated by their varied multi-meric interactions. In addition, certain RTNLB are also present in plasmodesmata (PD) and two of these proteins, RTNLB3 and RTNLB6 were GFP-tagged, Co-IPed and interacting proteins were analysed by MS. This identified a range of known PD-localised proteins, and these interactions were experimentally verified in tobacco cells using FRET-microscopy. The authors suggest that this data shows that RTNLB proteins may play important roles in linking the cortical ER to the plasma membrane. This paper is the ‘sister’ to another manuscript in Plant Physiology that was highlighted in a recent Arabidopsis Research Roundup.

Arabidopsis Research Roundup: August 21st.

There are a wide array of topics included in this weeks Arabidopsis Research Roundup, ranging from studies on stomatal density, thylakoid transport, metabolic flux analysis, mutant detection and root development. We feature unlinked studies from three researchers from the University of Oxford Plant Science (Paul Jarvis, Lee Sweetlove and Nick Harberd), whilst the papers from Julie Gray and Brian Forde share the broad theme that investigates different mechanisms that might be used to improve nitrogen uptake, either by modifying the expression of a single gene involved in root development or by altering stomatal density.

Hepworth C, Doheny-Adams T, Hunt L, Cameron DD, Gray JE (2015) Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake New Phytol. http://dx.doi.org/10.1111/nph.13598

Julie Gray (University of Sheffield) is an expert on both stomatal biology and on the potential for manipulating stomatal density to improve crop production. In this study drought tolerance and soil water retention were measured in four Arabidopsis mutants with defects in epidermal patterning and stomatal density. Nutrient uptake was measured by mass flow of 15N. Plants with less stomata had reduced transpiration and were drought-tolerant yet interestingly showed little reduction in shoot N concentrations, especially when water availability is restricted. In contrast, plants with extra stomata could take up more N except when access to water was reduced. Therefore the authors show that by altering stomatal density they can generate plants that are drought resistance yet maintain nutrient uptake or generate plants with enhancing nutrient uptake is conditions with plentiful water.

Trösch R, Töpel M, Flores-Pérez Ú, Jarvis P (2015) Genetic and Physical Interaction Studies Reveal Functional Similarities between ALB3 and ALB4 in Arabidopsis. Plant Physiol. http://dx.doi.org/10.1104/pp.15.00376

This German, Swedish and UK collaboration is led by Paul Jarvis at the University of Oxford and broadly investigates thylakoid protein targeting. The ALB3 complex has previously been shown to target light harvesting complex proteins (LHCP) to the thylakoid. A related Arabidopsis protein, ALB4, had been proposed to interact not the LHCPs but rather with the ATP synthase complex. However this study shows that ALB3 and ALB4 have some overlapping roles in addition to their specific functions and that they can engage with a similar set of interactor proteins to bring their substrates to the thylakoid membrane.

Cheung CY, Ratcliffe RG, Sweetlove LJ (2015) A method of accounting for enzyme costs in flux balance analysis reveals alternative pathways and metabolite stores in an illuminated Arabidopsis leaf Plant Physiol. http://dx.doi.org/10.1104/pp.15.00880

Lee Sweetlove (Oxford University) leads this study that looks at the Flux Balance Analysis (FBA) of plant metabolism across several metabolic pathways by attaching ‘flux weighting factors’ to allow for the variable intrinsic cost of supporting each flux. This model has been applied to the Arabidopsis leaf exposed to different light regimes to explore the flexibility of the network in meeting its metabolic requirements. The authors discover interesting trade-offs between use of different carbon storage forms and in the variable consumption of ATP and NADPH by different metabolic pathways.

Belfield EJ, Brown C, Gan X, Jiang C, Baban D, Mithani A, Mott R, Ragoussis J, Harberd NP (2014) Microarray-based optimization to detect genomic deletion mutations Genom Data Dec;2:53-54 http://dx.doi.org/10.1016/j.gdata.2014.04.005

GARNet Advisory Board member Nick Harberd (Oxford University) leads this short communication that highlights the development of a tool for detection of genomic deletion mutants in Arabidopsis. Using a NimbleGen whole genome custom tiling array they successfully identify five mutants with deletion ranging from 4bp to 5kb and therefore introduce a powerful tool for analysing this type of genetic lesion in Arabidopsis and other plant species with well-constructed genomes.

Yu C, Liu Y, Zhang A, Su S, Yan A, Huang L, Ali I, Liu Y, Forde BG, Gan Y (2015) MADS-box Transcription Factor OsMADS25 Regulates Root Development through Affection of Nitrate Accumulation in Rice PLoS One http://dx.doi.org/10.1371/journal.pone.0135196

Brian Forde (Lancaster University) is the UK lead on this Chinese collaboration that focuses on nitrate accumulation and how it regulates root development in rice. This occurs via a MADS-box transcription factor OsMADS25 that, when overexpressed in Arabidopsis, promotes primary and lateral root development. Altered expression of this gene also affects root development in transgenic rice and includes significant changes in nitrate accumulation. Therefore this gene might prove to be an important target for future attempts to improve plant growth in regions with altered nitrate concentrations.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
July 2017
M T W T F S S
« Jun    
 12
3456789
10111213141516
17181920212223
24252627282930
31  

Welcome , today is Tuesday, July 25, 2017