GARNet Research Roundup: October 17th 2019

This edition of the GARNet Research Roundup includes a superb selection of papers by scientists from across the UK. First is work from the Spoel lab in Edinburgh that characterizes the fine-tuning of NPR1 activity during the plant immune response. Second is work from SLCU and the University of Helsinki that is an extensive investigation into the molecular basis of cambial development. Next is research from Nottingham that looks at the importance of soil macro-structures during the growth of wheat roots.

Fourth are three papers that highlight the breadth of research occurring at the John Innes Centre. The first paper is from Enrico Coen’s lab that applies their expertise in computational modeling to leaf development in the carnivorous plant Utricularia gibba. Second is work from Saskia Hogenhout’s lab that looks at immunity to infection by Phytoplasma pathogens. Last is work from Lars Ostergaard’s lab that characterises the role of Auxin Binding promoter elements in floral development.

The seventh paper from Bristol and Glasgow looks at shade avoidance signaling via PIF5, COP1 and UVR8 whilst the eighth paper, which is from Rothamsted, demonstrates how metabolic engineering in Arabidopsis seeds can result in a high proportion of human milk fat substitute. The next paper is from the University of Durham and investigates how the composition of the Arabidopsis cell wall impacts freezing tolerance. The first author of this paper, Dr Paige Panter discusses the paper on the GARNet community podcast.

The tenth paper is from Julia Davies’s lab at the University of Cambridge and introduces an uncharacterised response to extracellular ATP signals in Arabidopsis roots. The next paper is from Mike Blatt’s group at University of Glasgow and characterises a new interaction between vesicular transport and ion channels. The penultimate entry includes co-authors from the JIC on a Chinese-led study that demonstrates improved seed vigour in wheat through overexpression of a NAC transcription factor. Finally are two methods papers taken from a special journal issue on ‘Plant Meiosis’.


Skelly MJ, Furniss JJ, Grey HL, Wong KW, Spoel SH (2019) Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. Elife. doi: 10.7554/eLife.47005
Open Access

Michael Skelly is lead author on this paper from the lab of current GARNet chair Steven Spoel. In it they investigate the mechanisms that fine-tune the function of NPR1, a key player in the plant immune response. Progressive ubiquitination of NPR1 by an E3 ligase causes both its interaction with target genes and its subsequent degradation by an E4 ligase. This latter occurrence is opposed by the deubiquitinase activity of UBP6/7, setting up a complex regulatory environment that allows the plant to rapidly response to pathogen attack.


Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damén T, Joung JG, Yun JY, Lee JH, Ragni L, Barbier de Reuille P, Ahnert SE, Lee JY, Mähönen AP, Helariutta Y (2019) Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat Plants. doi: 10.1038/s41477-019-0522-9

This pan-European-Korean collaboration has Jing Zhang from the University of Helsinki and the Sainsbury Laboratory, University of Cambridge as first author. They use cambium cell-specific transcript profiling and follow-on network analysis to discover 62 new transcription factors involved in cambial development in Arabidopsis. This information was used to engineer plants with increased radial growth through ectopic cambial activity as well as to generate plants with no cambial activity. This understanding provides a platform for possible future improvements in production of woody biomass.


Atkinson JA, Hawkesford MJ, Whalley WR, Zhou H, Mooney SJ (2019) Soil strength influences wheat root interactions with soil macropores. Plant Cell Environ. doi: 10.1111/pce.13659
This work is led from the University of Nottingham by John Atkinson and Sacha Mooney. They use X-ray Computed Tomography to investigate a trait called trematotropism, which applies to the ability of deep rooting plants to search out macropores and avoid densely packed soil. They show root colonisation of macropores is an important adaptive trait and that strategies should be put in place to increase these structures within the natural soil environment.


Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E (2019) Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol. doi: 10.1371/journal.pbio.3000427
Open Access

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000427

Karen Lee, Claire Bushell and Yohei Koide are co-first authors on this work led by Enrico Coen at the John Innes Centre and Minlong Cui at the Zhejiang Agriculture and Forestry University in China. This study uses 3D imaging, cellular and clonal analysis, combined with computational modelling to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. They identify growth ansiotrophies that result in the final leave shape that develops from an initial near-spherical form. These processes have some similarities to the polar growth seen in Arabidopsis leaves. Overall they show that ‘simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies’.


Pecher P, Moro G, Canale MC, Capdevielle S, Singh A, MacLean A, Sugio A, Kuo CH, Lopes JRS, Hogenhout SA (2019) Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize. PLoS Pathog. doi: 10.1371/journal.ppat.1008035
Open Access

This work from Saskia Hogenhout’s lab at the John Innes Centre is led by Pascal Pecher and Gabriele Moro. They look at the effect of SAP11 effectors from Phytoplasma species that infect either Arabidopsis or maize. They demonstrate that although both related versions of SAP11 destabilise plant TCP transcription factors, their modes of action have significant differences. Please look out for Saskia discussing this paper on the GARNet Community podcast next week.


Kuhn A, Runciman B, Tasker-Brown W, Østergaard L 92019) Two Auxin Response Elements Fine-Tune PINOID Expression During Gynoecium Development in Arabidopsis thaliana. Biomolecules. doi: 10.3390/biom9100526
Open Access

Andre Kuhn is first author of this research from Lars Østergaard’s lab at the John Innes Centre. They functional characterise two Auxin-responsive Elements (AuxRE) within the promotor of the PINOID gene, which are bound by the ETITIN/ARF3 Auxin Response Factor. Alteration of this AuxRE causes phenotypic changes during flower development demonstrating that even with a complex regulatory environment, small changes to cis-elements can have significant developmental consequences.


Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, Jenkins GI, Franklin KA (2019) UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun. doi: 10.1038/s41467-019-12369-1
Open Access

Ashutosh Sharma is first author of this UK-Spanish-Germany collaboration led by Keara Franklin at University of Bristol. They have characterised the interaction between three significant molecular players that function during the shade avoidance response in Arabidopsis; PIF5, UVR8 and COP1. In shaded conditions, UVR8 indirectly promotes rapid degradation of PIF5 through their interactions with the E3 ubiquitin ligase COP1.


van Erp H, Bryant FM, Martin-Moreno J, Michaelson LV, Bhutada G, Eastmond PJ (2019) Engineering the stereoisomeric structure of seed oil to mimic human milk fat. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907915116

Open Access

Harrie Van Arp and Peter Eastmond at Rothamsted Research lead this extremely translational study in which they have modified the metabolic pathway for triacylglycerol (TAG) biosynthesis. By modifying the location of one biosynthesis enzyme and removing the activity of another, the fats produced in these Arabidopsis seeds are enriched to contain TAGs that are similar to those found in human milk. They propose that this technology could be used to develop a source of plant-derived human milk fat substitute.


Panter PE, Kent O, Dale M, Smith SJ, Skipsey M, Thorlby G, Cummins I, Ramsay N, Begum RA, Sanhueza D, Fry SC, Knight MR, Knight H (2019) MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. New Phytol. doi: 10.1111/nph.16209

Paige Panter led this work as part of her PhD at the University of Durham in the lab of Heather Knight. They characterise the role of the MUR1 protein in the control of cell wall fucosylation and how this contributes to plant freezing tolerance. Paige discusses this paper and the long history of MUR1 on the GARNet Community podcast. Please check it out!


Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM (2019) Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. Front Plant Sci. doi: 10.3389/fpls.2019.01064.

Open Access

The UK-French collaboration is led by Limin Wang from Julia Davies’s lab in Cambridge. They use patch clamp electrophysiology to identify previously uncharacterized channel conductances that respond to extracellular ATP across the root elongation zone epidermal plasma membrane.


Waghmare S, Lefoulon C, Zhang B, Lileikyte E, Donald NA, Blatt MR (2019) K+ channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. doi: 10.1104/pp.19.00919

Open Access

This work from Mike Blatt’s lab in Glasgow is led by Sakharam Waghmare. They look at the interaction between SNARE proteins, which are involved in vesicular fusion and K+ channels, which help control turgor pressure during cell expansion. Through combining analysis of protein-protein interactions and electrophysiological measurement they have found that this interaction requires the activity of the regulatory protein SEC11.


Li W, He X, Chen Y, Jing Y, Shen C, Yang J, Teng W, Zhao X, Hu W, Hu M, Li H, Miller AJ, Tong Y (2019) A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytol. doi: 10.1111/nph.16234
Wenjing Li is first author of this Chinese study that includes Yi Chen and Anthony Miller from the John Innes Centre as co-authors. This research shows that seed vigour and nitrate accumulation in wheat is regulated by the TaNAC2 transcriptions factor through its control of the TaNRT2.5 nitrate transporter. The authors suggest that both genes could be used as potential future targets to increase grain yield and nitrogen use efficiency.


The Special Issue of Methods in Molecular Biology on Plant Meiosis includes papers from the University of Cambridge, led by Christophe Lambing and the James Hutton Institute, led by Benoit Darrier.

Lambing C, Choi K, Blackwell AR, Henderson IR (2019) Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_16
Darrier B, Arrieta M, Mittmann SU, Sourdille P, Ramsay L, Waugh R, Colas I (2019) Following the Formation of Synaptonemal Complex Formation in Wheat and Barley by High-Resolution Microscopy. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_15

Mike Skelly talks to GARNet

Tags: No Tags
Comments: No Comments
Published on: September 11, 2019

Michael Skelly from the University of Edinburgh talks to GARNet about a paper published in PNAS titled ‘A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity‘. Thanks Mike! 11/9/19

GARNet Research Roundup: August 16th 2019

This holiday-time edition of the GARNet research roundup begins with two papers that include the late Ian Moore from the University of Oxford as a co-author. The first looks at the role of RAB-A5c in the control of cellular growth anisotropy whilst the second characterises the Transport Protein Particle II (TRAPPII) complex.

The third paper is a UK-wide collaboration that assesses the role of UVA signaling on stomatal development. Next is a paper from Cambridge and the JIC that has identified the TAF4b protein as a novel regulator of meiotic crossovers.

The fifth paper is from the University of York and characterizes a role for cis-12-oxo-phytodienoic acid (OPDA) during seed germination.

The next three papers feature scientists from the University of Leeds in research that investigates 1, a peroxisomal ABC transporter; 2, the role of LRR-RLKs in plasmodesmata development and 3, the cell wall characteristics of banana and mango fruit.

The ninth paper is from the University of Edinburgh and investigates the role of S-nitrosylation in the control of SUMO conjugation.

The next two papers include Steve Penfield at the JIC as a corresponding author; the first looks at the role of endosperm-expressed transcriptional factors during seed dormancy and the second, in collaboration with researchers at the University of Warwick, identifies novel QTLs involved in seed dormancy.

The penultimate study is from Lancaster and presents a surprising outcome resulting from the overexpression of the wheat CA1Pase gene. The final paper includes Alison Tidy and Zoe Wilson from University of Nottingham as co-authors on a study that looks at male fertility in Arabidopsis.


Kirchhelle C, Garcia-Gonzalez D, Irani NG, Jérusalem A, Moore I (2019) Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. Elife. pii: e47988. doi: 10.7554/eLife.47988

Open Access

Charlotte Kirchhelle leads this work that was conducted in the lab of the late Ian Moore at the University of Oxford. She investigates the role of the plant-specific small GTPase RAB-A5c during growth anisotropy in lateral roots, which involves coordinated orientations of cellulose microfibrils (CMFs) and by cortical microtubules (CMTs). They identify RAB-A5c dependent and independent mechanisms to control cellular growth anisotropy in this growing tissue.

From https://elifesciences.org/articles/47988

Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF (2019) Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. Plant J. doi: 10.1111/tpj.14442

This German-led study includes Monika Kalde from the University of Oxford as first author as well Ian Moore as co-author. They characterize the components and function of the Transport Protein Particle II (TRAPPII) complex. TRAPPII plays multiple roles in intra-cellular transport and this study identified 13 subunits, including several that were previously uncharacterised.


Isner JC, Olteanu VA, Hetherington AJ, Coupel-Ledru A, Sun P, Pridgeon AJ, Jones GS, Oates M, Williams TA, Maathuis FJM, Kift R, Webb AR, Gough J, Franklin KA, Hetherington AM (2019). Short- and Long-Term Effects of UVA on Arabidopsis Are Mediated by a Novel cGMP Phosphodiesterase. Curr Biol.29(15):2580-2585.e4. doi: 10.1016/j.cub.2019.06.071

Open Access

Jean-Charles Isner is the first author on this collaboration between labs in Bristol, York, Oxford and Cambridge. They show that UVA radiation (which represents 95% of the UV radiation reaching earth) inhibits stomatal opening through a process that involves a reduction in the cytosolic level of cGMP. The AtCN-PDE1 gene (a cGMP-activated phosphodiesterase) is needed to decrease cGMP levels in Arabidopsis. This response is present across the tree of life except in metazoans. They show AtCN-PDE1 is needed for the UVA response and that prolonged UVA exposure causes increased growth yet reduced water use efficiency.


Lawrence EJ, Gao H, Tock AJ, Lambing C, Blackwell AR, Feng X, Henderson IR (2019) Natural Variation in TBP-ASSOCIATED FACTOR 4b Controls Meiotic Crossover and Germline Transcription in Arabidopsis. Curr Biol. pii: S0960-9822(19)30844-9. doi: 10.1016/j.cub.2019.06.084

Open Access

This work from Ian Henderson’s lab in Cambridge and Xiaoqi Feng’s lab at the JIC is led by Emma Lawrence and isolates a novel modifier of meiotic crossover frequency, TBP-ASSOCIATED FACTOR 4b (TAF4b), which encodes a subunit of the RNA polymerase II general transcription factor TFIID. They show TAF4b expression is enriched in meiocytes, compared to the more general expression of its paralog TAF4. Ultimately they reveal TAF4b drives a novel mode of meiotic recombination control through its activity as a general transcription factor.


Barros-Galvão T, Dave A, Cole A, Harvey D, Langer S, Larson TR, Vaistij FE, Graham IA (2019) cis-12-oxo-phytodienoic acid represses Arabidopsis thaliana seed germination in shade light conditions. J Exp Bot. pii: erz337. doi: 10.1093/jxb/erz337

Open Access

Thiago Barros-Galvão is first author on this study from Ian Graham’s lab at the University of York. They investigate how the jasmonic acid pre-cursor cis-12-oxo-phytodienoic acid (OPDA) contributes to control of seed germination, particularly under shade conditions. OPDA acts through the activity of the transcription factor MOTHER-OF-FT-AND-TFL1 (MFT).

From https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz337/5536641

Carrier DJ, van Roermund CWT, Schaedler TA, Rong HL, IJlst L, Wanders RJA, Baldwin SA, Waterham HR, Theodoulou FL, Baker A (2019) Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose. Sci Rep. 9(1):10502. doi: 10.1038/s41598-019-46685-9

Open Access

Alison Baker at the University of Leeds is the corresponding author of this UK, Dutch collaboration that includes David Carrier as first author. They characterise the peroxisomal ABC transporter, Comatose (CTS) through mutagenesis of key residues responsible for the proteins intrinsic acyl-CoA thioesterase (ACOT) activity. Ultimately they show that ACOT activity depends of endogenous ATPase activity but that these activities could be functional separated by mutagenesis of key residues.


Grison M, Kirk P, Brault M, Wu XN, Schulze WX, Benitez-Alfonso Y, Immel F, Bayer EMF (2019). Plasma membrane-associated receptor like kinases relocalize to plasmodesmata in response to osmotic stress. Plant Physiol. pii: pp.00473.2019. doi: 10.1104/pp.19.00473

Open Access

GARNet advisory committee member Yoselin Benitez-Alfonso and members of her research group are co-authors on the next two studies. This work is led by Magali Grison in Emmanuelle Bayer’s lab in Bordeaux. They show that the PM-localised Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs), QSK1 and IMK2 relocate and cluster to the plasmodesmata under osmotic stress conditions. Through a variety of assays that focuses on QSK1 the authors show that reorganisation of RLKs can be important for the regulation of callose deposition at plasmodesmata and under osmotic stress this can have a functional effect on lateral root development.


Rongkaumpan G, Amsbury S, Andablo-Reyes E, Linford H, Connell S, Knox JP, Sarkar A, Benitez-Alfonso Y, Orfila C (2019) Cell Wall Polymer Composition and Spatial Distribution in Ripe Banana and Mango Fruit: Implications for Cell Adhesion and Texture Perception. Front Plant Sci. 10:858. doi: 10.3389/fpls.2019.00858

Open Access

Ganittha Rongkaumpan is first author on this interdisciplinary collaborative research from multiple departments at the University of Leeds. They characterise the composition of the cell wall in two fruits, banana and mango, which soften during ripening. The authors compared structural information, obtained using Atomic Force Microscopy and biochemical analysis, with data from rheology and tribology assays to understand why these fruits feel different in the mouth during ingestion.


Skelly MJ, Malik SI, Le Bihan T, Bo Y, Jiang J, Spoel SH, Loake GJ (2019) A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity Proc Natl Acad Sci U S A. pii: 201900052. doi: 10.1073/pnas.1900052116

Michael Skelly from the University of Edinburgh is the lead author of this study from the labs of Gary Loake and GARNet chairman Steven Spoel. They investigate the mechanism through which nitric oxide signaling after pathogen recognition stimulates inhibitory S-nitrosylation of the Arabidopsis SUMO E2 enzyme, SCE1. S-nitrosylation occurs on the evolutionary conserved Cys139 of SCE1 and they investigate the wider significant of this residue in the control of immune responses across eukaryotes.


MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, Lopez-Molina L, Penfield S (2019) ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. Plant J. 98(2):277-290. doi: 10.1111/tpj.14211

Open Access

Dana MacGregor (now at Rothamsted Research) leads this work from the lab of Steve Penfield at the JIC that investigates the extent of control on depth of primary dormancy that is mediated by the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1). These effects are additive and independent of their role in endosperm development since the dormancy defect in ice1 and zou mutants can be ameliorated without altering seed morphology. They show that ICE1 acts primarily through control of ABA INSENSITIVE 3 (ABI3).


Footitt S, Walley PG, Lynn JR, Hambidge AJ, Penfield S, Finch-Savage WE (2019) Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. doi: 10.1111/nph.16081

This research is a collaboration between the John Innes Centre and the Universities Liverpool and Warwick, from which Steven Footitt is first author. They used two Arabidopsis ecotypes that have differences in the timing of seedling emergence to identify new QTLs involved in depth of seed dormancy and Seedling Emergence Timing (SET). They revealed that DOG1 is important for determining depth of dormancy. In addition they identified three new SET QTLs, which are each physically close to DOG1, that play a role in the control of SET in the field.


Lobo AKM, Orr D, Gutierrez MO, Andralojc J, Sparks C, Parry MAJ, Carmo-Silva E (2019) Overexpression of ca1pase decreases Rubisco abundance and grain yield in wheat. Plant Physiol. pii: pp.00693.2019. doi: 10.1104/pp.19.00693

Open Access

This research from Lancaster Environmental Centre and their Brazilian collaborators is led by Ana Karla Lobo and demonstrates that overexpression of 2-carboxy-D-arabinitol-1-phosphate phosphatase (CA1Pase) in wheat causes a reduction in above ground biomass and compromises wheat grain yields. As CA1Pase is involved in removing inhibitors of Rubisco activity this result is contrary to the anticipated outcome. This suggests that Rubisco inhibitors might actually protect enzyme activity, thus maintaining the number of active sites that the enzyme is able to support.


Zhao SQ, Li WC, Zhang Y, Tidy AC, Wilson ZA (2019) Knockdown of Arabidopsis ROOT UVB SENSITIVE4 Disrupts Anther Dehiscence by Suppressing Secondary Thickening in the Endothecium. Plant Cell Physiol. doi: 10.1093/pcp/pcz127

Shu-Qing Zhao is the lead author on this China-UK collaboration that includes Alison Tidy and Zoe Wilson from the University of Nottingham. They show that using an artificial microRNA to reduce levels of the RUS4 gene in Arabidopsis causes a decline in male fertility. They perform a detailed analysis of the RUS4 expression module and how it impacts fertility.

GARNet Research Roundup: July 26th 2019

This summer-time-reading bumper edition of the GARNet Research Roundup begins with two papers from the University of Sheffield that each use advanced imaging techniques. Firstly Andrew Fleming’s group leads a study on the link between stomatal function and mesophyll space morphology. Second is a study from Matthew Johnson’s group that looks at the dynamic arrangement of thylakoid stacks.

Next are two papers that include Alison Smith from the JIC as a corresponding author. The first also includes Vasilios Andriotis from the University of Newcastle and looks at the role of the plastidial pentose phosphate pathway during post-germination growth. Second uses a gene-editing strategy to generate potatoes with altered starch morphologies.

The fifth paper also looks at starch; researchers from Cambridge and Norwich are involved in a study that characterises the role of the LIKE SEX4 1 protein in starch degradation.

The sixth paper is from Aberystwyth University and identifies a transcription factor that alters secondary cell wall composition in Brachypodium and maize. Next is research from the University of Bath that looks at the role of a protein S-acyl transferase during seed germination.

The eighth and ninth papers are led by Spanish research groups and include contributions from UK-based co-authors in Cambridge and Nottingham, working on photoperiod perception or phosphate signaling respectively.

The tenth paper features work from Cardiff University and looks at the role of heterologous expression of the Arabidopsis WEE1 protein. The Bancroft lab from the University of York leads the next paper that investigates glucosinolate signaling in Brassica napus.

The final three manuscripts are methods papers. The first from Edinburgh introduces a new NanoLUC reporter whilst the other two include techniques involved in the investigation of light-regulated growth processes.


Lundgren MR, Mathers A, Baillie AL, Dunn J, Wilson MJ, Hunt L, Pajor R, Fradera-Soler M, Rolfe S, Osborne CP, Sturrock CJ, Gray JE, Mooney SJ, Fleming AJ (2019) Mesophyll porosity is modulated by the presence of functional stomata. Nat Commun. doi: 10.1038/s41467-019-10826-5

Open Access

This UK-wide study is led from Andrew Fleming’s lab in Sheffield and includes Marjorie Lundgren as first author (now working in Lancaster). They use microCT imaging alongside more traditional measurements linked to analysis of gas exchange to show that mesophyll airspace formation is linked to stomatal function in both Arabidopsis and wheat. This allows the authors to propose that coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops.

https://www.nature.com/articles/s41467-019-10826-5

Wood WH, Barnett SFH, Flannery S, Hunter CN, Johnson MP (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with photosystem I. Plant Physiol. doi: 10.1104/pp.19.00503

Open Access

William Wood is the first author on this study from the University of Sheffield that uses 3D structured illumination microscopy (3D-SIM) to look at the dynamics of thylakoid stacking in both Arabidopsis and spinach. They show that the processes they observe are dependent on light harvesting complex II phosphorylation.

http://www.plantphysiol.org/content/early/2019/06/11/pp.19.00503.long

Andriotis VME, Smith AM (2019) The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1908556116

Open Access

Vasilios Andriotis (now at the University of Newcastle) is the lead author of this work performed in Alison Smith’s lab at the JIC. They look at the role of the plastidial oxidative pentose phosphate pathway (OPPP) during embryo development. This involved demonstrating that production of ribose-5-phosphate (R5P), which in turn leads to synthesis of purine nucleotides, is a critical function of the OPPP.


Tuncel A, Corbin KR, Ahn-Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol J. doi: 10.1111/pbi.13137

Open Access

Alison Smith and Nicola Patron who work in Norwich Research Park are corresponding authors of this study that includes Aytug Tuncel as first author. They have used Cas9-mediated gene editing to generate potato plants that have a range of different tuber starch structures. This shows that gene-editing techniques allows the transgene-free alteration to generate potentially healthier crops.


Schreier TB, Umhang M, Lee SK, Lue WL, Shen Z, Silver D, Graf A, Müller A, Eicke S, Stadler M, Seung D, Bischof S, Briggs SP, Kötting O, Moorhead GB, Chen J, Zeeman SC (2019) LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation. Plant Cell. doi: 10.1105/tpc.19.00089

Open Access

Tina Schreier from the University of Cambridge is the first author on this international study led from Switzerland that also includes Alexander Graf and David Seung from the JIC as co-authors. This study defines a precise role for the LIKE SEX FOUR 1 (LSF1) protein that binds starch and is required for normal starch degradation. Through a variety of experiments they show that the glucan binding, rather than phosphatase activity, is required for LSF1 function during starch degradation.


Bhatia R, Dalton S, Roberts LA, Moron-Garcia OM, Iacono R, Kosik O, Gallagher JA, Bosch M (2019) Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Sci Rep. doi: 10.1038/s41598-019-45225-9

Open Access

Rakesh Bhatia is the first author on this work from the lab of Maurice Bosch at Aberystwyth University. They overexpress the maize MYB transcription factor ZmMYB167 in both Brachypodium and maize. Both species show increased lignin content with Brachypodium but not maize showing a biomass deficit. This indicates that ZmMYB167 could be a useful molecular tool for the alteration of secondary cell wall biosynthesis.

https://www.nature.com/articles/s41598-019-45225-9

Li Y, Xu J, Li G, Wan S, Batistic O, Sun M, Zhang Y, Scott R, Qi B (2019) Protein S-acyl Transferase 15 is Involved in Seed Triacylglycerol Catabolism during Early Seedling Growth in Arabidopsis (2019) J Exp Bot. doi: 10.1093/jxb/erz282

First author on this UK-Chinese collaboration is Yaxiao Li who works with Baoxiu Qi at the University of Bath. The authors characterise the function of Arabidopsis Protein Acyl Transferase 15, AtPAT15. This protein is involved in essential β-oxidation of triacylglycerols during post-germination growth.


Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao M, Jaeger KE, Wigge PA, Allona I, Perales M (2019) LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Curr Biol. doi: 10.1016/j.cub.2019.06.003

Open Access

This Spanish-led study includes co-authors from the Sainsbury Laboratory in Cambridge and attempts to define the factors that control photoperiod perception in trees, using poplar as a model system. FLOWERING LOCUS T2 (FT2) has been previously shown to be involved in this process and this study builds on that work to show that night-length information is transmitted by the clock gene LATE ELONGATED HYPOCOTYL 2 (LHY2) and is able to control FT2 expression.

https://www.cell.com/current-biology/fulltext/S0960-9822(19)30696-7?

Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, Del Pozo JC (2019) Role of cis-zeatin in root responses to phosphate starvation. New Phytol. doi: 10.1111/nph.16020

Ranjan Swarup from the University of Nottingham is a co-author on this Spanish-led study that has Javier Silva-Navas as first author. Through analysis of dark-grown seedlings they have identified a set of new genes involved in root phosphate signaling. In addition they provide evidence of a links between cytokinin and phosphate signaling through modulation of the cell cycle.


Siciliano I, Lentz Grønlund A, Ševčíková H, Spadafora ND, Rafiei G, Francis D, Herbert RJ, Bitonti MB, Rogers HJ, Lipavská H (2019) Expression of Arabidopsis WEE1 in tobacco induces unexpected morphological and developmental changes. Sci Rep. 2019 Jun 18;9(1):8695. doi: 10.1038/s41598-019-45015-3

Open Access

Ilario Siciliano leads this work that includes colleagues from Hilary Rogers’ lab at Cardiff University. The WEE1 protein regulates the cell cycle across eukaryote lineages. In this work they show that overexpression of AtWEE1 in tobacco causes precocious flowering and increased shoot morphogenesis of stem explants whilst in cell culture this WEE1 OX causes smaller cell sizes.


Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I (2019) Genetic architecture of glucosinolate variation in Brassica napus. J Plant Physiol. doi: 10.1016/j.jplph.2019.06.001

Open Access

This study from the Bancroft lab at the University of York is led by Varanya Kittipol. Through use of Associative Transcriptomics (AT) across a diversity panel of 288 Brassica napus genotypes they are able to identify a set of genes involved in synthesis of glucosinate hydrolysis products.


Urquiza-García U, Millar AJ (2019). Expanding the bioluminescent reporter toolkit for plant science with NanoLUC. Plant Methods. doi: 10.1186/s13007-019-0454-4

Open Access

This study from the University of Edinburgh introduces NanoLUC, a new more stable luciferase-based reporter for use by the plant community.

The final two papers are methods papers that focus on different aspects of light-regulated growth. These are from the University of Southampton and University of York.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0454-4

Terry MJ, Kacprzak SM (2019) A Simple Method for Quantification of Protochlorophyllide in Etiolated Arabidopsis Seedlings. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_14

Oakenfull RJ, Ronald J, Davis SJ (2019) Measuring Phytochrome-Dependent Light Input to the Plant Circadian Clock. Methods Mol Biol. doi: 10.1007/978-1-4939-9612-4_15

GARNet Research Roundup: June 12th 2019

In another big edition of the GARNet Research Roundup we cover many different areas of research that utilise a varied group of experimental organisms!

The first paper from the Feng lab at the John Innes Centre performs an assessment of the factors influencing heterochromatin activity in sperm companion cells. Second is work from the JIC and Cardiff University that looks at the role of an auxin minima during fruit valve margin differentiation.

The next two papers have authors from Edinburgh. Firstly the McCormick lab has developed a stereo-based 3D imaging system for plants while Steven Spoel is a co-author on a study that looks at the pathogen responsive gene NPR1.

Coming from across the M8 is a paper from the Christie lab in Glasgow that looks into using phototropin genes as potential targets for crop improvement.

The next paper is from Oxford Brookes University where they visualise the movement of protein nanodomain clusters within the plasma membrane. Elsewhere in Oxford is a paper from the van der Hoorn group that characterises the effect of a novel triazine herbicide.

Two papers from the University of Durham also identify and characterise the role of novel herbicides, in this case on the activity of inositol phosphorylceramide synthases.

The final five papers feature research that each use different experimental organisms. Firstly a paper from the Earlham Institute uses delayed fluorescence to investigate the circadian clock in wheat and OSR. Second is a paper from Warwick that assesses the role of nodulation during nitrogen uptake in Medicago. The next paper features the Yant lab at University of Nottingham looks at growth of two species of Arabidopsis in challenging environments.

The penultimate paper includes authors from the University of Oxford and provides a detailed analysis of the factors controlling leaf shape in Cardamine and Arabidopsis thaliana. The final paper uses the imaging facility at the Hounsfield facility in Nottingham to image the roots of date palms.


He S, Vickers M, Zhang J, Feng X (2019) Natural depletion of H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. Elife. doi: 10.7554/eLife.42530

Open Access

Lead author on his paper is Shengbo He from Xiaoqi Feng’s lab at the John Innes Centre. This work looks at activation of Transposable elements (TEs) in the sperm companion cell of Arabidopsis. This is catalyzed by the DEMETER-catalyzed DNA demethylation in regions depleted of histone H1, demonstrating a key role for H1 in determining heterochromatin activity.

https://elifesciences.org/articles/42530

Li XR, Vroomans RMA, Fox S, Grieneisen VA, Østergaard L, Marée AFM (2019) Systems Biology Approach Pinpoints Minimum Requirements for Auxin Distribution during Fruit Opening. Mol Plant. doi: 10.1016/j.molp.2019.05.003

Open Access

Xin-Ran Li and Renske Vroomans are co-lead authors on this work from the Ostergaard, Grieneisen and Maree labs from the John Innes Centre and (now) Cardiff University.They look at the role of an auxin minima in the control of valve margin differentiation in Arabidopsis fruit. They used a cycle of experimental-modeling to develop a model that predicts the maturation of the auxin minimum to ensure timely fruit opening and seed dispersal.


Bernotas G, Scorza LCT, Hansen MF, Hales IJ, Halliday KJ, Smith LN, Smith ML, McCormick AJ (2019) A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. Gigascience. doi: 10.1093/gigascience/giz056

Open Access

Gytis Bernotas from UWE and Livia Scorza from the McCormick lab at the University of Edinburgh lead this work that is the result of a 2+ year collaboration with the Melvyn Smith and others at the Computer Machine Vision (CMV) facility at UWE. The authors have developed hardware and software (including a deep neural network) to automate the 3D imaging and segmentation of rosettes and individual leaves using a photometric stereo approach.

https://academic.oup.com/gigascience/article/8/5/giz056/5498634

Chen J, Mohan R, Zhang Y, Li M, Chen H, Palmer IA, Chang M, Qi G, Spoel SH, Mengiste T, Wang D, Liu F, Fu ZQ (2019) NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol. doi: 10.1104/pp.19.00124

GARNet chairman Steven Spoel is a co-author on this US-led study with Jian Chen as lead author. The paper investigates the interacting partners of NPR1 (NONEXPRESSER OF PR GENES 1), which is a master regulator of salicyclic signaling and therefore an important regulation of plant defense response.


Hart JE, Sullivan S, Hermanowicz P, Petersen J, Diaz-Ramos LA, Hoey DJ, Łabuz J, Christie JM (2019) Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1902915116

Open Access

Jaynee Hart is first author on this research from Christie lab at the University of Glasgow in which they target the phototropin blue light receptor as a candidate for crop improvement. They showed plants that engineered to have a slow-photocycling version of PHOT1 or PHOT2 had increased biomass under low light conditions, due to their increased sensitivity to low light.


McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW, Martin-Fernandez ML, Hawes C, Runions J (2019) The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1819077116

Open Access

Joe McKenna from Oxford Brookes University leads this work that takes advantage of their superb imaging facilities to assess the dynamic regulation of specific protein clusters in the Arabidopsis plasma membrane. They show that the cytoskeleton (both actin and microtubule) and the cell wall play roles in the control of intra-PM moment of the pathogen receptor FLS2 and the auxin transporter PIN3.

https://www.pnas.org/content/early/2019/06/07/1819077116

Morimoto K, Cole KS, Kourelis J, Witt CH, Brown D, Krahn D, Stegmann M, Kaschani F, Kaiser M, Burton J, Mohammed S, Yamaguchi-Shinozaki K, Weerapana E, van der Hoorn RAL (2019) Triazine probes targeting ascorbate peroxidases in plants. Plant Physiol. doi: 10.1104/pp.19.00481

Open Access

Kyoko Morimoto is first author on this UK-German-Japanese collaboration led from the lab of GARNet committee member Renier van der Hoorn. They characterise the herbicidal effect of the small 1,3,5-triazine KSC-3 on ascorbate peroxidases (APXs) across a range of plant species.


Pinneh EC, Stoppel R, Knight H, Knight MR, Steel PG, Denny PW (2019) Expression levels of inositol phosphorylceramide synthase modulate plant responses to biotic and abiotic stress in Arabidopsis thaliana. PLoS One. doi: 10.1371/journal.pone.0217087

Open Access

Pinneh EC, Mina JG, Stark MJR, Lindell SD, Luemmen P, Knight MR, Steel PG, Denny PW (2019) The identification of small molecule inhibitors of the plant inositol phosphorylceramide synthase which demonstrate herbicidal activity. Sci Rep. doi: 10.1038/s41598-019-44544-1

Open Access

Elizabeth Pinneh leads these two papers from the Denny lab in Durham. In the first paper they use RNAseq data and analysis of overexpression transgenic lines to define the role of inositol phosphorylceramide synthase (IPCS) during abiotic and biotic stress responses.

Secondly they screened a panel of 11000 compounds for their activity against the AtIPCS2 in a yeast two-hybrid assay. Successful hits from the screen were confirmed with in vitro enzyme assays and in planta against Arabidopsis.


Rees H, Duncan S, Gould P, Wells R, Greenwood M, Brabbs T, Hall A (2019) A high-throughput delayed fluorescence method reveals underlying differences in the control of circadian rhythms in Triticum aestivum and Brassica napus. Plant Methods. doi: 10.1186/s13007-019-0436-6

Open Access

Hannah Rees from Anthony Hall’s lab at the Earlham Institute leads this methods paper that introduces the use of delayed fluorescence to investigate the circadian rhythms in wheat and oil seed rape.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0436-6

Lagunas B, Achom M, Bonyadi-Pour R, Pardal AJ, Richmond BL, Sergaki C, Vázquez S, Schäfer P, Ott S, Hammond J, Gifford ML (2019) Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula. Mol Plant. doi: 10.1016/j.molp.2019.03.014

Open Access

Beatriz Lagunas is lead author on this paper from the University of Warwick that investigates the role of nodulation in actual nitrogen uptake by the roots of Medicago truncatula. They use integrated molecular and phenotypic analysis to determine that the respond to nitrogen flux are processed on a whole plant level through multiple developmental processes.

https://www.cell.com/molecular-plant/fulltext/S1674-2052(19)30127-3?

Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L (2019) Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2018.0243

Open Access

Veronica Preite is first author on this UK-German collaboration led by Ute Kraemer and Levi Yant in Nottingham. They performed whole genome resequenced of 64 individuals of two Arabidopsis species that grow on calamine metalliferous sites (which have toxic levels of the zinc and cadmium). They revealed a modest amount of gene and network convergence in plants that have colonised these challenging environments.


Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska AL, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith RS, Tsiantis M (2019) A Growth-Based Framework for Leaf Shape Development and Diversity. doi: 10.1016/j.cell.2019.05.011

Open Access

Claudia Canales and Carla Galinha from Oxford are co-authors on this German-led study from Miltos Tsiantis’ lab that performs a detailed dissection of the growth parameters that control differences in leaf-shape in Cardamine and Arabidopsis. They show critical roles for the SHOOTMERISTEMLESS and REDUCED COMPLEXITY homeobox proteins to define differences in shape determination.


Xiao T, Raygoza AA, Pérez JC, Kirschner G, Deng Y, Atkinson B, Sturrock C, Lube V, Wang JY, Lubineau G, Al-Babili S, Ramírez LAC, Bennett MJ, Blilou I (2019) Emergent Protective Organogenesis in Date Palms: A Morpho-devo-dynamic Adaptive Strategy During Early Development. Plant Cell. doi: 10.1105/tpc.19.00008

Open Access

Members of the Hounsfield CT Imaging Facility 
at the University of Nottingham are co-authors on this paper that is led by Tingting Xiao from KAUST in Saudi Arabia. The paper takes a detailed look at root morphology in Date Palm.

GARNet Research Roundup: May 27th 2019

This bumper edition of the GARNet research roundup begins with a set of papers from the John Innes Centre. Anne Osbourn’s group is involved with two papers; firstly they discover how altering metabolic networks in the Arabidopsis root can cause changes in the associated microbiota. Second they characterise the role of a light-induced transcription factor in Artemisia. Next Caroline Dean’s group leads a global consortium that investigates the role of liquid-liquid phase separation in the formation of nuclear bodies. The final paper from the JIC is from Philippa Borrill and Cristobal Uauy, in which they identify novel transcription factors in wheat.

The fourth paper is led by Peter Etchells at Durham and characterises receptor kinase activity involved in vascular patterning in Arabidopsis.

The next two papers focus on stomatal patterning; firstly Julie Gray’s group at Sheffield looks at the stomatal responses to long-term pathogen infections. The second paper is from Glasgow and describes improvements in the OnGuard2 software, which models the factors controlling stomatal density.

Jose Gutierrez-Marcos is a co-author on a paper that uses FACS/ATAC-seq to define chromatin changes within cells of the shoot apical meristem. Richard Harrison leads the next paper that is also method-focused; describing use of CRISPR-Cas9 gene editing in Strawberry.

Andrew Miller at the University of Edinburgh is the corresponding author of the penultimate paper, which presents a whole-life-cycle, multi-model Framework that links many aspects of the Arabidopsis life cycle. The final paper is Seth Davies’s group at York and investigates the role of sucrose in the control of the circadian clock.


Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science. doi: 10.1126/science.aau6389

Ancheng Huang and Ting Jiang are first authors on this UK, Chinese and Belgian collaboration led by Anne Osbourn at the John Innes Centre. They reconstitute three biosynthesic pathways in the Arabidopsis roots and show how this affects the associated microbiota.


Hao X, Zhong Y, Nützmann HW, Fu X, Yan T, Shen Q, Chen M, Ma Y, Zhao J, Osbourn A, Li L, Tang K (2019) Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol. doi: 10.1093/pcp/pcz084

Anne Osbourn is a co-author on this Chinese-led study that has identified that the basic leucine zipper transcription factor (TF) AaHY5 regulated of light-induced biosynthesis of artemisinin in Artemisia annua.


Fang X, Wang L, Ishikawa R, Li Y, Fiedler M, Liu F, Calder G, Rowan B, Weigel D, Li P, Dean C (2019) Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature. doi: 10.1038/s41586-019-1165-8

Xiaofeng Fang, Liang Wang and Ryo Ishikawa are first authors of this UK, German and Chinese collaboration led by Caroline Dean’s lab at the John Innes Centre. They characterise the molecular factors that are required for the formation of nuclear bodies through liquid-liquid phase separation (PDF). These proteins are the Arabidopsis RNA-binding protein FCA and the coiled-coil protein FLL2.

From https://www.nature.com/articles/s41586-019-1165-8

Borrill P, Harrington SA, Simmonds J, Uauy C (2019) Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiol. doi: 10.1104/pp.19.00380

Open Access

Philippa Borrill, now a faculty member at the University of Birmingham, conducted this work with Cristobal Uauy at the John Innes Centre. They have developed a range of research tools for use in wheat and this paper describes the identification of novel transcription factors involved in senescence.


Wang N, Bagdassarian KS, Doherty RE, Kroon JT, Connor KA, Wang XY, Wang W, Jermyn IH, Turner SR, Etchells JP (2019) Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development. doi: 10.1242/dev.177105

Ning Wang works with Peter Etchells at Durham University where they have characterised the interactions between the receptor kinase gene families that regulate radial patterning in the development of vascular tissue.


Dutton C, Hõrak H, Hepworth C, Mitchell A, Ton J, Hunt L, Gray JE (2019) Bacterial infection systemically suppresses stomatal density. Plant Cell Environ. doi: 10.1111/pce.13570

Christian Dutton leads this work conducted at the University of Sheffield. They have investigated the longer-term systemic response to the presence of pathogens that involves reducing stomatal density. This process is mediated via salicylic acid signaling and slows disease progression.

From https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13570

Jezek M, Hills A, Blatt MR, Lew VL (2019) A constraint-relaxation-recovery mechanism for stomatal dynamics. Plant Cell Environ. doi: 10.1111/pce.13568

Mareike Jezek leads this work from the University of Glasgow in which they have updated the OnGuard2 modelling software that has demonstrated substantial predictive power to describe stomatal dynamics. Their improvements allow for the development of models that are more similar to in vivo observations.


Frerichs A, Engelhorn J, Altmüller J, Gutierrez-Marcos J, Werr W (2019) Specific chromatin changes mark lateral organ founder cells in the Arabidopsis thaliana inflorescence meristem. J Exp Bot. doi: 10.1093/jxb/erz181

Jose Gutierrez-Marcos from the University of Warwick is a co-author on this German study led by Anneke Frerichs in which they analysed the chromatin state of lateral organ founder cells (LOFCs) in the peripheral zone of the Arabidopsis inflorescence meristem in wildtype and apetala1-1 cauliflower-1 double mutants. Importantly they showed that the combined application of FACS/ATAC-seq is able to detect chromatin changes in a cell-type specific manner.


Wilson FM, Harrison K, Armitage AD, Simkin AJ, Harrison RJ (2019) CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods. doi: 10.1186/s13007-019-0428-6. eCollection 2019

Open Access

This paper is lead by Fiona Wilson at NIAB-EMR in which they present their methods to undertake gene editing in the challenging experimental system of diploid and octoploid strawberries.

From https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0428-6

Zardilis A, Hume A, Millar AJ (2019) A multi-model framework for the Arabidopsis life cycle. J Exp Bot. doi: 10.1093/jxb/ery394

Open Access

Argyris Zardilis conducted this modeling-focussed research at University of Edinburgh. The authors present a whole-life-cycle, multi-model Framework that links vegetative, inflorescence as fruit growth as well as seed dormancy in Arabidopsis. This Framework allows the authors to simulate at the population level in various genotype × environment scenarios.

From https://academic.oup.com/jxb/article/70/9/2463/5336616

Philippou K, Ronald J, Sánchez-Villarreal A, Davis AM, Davis SJ (2019) Physiological and Genetic Dissection of Sucrose Inputs to the Arabidopsis thaliana Circadian System. Genes (Basel). doi: 10.3390/genes10050334

Open Access

Koumis Philippou from Seth Davis’ research group the University of York leads this work that investigates the role of sucrose into the function of the circadian clock.

GARNet Research Roundup: December 21st 2018

This bumper Festive Edition of the GARNet Research Roundup begins with two papers that have Beatriz Orosa-Puente as lead author following her work on SUMOylation with Ari Sadanandom at Durham. These papers looks at the role of SUMOylation in either auxin-mediated hydropatterning or in the defence response. Malcolm Bennett at Nottingham is a co-author on both papers and provided an audio description of the auxin-focused paper on the GARNet YouTube channel.

The next three papers are from the University of Edinburgh, the first that defines the role of HECT ubiquitin ligases in the defence response, the second that conducts a proteomic analysis of the GIGANTEA-interactome and the third that introduces a set of new tools for inducible gene expression in Arabidopsis roots.

The sixth and seventh papers feature authors from the John Innes Centre. Martin Howard and Caroline Dean are corresponding authors on a multi-scale analysis of the factors that control FLC expression whilst Myriam Charpentier’s lab has contributed to an investigation about LINC complexes in Medicago.

David Salt and Levi Yant from Nottingham lead the next paper that provides an analysis of the genetic determinants of adaptation to different salt conditions.

The final three papers are from Cambridge. Firstly Ian Henderson is the corresponding author on work that looks at crossover rates in specific disease resistance loci. Second is work from the Paszkowski lab at SLCU that introduces a new method for the analysis of active retrotransposons in crop plants whilst finally James Locke, also at SLCU, uses the method of distributed delays to simplify the complexity of biological network models.


Orosa-Puente B, Leftley N, von Wangenheim D, Banda J, Srivastava AK, Hill K, Truskina J, Bhosale R, Morris E, Srivastava M, Kümpers B, Goh T, Fukaki H, Vermeer J, Vernoux T, Dinneny JR, French AP, Bishopp A, Sadanandom A , Bennett MJ (2018) Roots branch towarss water by post-translational modification of the transcription factor ARF7 Science DOI: 10.1126/science.aau3956

Orosa B, Yates G, Verma V, Srivastava AK, Srivastava M, Campanaro A, De Vega D, Fernandes A, Zhang C, Lee J, Bennett MJ, Sadanandom A (2018) SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nat Commun. doi: 10.1038/s41467-018-07696-8 Open Access

http://science.sciencemag.org/content/362/6421/1407

Beatriz Orosa-Puente is the lead author on two publications that have arisen from a collaboration between the labs of Ari Sadanandom at Durham and Malcolm Bennett at Nottingham. In the first paper Beatriz is co-first author with Nicola Leftley and Daniel von Wangenheim in research that links the auxin response, SUMOylation and the search for water. They reveal a novel mechanism for controlling the auxin response in which SUMOylation regulates the interaction between the ARF7 and IAA3 proteins. In turn this controls asymmetric expression of genes downstream of ARF7 and determines how different parts of the root response to the presence or absence of water.

The second paper continues with the Sadanandom lab’s focus on SUMOylation, in this case during control of the defence response. They show that SUMO is conjugated to the FLAGELLIN-SENSITIVE 2 (FLS2) receptor that senses bacterial flagellin. This releases downstream cytoplasmic effectors and enhances the immune response. The authors show that there is additional complexity to this system by also showing that flagellin induces degradation of the deSUMOylating enzyme Desi3a, thus allowing the plant to make a stronger immune response.


Furniss JJ, Grey H, Wang Z, Nomoto M, Jackson L, Tada Y, Spoel SH (2018) Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity. PLoS Pathog. doi: 10.1371/journal.ppat.1007447 Open Access

James Furniss is the lead author on this paper from the lab of current GARNet Chairman Steven Spoel at the University of Edinburgh. They show that a family of HECT domain-containing ubiquitin protein ligases (UPLs) are involved in defence responses mediated by the hormone salicylic acid (SA). Upl3 mutants show reprogramming of the entire SA transcriptional response and they are unable to establish immunity against a hemi-biotrophic pathogen, demonstrating their key role in this important process.


https://febs.onlinelibrary.wiley.com/doi/abs/10.1002/1873-3468.13311

Krahmer J, Goralogia GS, Kubota A, Zardilis A, Johnson RS, Song YH, MacCoss MJ, LeBihan T, Halliday KJ, Imaizumi T, Millar AJ (2018) Time-resolved Interaction Proteomics of the GIGANTEA Protein Under Diurnal Cycles in Arabidopsis. FEBS Lett. doi: 10.1002/1873-3468.13311 Open Access

This paper is a collaboration between researchers in Edinburgh and Seattle for which Johanna Krahmer is lead author. They used a proteomic approach to identify proteins that interacted with a tagged-version of the key circadian regulator GIGANTEA. They successfully identified the novel transcription factor CYCLING DOF FACTOR (CDF)6. CDF6 was confirmed as interacting with GI and playing a role in the control of flowering. The time series of proteomic data produced in this study is available for use by any other interested researcher.

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD006859


Machin FQ, Beckers M, Tian X, Fairnie A, Cheng T, Scheible WR, Doerner P (2018) Inducible reporter/driver lines for the Arabidopsis root with intrinsic reporting of activity state. Plant Journal. doi: 10.1111/tpj.14192

Frank Qasim Machin is the lead author on this Technical Advance from Peter Doerner’s lab at the University of Edinburgh. They have developed a Gateway-based system for tightly controlled inducible expression across all the major cell types of the Arabidopsis roots. They have fully characterised reference driver lines that can be adapted for specific experimental requirements and hope that this contributes towards enhancing reproducibility of qualitative and quantitative analyses.


https://www.sciencedirect.com/science/article/pii/S2405471218304368?via%3Dihub

Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, Säll T, Holm S, Dean C, Howard M (2018) Temperature Sensing Is Distributed throughout the Regulatory Network that Controls FLC Epigenetic Silencing in Vernalization. Cell Syst. doi: 10.1016/j.cels.2018.10.011 Open Access

This work results from the successful collaboration between Caroline Dean and Martin Howard at the John Innes Centre and includes Rea Antoniou-Kourounioti and Jo Hepworth as co-first authors. They attempt to understand how the upregulation of VERNALIZATION INSENSITIVE3 (VIN3) and silencing of FLOWERING LOCUS C (FLC) is controlled during fluctuating temperatures over month-long time scales. They develop a mathematical model that integrates information from hour, day and month-long datasets to show that temperature is sensed across the entire regulatory network and not focussed on specific nodes. This allows a final effect to only be realised once all parts of the network have been appropriately changed. This model with matches new field data and therefore represents a predictive tool for the effects of climate change on plant growth.


Newman-Griffis AH, Del Cerro P, Charpentier M, Meier I (2018) Medicago LINC complexes function in nuclear morphology, nuclear movement, and root nodule symbiosis Plant Physiol. http://www.plantphysiol.org/content/early/2018/12/10/pp.18.01111 Open Access
Pablo del Cerro and Myriam Charpentier at the John Innes Centre are co-authors on this paper from Iris Meier’s lab at The Ohio State University. They identify and characterise the Linker of Nucleoskeleton and Cytoskeleton (LINC) family of nucleus-membrane-associated proteins. They show that, as in Arabidopsis, these proteins are required for nucleus movement in the root tip cells of Medicago truncatula and that they are an important contributor to nodulation. Both Iris and Myriam are members of the INDEPTH consortium that includes researchers who study this broad area of plant cell biology.


https://www.pnas.org/content/early/2018/12/11/1816964115.long

Busoms S, Paajanen P, Marburger S, Bray S, Huang XY, Poschenrieder C, Yant L, Salt DE (2018) Fluctuating selection on migrant adaptive sodium transporter alleles in  coastal Arabidopsis thaliana. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1816964115 Open Access

This UK-Sino-Spanish collaboration is led by David Salt and Levi Yant at the University of Nottingham. Silvia Busoms is the first author on the study that investigates the genetics of adaptive salt tolerance in a cohort of 77 individuals grown across a salinity gradient in a coastal region of Catalonia. By integrating their data with the 1135 genomes project they are able to trace the ancestry of these populations and define that growth in high salt conditions is associated with increased expression of the high-affinity K+ transporter (HKT1;1). This demonstrates that this gene plays a key role in the adaptation to salt stress.


Serra H, Choi K, Zhao X, Blackwell AR, Kim J, Henderson IR. Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes (2018) PLoS Genet. doi: 10.1371/journal.pgen.1007843 Open Access

This UK-Korean collaboration is led by the Heidi Serra and Ian Henderson at the University of Cambridge. They mapped the meiotic crossover hotspots that are located within the RAC1 and RPP13 disease resistance genes in Arabidopsis. They assessed these locations in plants with altered recombination rates and surprisingly showed that these effects have little impact at the RAC1 loci. Therefore they show that chromosome location and local chromatin environment are important for regulation of crossover activity. Overall they demonstrate that interhomolog divergence is important in shaping recombination within plant disease resistance genes and crossover hotspots.


Cho J, Benoit M, Catoni M, Drost HG, Brestovitsky A, Oosterbeek M, Paszkowski J (2018) Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. Nat Plants. doi: 10.1038/s41477-018-0320-9

Open Access with link: rdcu.be/bdLjy

For the second edition in succession, the GARNet research roundup features work from Jerzy Paszkowski’s lab at SLCU. In this case Jungnam Cho is lead author on work that has developed a new technique called ALE-seq (amplification of LTR of eclDNAs followed by sequencing) for analysis of transposon-rich genomes from crop plants. Through characterisation of extrachromosomal linear DNA (eclDNA), ALE-seq allows the identification of active transposons. The authors use this technique in both rice and tomato and successfully identify a set of developmentally regulated transposable elements. This paper includes details of a bioinformatic pipeline that is adapted for ALE-seq data analyses, the scripts for which are available on GitHub.


Tokuda IT, Akman OE, Locke JCW. Reducing the Complexity of Mathematical Models for the Plant Circadian Clock by Distributed Delays (2018) J Theor Biol. doi: 10.1016/j.jtbi.2018.12.014

This UK-Japanese study includes James Locke at SLCU as corresponding author. They address the challenge of integrating an increasing number of parameters into large biological network models. Their system of study is the Arabidopsis circadian clock and they use the method of distributed delays to simplify the complexity of existing models. They demonstrate this effect by updating a model that explains the regulation of the PRR9 and PRR7 genes by LHY. They use recent experimental data and revise the previous model to show that it is more accurately reproduces the LHY-induction experiments of core clock genes. As stated they show that overall use of distributed delays facilitates the optimisation and reformulation of genetic network models.

GARNet Research Roundup: October 10th 2018

Tags: No Tags
Comments: No Comments
Published on: October 10, 2018

This edition of the GARNet research roundup begins with a paper from Jose Gutierrez-Marcos’ lab in Warwick that investigates the functional significance of inherited epigenetics marks in clonally propagated plants. Second is work from Sara Simonini and Lars Ostergaard (John Innes Centre) that defines a domain in the ETTIN protein important for the auxin response. Next is work from SLCU from Siobhan Braybrook and Henrik Jonsson that experimentally defines and models the role of cell wall composition in anisotropic hypocotyl growth. The fourth paper is from Jonathan Jones’ lab (TSL, Norwich) that adds to our understanding of the activity of the RRS1-R-RPS4 NLR immune complex.

The final three papers are each from the University of Edinburgh and look at different aspects of the relationship between light quality and the circadian clock. First is a paper from Karen Halliday’s lab that investigates the role of PHYA; next Andrew Millar is a co-author on a manuscript that looks at control of FT expression during seasonally realistic conditions. Finally Ference Nagy and Mirela Domijan (University of Liverpool) co-author a paper that assesses the role of HY5 in the response to blue-light.


Wibowo A, Becker C, Durr J, Price J, Spaepen S, Hilton S, Putra H, Papareddy R, Saintain Q, Harvey S, Bending GD, Schulze-Lefert P, Weigel D, Gutierrez-Marcos J (2018) Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc Natl Acad Sci U S A doi: 10.1073/pnas.1805371115

http://www.pnas.org/content/early/2018/09/06/1805371115.long

Open Access
Anjar Wibowo and Claude Becker are first authors on this UK-German collaboration from the labs of Jose Gutierrez-Marcos (University of Warwick) and Detlef Weigel (Max Planck Institutem, Tübingen). In this work they clonally propagate Arabidopsis and show that organ-specific epigenetic marks are maintained across generations. Interestingly these changes are then maintained through multiple rounds of sexual reproduction. These epigenetic marks provide heritable molecular and physiological phenotypes that can alter the response to pathogens, allowing progeny to maintain a beneficial epigenome that was generated in their parents.


Simonini S, Mas PJ, Mas CMVS, Østergaard L, Hart DJ (2018) Auxin sensing is a property of an unstructured domain in the Auxin Response Factor ETTIN of Arabidopsis thaliana. Sci Rep. doi: 10.1038/s41598-018-31634-9

https://www.nature.com/articles/s41598-018-31634-9

Open Access

This UK-France collaboration is led by Sara Simonini from the John Innes Centre and continues the Ostergaard lab’s work on the role of the auxin response factor ETTIN in the auxin response. In this paper they analyse the C-terminal ETT specific domain (ES domain) across plant lineages, showing that it does not directly bind auxin but could functional response to a dose response of auxin in a Y2H assay. Understanding more about this ES domain will increase our understanding of auxin sensing by ETTIN and more broadly about auxin-dependent gene regulation.


Bou Daher F, Chen Y, Bozorg B, Clough J, Jönsson H, Braybrook SA. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. Elife.  doi: 10.7554/eLife.38161

https://elifesciences.org/articles/38161

Open Access

Firas Bou Daher is the first author on work from Siobhan Braybrook’s lab conducted both in the Sainsbury Lab Cambridge University and at its new home in California. In this work they look at anisotropic growth in the Arabidopsis hypocotyl and the relationship between cellulose orientation and pectin deposition in the control of this process. They provide experimental evidence that growth parameters are influenced by pectin biochemistry in processes that begin immediately after germination.


Ma Y, Guo H, Hu L, Martinez PP, Moschou PN, Cevik V, Ding P, Duxbury Z, Sarris PF, Jones JDG (2018) Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1811858115

Yan Ma and Hailong Guo are lead authors on this study from Jonathan Jones’ lab at The Sainsbury Lab, Norwich. They perform a detailed examination of the RRS1-R-RPS4 NLR protein complex, which is necessary to respond to at the bacterial effectors, AvrRps4 and PopP2. Deletion of a WRKY transcription factor domain in the RRS1-R protein causes constitutive activation of the defense response, indicating that this domain maintains the complex in an inactive state in the absence of pathogens. Indeed AvrRps4 does interact with this WRKY domain but interestingly PopP2 activation requires interaction with a longer C-terminal extension of RRS1-R. This demonstrates that although these bacterial effectors are recognised by the same complex the interactions occurs in a subtly but functionally distinct ways.


Seaton DD, Toledo-Ortiz G, Ganpudi A, Kubota A, Imaizumi T, Halliday KJ (2018) Dawn and photoperiod sensing by phytochrome A. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1803398115

Open Access

This research from Karen Halliday’s lab in Edinburgh is led by Daniel Seaton and provided a detailed assessment of the role of phytochrome A (phyA) in photoperiod sensing, which is defined as the relationship between the circadian clock and external light signals. They show that PHYA activity, controlled by the transcription factors, PIF4 and PIF5, is a key regulator of morning activity, particularly in short photoperiods. PHYA protein accumulates during the night and responds to light by promoting a burst of gene expression that prepares the plant for the upcoming daylight and places this light receptor as a key detector of dawn.


Song YH, Kubota A, Kwon MS, Covington MF, Lee N, Taagen ER, Laboy Cintrón D, Hwang DY, Akiyama R, Hodge SK, Huang H, Nguyen NH, Nusinow DA, Millar AJ, Shimizu KK, Imaizumi T (2018) Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat Plants. doi: 10.1038/s41477-018-0253-3

Andrew Millar is a co-author on this US-led paper that investigates the circadian regulation of the Arabidopsis florigen gene FLOWERING LOCUS T (FT) within an annual context, showing that during the spring FT shows a morning peak is absent in their usual lab experiments. By adjusting growth-room conditions to mimic natural seasonal variations they show that phytochrome A and EARLY FLOWERING 3 regulate morning FT expression by stabilizing the CONSTANS protein. This manuscript highlights the importance of providing seasonal-specific conditions in order to understand field-relevant regulation of plant growth.


Hajdu A, Dobos O, Domijan M, Bálint B, Nagy I, Nagy F, Kozma-Bognár L. ELONGATED HYPOCOTYL 5 mediates blue light signalling to the Arabidopsis circadian clock (2018) Plant J. doi: 10.1111/tpj.14106

Ferenc Nagy (University of Edinburgh) is a co-author on this Hungarian-led study that looks the effect of light quality on the function of the key signaling hub transcription factor ELONGATED HYPOCOTYL 5 (HY5). They show that hy5 mutants show shorter period rhythms in blue but not in red light or darkness. Even though the pattern and level of HY5 alters its binding to downstream promotor elements, subsequent gene expression is only altered in a few genes. In collaboration with Mirela Domijan (University of Liverpool) https://www.liverpool.ac.uk/mathematical-sciences/staff/mirela-domijan/ they model this response to suggest that clock feedback mechanisms mask HY5-induced changes. Ultimately they show that HY5 is important in decoding the blue:red mix of white light and that it at least partially informs activity of the circadian oscillator.

«page 1 of 4

Follow Me
TwitterRSS
GARNetweets
November 2019
M T W T F S S
« Oct    
 123
45678910
11121314151617
18192021222324
252627282930  

Welcome , today is Tuesday, November 19, 2019