GARNet Research Roundup: July 16th

This week’s GARNet research roundup begins with a set of papers looking at aspects of the plant defence response with a focus on the cell wall. Firstly work from Mike Deeks’ lab in Exeter assesses the role of FORMIN4 during pre-invasion cell wall apposition. Secondly Sara Pose and Paul Knox (Leeds) are involved with a study looking at how altered cell wall lignin composition alters the defense response. Finally Joe McKenna and Cyril Zipfel are co-authors on a Norwegian-led study that looks at the influence of plant cell wall integrity maintenance in immune signalling.

Relatedly is a study from the Devoto lab at RHUL looks at the role of the defence hormone methyl jasmonate in Arabidopsis cell culture.

Next are two papers that research different aspects of the plant ER. Verena Kriechbaumer (Oxford Brookes) looks at plant ER-localised Lunapark proteins whilst a study from the University of Warwick provides a preliminary structural analysis of the RTNLB13 reticulon protein.

The seventh and eight papers are involved with the plant response to different growth conditions. Research from University of Nottingham looks at the response of the cortical cell layer of the root meristem to low phosphate conditions whilst work from University of Southampton investigates the relationship between nitrate and copper signaling.

The next paper is from Emily Flashman’s lab at the University of Oxford and looks at the role of plant cysteine oxidases as oxygen sensors whilst the tenth paper features John Doonan (Aberystwyth University) as a co-author and investigates how a histone acetyltransferase affects trichome development.

Finally is a paper from Pierre Baudal and Kirsten Bomblies (John Innes Centre) that uses Arabidopsis arenosa as a model to investigate the emergence of novel flowering time alleles in populations that have colonised along railway corridors.

Sassmann S, Rodrigues C, Milne SW, Nenninger A, Allwood E, Littlejohn GR, Talbot NJ, Soeller C, Davies B, Hussey PJ, Deeks MJ (2018) An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants. Curr Biol. doi: 10.1016/j.cub.2018.05.014

Open Access

Stefan Sassmann is the lead author of this paper from Mike Deeks’s lab in Exeter. They investigate the role of the membrane-integrated FORMIN4 protein in the process of cell wall apposition, which occurs as part of the plant immune response and is dependent on actin dynamics. FORMIN4 is stably localised apart from the active traffic of the endomembrane system and removing its function compromises the defense response, presumably by altering actin distribution at sites of cell wall apposition. This work demonstrates that FORMIN4 acts as a key component of the pre-invasion defense response.

Gallego-Giraldo L, Posé S, Pattathil S, Peralta AG, Hahn MG, Ayre BG, Sunuwar J, Hernandez J, Patel M, Shah J, Rao X, Knox JP, Dixon RA (2018) Elicitors and defense gene induction in plants with altered lignin compositions. New Phytol. doi: 10.1111/nph.15258

Open Access

Sara Pose and Paul Knox (University of Leeds) are co-authors on this US-led study that investigates how lignin composition can influence the defence response. Plants with the same lignin content but changed lignin compositions show altered expression in genes involved with different arms of the defense response. This indicates that cell wall lignin composition plays a significant role in the plants ability to response to different sources of pathogen attack.

Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal. doi: 10.1126/scisignal.aao3070

Joe McKenna (Imperial College, now Oxford Brookes University) and Cyril Zipfel (The Sainsbury Laboratory, Norwich) are co-authors on this Norwegian-led study that looks at the plant cell wall integrity maintenance mechanism and how it responses to the challenges of growth, development and environmental stresses. They identified a set of receptor-like kinases that are key for the responses elicted by cell wall damage (CWD). Conversely they showed that the components of the pattern-triggered immunity (PTI) signaling pathway repress responses to CWD. This study provides insights into how cell wall responses interact with downstream gene expression changes following pathogen challenge.

Bömer M, O’Brien JA, Pérez-Salamó I, Krasauskas J, Finch P, Briones A, Daudi A, Souda P, Tsui TL, Whitelegge JP, Paul Bolwell G, Devoto A (2018) COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in Arabidopsis. Ann Bot. doi: 10.1093/aob/mcy109

Open Access

Moritz Bömer works with Alessandra Devoto at Royal Holloway University of London and leads this research that looks at the effect of MeJA treatment on growth and gene expression in Arabidopsis cell culture. They demonstrate that both MeJA treatment or COI1 overexpression causes changes in the abundance of proteins involved in cell wall loosening as well as altered levels of primary metabolites alanine, serine and succinic acid. This work demonstrates a close link between hormone signaling, the defence response and the metabolic profile of Arabidopsis cells.

Dr Devoto and her academic colleagues at RHUL are profiled in the latest GARNish newsletter available for download from the GARNet website.

Kriechbaumer V, Breeze E, Pain C, Tolmie F, Frigerio L, Hawes C (2018) Arabidopsis Lunapark proteins are involved in ER cisternae formation. New Phytol. doi: 10.1111/nph.15228

Open Access

Verena Kriechbaumer from Oxford Brookes University leads this research that investigates the in planta function of novel ER network-shaping proteins called Lunaparks (LNP). They show that these proteins localise to the entire ER network in Arabidopsis. They use confocal microscopy to show that altering the level of LNP gene expression changes ER morphology, possibly by regulating the formation of ER cisternae.

Chow M, Sklepari M, Frigerio L, Dixon AM (2018) Bacterial expression, purification and biophysical characterization of the smallest plant reticulon isoform, RTNLB13 Protein Expr Purif. doi: 10.1016/j.pep.2018.06.015

Open Access

Michael Chow worked with Lorenzo Frigerio and Ann Dixon at the University of Warwick to provide a preliminary structure and topology analysis of the plant RTNLB13 reticulon protein. This ER-associated integral membrane protein was expressed in bacteria and then a variety of analysis techniques were used to suggest that RTNLB13 has a high level of self-association and protein-membrane interactions.

Janes G, von Wangenheim D, Cowling S, Kerr I, Band L, French AP, Bishopp A (2018) Cellular Patterning of Arabidopsis Roots Under Low Phosphate Conditions Front Plant Sci. doi: 10.3389/fpls.2018.00735

Open Access

George Janes works with Anthony Bishopp at the University of Nottingham and leads this study that looks at root meristem development under low phosphate conditions. They show that in phosphate-limiting conditions the cortex layer of the root meristem contains almost double the number of cells, which results in a greater number of root hair-forming epidermal cells. As this change can occur within 24hrs the rapidity of the response represents a significant adaptation to a changing root environment.

Hippler FWR, Mattos-Jr D, Boaretto RM, Williams LE (2018) Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression J Plant Physiol. doi: 10.1016/j.jplph.2018.06.005

Open Access

Franz Hippler (University of Southampton) leads this UK-Brazil collaboration showing that growth of Arabidopsis plants in excess copper conditions causes a downregulation in nitrate uptake. This is due to both direct and indirect changes on the gene expression of nitrate transporters as well as a reduction in transcript level of the plasma membrane proton pump, AHA2. This effect was altered when copper levels were reduced demonstrating that copper toxicity acts at the level of nitrate transport and homeostasis.

White MD, Kamps JJAG, East S, Taylor Kearney LJ, Flashman E (2018) The Plant Cysteine Oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors J Biol Chem.

doi: 10.1074/jbc.RA118.003496

Open Access

Mark White is the lead author on this work from the lab of Emily Flashman at the University of Oxford in which they look at the role of plant cysteine oxidases (PCOs) as oxygen sensors. They assessed the kinetics of each of AtPCO1 to AtPCO5 proteins and show that the most catalytically competent isoform is AtPCO4, in terms of both responding to O2, and oxidizing hypoxic responsive proteins. This work validates an O2-sensing role for the PCOs and provides evidence for functional differences between members of this enzyme family.

Kotak J, Saisana M, Gegas V, Pechlivani N, Kaldis A, Papoutsoglou P, Makris A, Burns J, Kendig AL, Sheikh M, Kuschner CE, Whitney G, Caiola H, Doonan JH, Vlachonasios KE, McCain ER, Hark AT (2018) The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis. Planta. doi: 10.1007/s00425-018-2923-9 Open Access

John Doonan (Aberystwyth University) is a co-author on this manuscript led by Jenna Kotak and Amy Herd in the USA. They investigate plants that have mutations in the histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b. These genes have been previously demonstrated as being involved in endoreduplication and trichome branching. They show that these mutants have alterations in the number and patterning of trichome-branches and that ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.

Baduel P, Hunter B, Yeola S, Bomblies K. Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa (2018) PLoS Genet.

doi: 10.1371/journal.pgen.1007510 Open Access

Pierre Baduel and Kirsten Bomblies (John Innes Centre) lead this work that was conducted prior to Kirsten’s move to Norwich. In this study they follow the colonization of populations of Arabidopsis arenosa along mountain railway corridors. They demonstrate that selective pressure has occurred on novel alleles of flowering time genes and discuss the implications for ruderal communities linked to railways as allele conduits linked to local adaptations.

GARNet Research Roundup: April 11th 2018

This weeks GARNet research roundup begins with a microscopy-based study led by Lorenzo Frigerio from the University of Warwick that investigates the origin of Protein Storage Vacuoles. The second paper from John Doonan at Aberystwyth University looks at how differential splicing of cyclin-dependent Kinase G1 effects the thermosensory response. Reiner van de Hoorn from Oxford leads the next paper that characterises the use of activity-based protein profiling (ABPP) to identify novel α-glycosidases in model and non-model plants. Simon McQueen-Mason from York is corresponding author of the next paper that identified a new QTL from Brachypodium that is involved in cell wall formation. The fifth paper is led by Anthony Dodd from Bristol and characterises the role of the SnRK1 complex in hypocotyl elongation whilst the penultimate manuscript from Julia Davies’s lab in Cambridge performs patch clamp analysis of dorn1 mutant plants. The final paper from Brendan Davies at the University of Leeds characterises the SMG kinase, a gene that is lacking from the Arabidopsis genome, in Physcomitrella patens.

Feeney M, Kittelmann M, Menassa R, Hawes C, Frigerio L. Protein storage vacuoles originate from remodelled pre-existing vacuoles in Arabidopsis thaliana (2018) Plant Physiol. 2018 Mar 19. pii: pp.00010.2018. doi: 10.1104/pp.18.00010 Open Access

This collaboration between the Universities of Warwick and Oxford Brookes is led by Lorenzo Frigerio and Chris Hawes. They have investigated the origin of seed Protein Storage Vacuoles (PSV) using a two-pronged approach using confocal and immunoelectron microscopy. They looked at embryo development as well as in leaf cells that have been reprogrammed for embryonic cell fate by overexpression of the LEAFY COTYLEDON2 TF. These studies indicate that PSVs are formed following the reprogramming of pre-existing embryonic vacuole (EV) rather than from de novo assembly.

Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, Doonan JH. The Cyclin Dependent Kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A (2018) Plant J. doi: 10.1111/tpj.13914 Open Access

John Doonan (Aberystwyth University) is the corresponding author on this UK-Austrian collaboration that presents the role of the cyclin-dependent Kinase G1 (CDKG1) in thermosensing in Arabidopsis. Ambient temperature change causes altered gene expression of the spliceosome component, ATU2AF65A. Interestingly the CDKG1 gene is differentially spliced and to produces two protein isoforms that are both needed to complement the expression of ATU2AF65A across a temperature range. This alternative splicing is dependent on CDKG2 and CYCLIN L1 and is a novel control mechanism in the temperature control response.

Husaini AM, Morimoto K, Chandrasekar B, Kelly S, Kaschani F, Palmero D, Jiang J, Kaiser M, Ahrazem O, Overkleeft HS, van der Hoorn RAL (2018) Multiplex fluorescent, activity-based protein profiling identifies active α-glycosidases and other hydrolases in plants. Plant Physiol. pii: pp.00250.2018. doi: 10.1104/pp.18.00250 Open Access

Renier Van de Hoorn (University of Oxford) leads this pan-european study that uses novel cyclophellitol aziridine probes that label α-glycosidase enzymes. They identified two novel α-glycosidases in Arabidopsis as well as using the technique in non-model saffron crocus. Finally they showed that this multiplex fluorescent labelling in combination with probes for serine hydrolases and cysteine proteases can be used to identify changes in hydrolase activity in response to pathogen infection.

Whitehead C, Ostos Garrido FJ, Reymond M, Simister R, Distelfeld A, Atienza SG, Piston F, Gomez LD, McQueen-Mason SJ (2018) A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. New Phytol. doi: 10.1111/nph.15089 Open Access

Simon McQueen-Mason (University of York) leads this study that use QTL mapping to identify a gene in Bracypodium that is involved in cell wall architecture, which might then be a target to develop plants with improved cellulose digestibility. This glycosyl transferase family (GT) 43 protein is an orthologue of Arabidopsis IRX14, which is involved in xylan biosynthesis. When RNAi was used to reduce expression of this gene the resulting plants showed increased digestibility, indicating that this BdGT43A will be a good target for future breeding plans.

Wang L, Wilkins KA, Davies JM (2018) Arabidopsis DORN1 extracellular ATP receptor; activation of plasma membrane K(+) -and Ca(2+) -permeable conductances New Phytol. 2018 Mar 25. doi: 10.1111/nph.15111. Open Access

This letter to New Phytologist from the lab of Julia Davis (University of Cambridge) outlines some experiments to determine whether the DORN1 plasma membrane receptor is responsible for transmitting a signal from extracellular ATP (eATP). They performed patch clamp analysis on isolated protoplasts and showed that DORN1 is involved in the activation of Ca+ and K+ pumps by eATP as, in contrast to wildtype, dorn1 mutant protoplast showed no voltage changes after incubation with eATP.

Simon NML, Sawkins E, Dodd AN. Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation (2018) Plant Signal Behav. 27:1-9. doi: 10.1080/15592324.2018.1457913.

Anthony Dodd (University of Bristol) is the corresponding author of this follow-on study from one that previously featured on the GARNet YouTube channel. This study measures sucrose-induced hypocotyl elongation in two T-DNA mutants of the SnRK1 subunit KIN10 gene. These mutants had altered responses to sucrose leading to the hypothesis that the SnRK1 complex suppresses hypocotyl elongation in the presence of external sugar.

Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B (2018) The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res. doi: 10.1093/nar/gky225 Open Access

Brendan Davis (University of Leeds) is the corresponding author on research that investigates the role of the SMG1 kinase during nonsense-mediated mRNA decay (NMD) in the moss Physcomitrella patens. This kinase plays a critical role in animals but as it is not present in Arabidopsis, its function is not well studied in plants. However moss smg mutants show expression changes in genes involved in a variety of processes indicating that NMD is a common control mechanism in moss. In addition these plants have increased susceptibility to DNA damage, which suggests that the SMG1 kinase is a key player in quality control mechanisms in plants.

Arabidopsis Research Roundup: July 18th

Tags: No Tags
Comments: No Comments
Published on: July 18, 2017

This weeks Arabidopsis Research Roundup includes four studies from around the UK. Firstly is a systems-level study of the drought response that includes Alessandra Devoto from RHUL as a co-author. Secondly Anne Osbourn’s group at the JIC investigates sesterterpenoid biosynthesis across plant species. Thirdly Paul Jarvis from Oxford University adds to this groups portfolio of research on the mechanisms that control thylakoid import. Finally Patrick Gallois (University of Manchester) provides further insight into the regulation of programmed cell death.

Kim JM, To TK et al (2017) Acetate-mediated novel survival strategy against drought in plants Nature Plants http:/​/​dx.​doi.​org/10.1038/nplants.2017.97

Open with URL

Alessandra Devoto (Royal Holloway) is a co-author of this study led by Jong-Myong Kim, Mototaki Seki (RIKEN, Yokohama) and Taiko Kim Ko (University of Toyko) that investigates the system-wide alterations that plants make in response to drought stress. They demonstrate that the histone deacetylase HDA6 is the primary regulator of an epigenetic switch that leads to a metabolic flux conversion from glycolysis into acetate synthesis. This in turn stimulates the jasmonate signaling pathway that causes increased drought tolerance. Importantly the authors show that this critical survival response is evolutionarily conserved through monocots and dicots.

Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A (2017) Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. PNAS http:/​/​dx.​doi.​org/10.1073/pnas.1705567114

Open Access

Anne Osbourn (JIC) leads this study in which her group works with collaborators from Cambridge, Wageningen and UC Davis to perform a cross-species genome-wide analysis of sesterterpenoid biosynthesis. They use a novel search algorithm to identify paired enzymatic components that comprise sesterterpene synthases (STS). These enzymes were transiently overexpressed in tobacco leaves, resulting in the formation of fungal-like sesterterpenes, suggestive of convergent evolution of plant and fungal STS. This study illuminates possible future strategies for the beneficial use of sesterterpenes through metabolic and protein engineering

Bédard J, Trösch R, Wu F, Ling Q, Flores-Pérez Ú, Töpel M, Nawaz F, Jarvis P (2017) New Suppressors of the Chloroplast Protein Import Mutant tic40 Reveal a Genetic Link between Protein Import and Thylakoid Biogenesis. Plant Cell. http:/​/​dx.​doi.​org/10.1105/tpc.16.00962 Open Access

Paul Jarvis (Oxford University) leads this global collaboration that focuses on the chloroplast protein import protein Tic40. A suppressor screen identified two novel regulators of Tic40, ALB4 and STIC2 that they postulate are involved in the thylakoid targeting of a subset of proteins and that their influence becomes more important in the absence of Tic40.

Cai YM, Yu J, Ge Y, Mironov A, Gallois P (2017) Two proteases with caspase-3-like activity, cathepsin B and proteasome, antagonistically control ER-stress-induced programmed cell death in Arabidopsis. New Phytol.

http:/​/​dx.​doi.​org/10.1111/nph.14676 Open Access

Patrick Gallois is the corresponding author on this study that originates at the University of Manchester. They attempt to establish a role for cathepsin B and proteasome subunit PBA1 in the control of programmed cell death (PCD) and whether their functions interest with those of caspase-3. They reveal a complex system of regulation where aspects of PCD are differentially impacted by each of these proteins. They propose the role of cathepsin B might occur late in PCD following tonoplast rupture.

Arabidopsis Research Roundup: March 31st.

This bumper edition of the Arabidopsis Research Roundup includes a wide range of research topics. Firstly Mike Roberts leads a study that adds another layer of complexity to our understanding of the factors that control seed dormancy. Secondly a paper from Ottoline Leyser’s lab at SLCU provides more details regarding the role of BRC1 during shoot branching. Next is a paper that continues David Salt’s collaborative work that aims to understand how the root endodermal barrier influences nutrient uptake. Fourthly is work from Bristol that looks at the interaction between viral infection, the structure of the leaf surface and the polarization of reflected light. The fifth paper features a wide collaboration from the Sainsbury lab in Norwich and aims to more fully understand the factors that lead to non-host infection by Phytophthora infestans. The penultimate paper looks at the interaction of aldolase enzymes with the plant actin cytoskeleton and the final paper brings us full circle back to seed dormancy where researchers from University of Warwick investigate the link between this complex growth response and the circadian clock.

Singh P, Dave A, Vaistij FE, Worrall D, Holroyd GH, Wells JG, Kaminski F, Graham IA, Roberts MR (2017) Jasmonic acid-dependent regulation of seed dormancy following maternal herbivory in Arabidopsis. New Phytol http:/​/​dx.​doi.​org/10.1111/nph.14525

Taken from:

Open Access

Mike Roberts (University of Lancaster) kindly provides an audio description of this paper on the GARNet YouTube channel, explaining that, in collaboration with Ian Graham at the University of York, they have identified a new control mechanism that links jasmonic acid, herbivory and seed dormancy. ABA and GA are known to be important hormones in the control of seed dormancy but this study adds complexity to this story by showing that following herbivory (or leaf wounding), the level of JA increases within Arabidopsis seeds. Perhaps counter-intuitively, in the following generation this leads to a reduction in dormancy, causing seed to germinate sooner than those from non-predated parents. The authors show that this is due to an increase in JA within seeds that importantly also alters sensitivity to ABA. Unlike transgenerational defence priming that acts through a epigenetic mechanism and persists for multiple generations , this study shows that the JA effect on seeds is a more direct response. Ultimately the mechanism in which parents prepare their offspring for subsequent generations is a complex trade off between multiple sources of predation and pathogenesis, environmental factors as well as through the effect of interacting hormone signaling pathways.

Seale M, Bennett T, Leyser O (2017) BRC1 expression regulates bud activation potential, but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development http:/​/​dx.​doi.​org/10.1242/dev.145649 Open Access

This is the latest contribution from Ottoline Leyser’s lab that looks into the hormonal control of shoot branching. A key determinant of this process is the transcription factor, BRANCHED1 (BRC1) yet this study shows that under certain conditions, in this case with varied amount of strigolactone, the controlling effect of BRC1 expression levels can be mitigated. The authors provide evidence for a mechanism for branching control that involves the coordinated activity of BRC1 and an auxin-transport mechanism, both of which are influenced by a separate strigolactone-mediated signaling pathway.

Li B, Kamiya T, Kalmbach L, Yamagami M, Yamaguchi K, Shigenobu S, Sawa S, Danku JM, Salt DE, Geldner N, Fujiwara T (2017) Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers. Current Biology


Former GARNet chairman David Salt is a co-author on this paper that is lead by Japanese and Swiss colleagues and continues his work on the development of the casparian strip. These rings of lignin polymers are deposited within root endodermal cells and play a key role in the movement of water and nutrients into the vascular tissue. Suberin lamellae have a similar function and surround endodermal cells, likely acting as a barrier to apoplastic movement. This paper documents the identification of the Tolkienesquely-named LOTR1, which is essential for casparian strip formation. Lotr1 mutants show disrupted casparian strips, ectopic suberization and reduced calcium accumulation in the shoot. Further analysis demonstrates that it is this suberized layer substitutes for the CS in regions of lateral root emergence. Utliamtely they show that the relationship between suberization of the endodermal layer is a key determinant of calcium movement into the root and then around the rest of the plant.

Maxwell DJ, Partridge JC, Roberts NW, Boonham N, Foster GD (2017) The effects of surface structure mutations in Arabidopsis thaliana on the polarization of reflections from virus-infected leaves. PLoS One

http:/​/​dx.​doi.​org/10.1371/journal.pone.0174014.g003 Open Access

Gary Foster (University of Bristol) leads this study that continues his labs work on the effect that viral infection has on light polarization when reflected off leaves. This attribute is important to attract insect predators, which in turn increase the possibility of successful viral transmission. Light polarization is affected by structures on the leaf surface such as trichomes or the makeup of the waxy cuticle. Here the authors show that the cer5 wax synthesis mutant alters the polarization of light following infection with Turnip vein clearing virus (TVCV) but not following infection with Cucumber mosaic virus (CMV). The paper provides no mechanism for this difference but the authors do show that leaf viral titre is equivalent in these mutants and therefore speculate that these changes might influence transmission of each virus by a different insect carrier that in turn responses to different patterns of polarized light.

Prince DC, Rallapalli G, Xu D, Schoonbeek HJ, Çevik V,, Asai S,, Kemen E,, Cruz-Mireles N, Kemen A,, Belhaj K, Schornack S,, Kamoun S, Holub EB, Halkier BA, Jones JD (2017) Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biol. 

http:/​/​dx.​doi.​org/10.1186/s12915-017-0360-z  Open Access

This paper is a wide collaboration that features many colleagues from the Sainsbury lab in Norwich. Wildtype Arabidopsis plants are suspectible to Phytophthora infestans only after earlier infection with Albugo laibachii yet the molecular explanation of this complex interaction between plant and microbes remained opaque. This study demonstrates that Albugo infection alters the levels of a set of tryptophan-derived antimicrobial compounds, which were then found to be relevant for infection with P.infestans. This shows that these antimicrobial compounds might be key for the general maintenance of non-host resistance and might provide important information to aid future strategies to improve food security by reducing biomass loss due to plant pathogens.

Garagounis C, Kostaki KI, Hawkins TJ, Cummins I, Fricker MD, Hussey PJ, Hetherington AM2, Sweetlove LJ (2017) Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis. J Exp Bot.


This collaboration between the Universities of Oxford, Bristol and Durham looks into the functional role that molecular microcompartments play in the workings of a cell. Animal models have shown that certain aldolase enzymes are able to function as actin-bundling proteins and so this study focuses on a major plant cytosolic aldolase, FBA8, which is predicted to have two actin binding sites. Although the authors could not detect co-localisation of FBA8-RFP with the actin cytoskeleton they provide in vitro evidence that FBA8 can functionally interact with F-actin. In addition in fba8 mutants there is altered arrangement of actin filaments in guard cells that concomitantly results in a reduced rate of stomatal closure. Therefore these findings leads the authors to propose that FBA8 is able to subtly interact with actin in vivo, evidenced by some FRET-FLIM experiments, and that this may modulate actin dependent cell responses.

Footitt S, Ölcer-Footitt H, Hambidge AJ, Finch-Savage WE (2017) A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant Cell Environ http:/​/​dx.​doi.​org/10.1111/pce.12940

William Savage-Finch (University of Warwick) is the corresponding author on this paper that investigates mechanisms that control seed dormancy, which has been built from the analysis of a variety of genetic and environmental factors. They test their predictions by testing a range of mutants in both known dormancy related genes and in the function of the circadian clock. This provides a link between the circadian cycle and the daily variation in the level of seed dormancy in Arabidopsis.

Arabidopsis Research Roundup: April 14th

This week Arabidopsis Research Roundup contains two studies that originate at the University of Birmingham. Firstly George Bassel kindly provides an audio description of a study that looks at the processes regulating seed germination. Secondly Juliet Coates leads an investigation into the function of evolutionarily conserved ARABIDILLO proteins. Elsewhere is a University of Edinburgh study into the tissue-specificity of PhyA responses and lastly an investigation of the phytotoxic effects of Cerium nanoparticles.

Nieuwland J, Stamm P, Wen B, Randall RS, Murray JA, Bassel GW (2016) Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6. Sci Rep. Open AccessRootTip

George Bassel (Birmingham), GARNet PI Jim Murray (Cardiff) and Jeroen Nieuwland (South Wales) are the leaders of this study that investigates the activation of the root meristem during germination, a process that requires de novo GA synthesis. Using hormone applications and genetic analysis the authors show that root meristem can begin elongation independent of germination, which is defined as occurring following both testa rupture and radicle protrusion. KRP6 is a cell cycle regulator and partially represses activation of the cell cycle by GA so krp6 mutants germinate more rapidly. Overall this study concludes that the cell cycle can uncouple the interactions of GA and ABA that act to conclude germination and promote root meristem elongation.

George Bassel kindly provides a short audio description of this paper.

Moody LA, Saidi Y, Gibbs DJ, Choudhary A, Holloway D, Vesty EF, Bansal KK, Bradshaw SJ, Coates JC (2016) An ancient and conserved function for Armadillo-related proteins in the control of spore and seed germination by abscisic acid. New Phytol. Open Access

This study comes exclusively from the University of Birmingham and is led by Juliet Coates. This group investigates the role of Armadillo-related ARABIDILLO proteins on branching processes across plant species. In the moss Physcomitrella patens these proteins are linked to the action of the hormone ABA on spore germination, which converges with a role for the proteins in Arabidopsis seed germination. Importantly both P.patens and Selaginella moellendorffii ARABIDILLO proteins are able to substitute for native proteins in Arabidopsis, demonstrating their conserved function. The authors conclude that these proteins were co-opted into the regulation of both sporophytic and gametophytic processes early in plant evolution.

Kirchenbauer D, Viczián A, Ádám É, Hegedűs Z, Klose C, Leppert M, Hiltbrunner A, Kircher S, Schäfer E, Nagy F (2016) Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-A expressed in different tissues. New Phytologist . Open Access

Ferenc Nagy (Edinburgh) is the corresponding author of this Hungaro-German study that focuses on how phytochrome responses are mediated in a tissue-specific manner. Considering that phyA is expressed throughout plant tissues it remained a mystery as to how the PhyA responses are able to control plant development. This study used tissue-specific promotors to drive PHYA production in a variety of tissues and discovered that expression in a limited number of tissues is able to regulate flowering time and root growth. In addition they find evidence for the intercellular movement of PhyA. The authors conclude that the PhyA response is partly controlled by a mix of tissue-specific expression and the regulation of key downstream factors in a tissue-autonomous cell activity.

Yang X, Pan H, Wang P, Zhao FJ (2016) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana J Hazard Mater.

GraphThis Sino-UK-Australian study is led by Fang-Jie Zhao at Rothamstead Research. They investigate the uptake and phytotoxicity of commonly used (in consumer products) cerium oxide nanoparticles (CeO2-NPs) into Arabidopsis. At high concentrations the NP component, but not the Ce ions, were shown to have toxic effects on plant growth. These CeO2-NPs were taken up and translocated to the shoot where they aggregate in needle-like particles. This movement was independent of the type or concentation of Ce. The authors suggest this represents important information for the environmental considerations linked to the use and disposal of this type of NPs.

Arabidopsis Research Roundup: March 4th

There are six articles in this weeks Arabidopsis Research Roundup that bridge a diverse range of topics. Firstly lead author Deirdre McLachlan provides an audio description of a study that investigates the role of triacylglycerol breakdown in stomatal signaling. Secondly is a study that assesses the role of a Rab GTPase in control of anisotropic cell growth. The third and fourth papers looks into the defence response, focused on either JA or nitric oxide signaling. Finally are two papers that look into the response of Arabidopsis seedlings to growth on either arsenic or cadmium.

McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Hõrak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening Current Biology Open Access
Slide 1
The control of stomatal opening is a key environmental response to changes in CO2 levels and water availability. This study, led by Alistair Hetherington (Bristol), demonstrates that triacylglycerols (TAGs), contained in lipid droplets (LD), are critical for light-induced stomatal opening. Following illumination, the number of LDs are reduced through the β-oxidation pathway, a response that requires blue-light receptors. The authors postulate that a reduction in ATP-availability due to delayed fatty acid breakdown contributed to the stomatal phenotype. The lack of available ATP was confirmed following analysis of the activity of a plasma membrane H+-ATPase. Overall the authors suggest that the light-induced breakdown of TAG contributes to an evolutionarily conserved signaling pathway that controls stomatal opening therefore playing a key role in environmental adaptation.

The lead author of this study, Deidre McLachlan kindly provides a brief audio description of this paper.

During our discussion Deidre mentioned some related work that links blue-light signaling and starch degradation during stomatal opening that was included in a recent ARR.


Kirchhelle C, Chow CM, Foucart C, Neto H, Stierhof YD, Kalde M, Walton C, Fricker M, Smith RS, Jérusalem A, Irani N, Moore I (2016) The Specification of Geometric Edges by a Plant Rab GTPase Is an Essential Cell-Patterning Principle During Organogenesis in Arabidopsis. Developmental Cell 36(4):386-400 Open Access
Ian Moore (Oxford) is the corresponding author on this UK-German collaboration that investigates the role of a Rab GTPase in pattern formation during organogenesis. It is known that the endomembrane system controls the asymmetric distribution of cargoes to different ‘geometric edges’ of a plant cell, establishing biochemically distinct domains that are important for anisotropic growth. This study identifies a new type of membrane vesicle that accumulates specifically along geometric edges and that contains the RAB-A5c protein which, when inhibited, distorts the geometry of cells in subsequently formed lateral organs (in this case, lateral roots). Interestingly this effect is independent of changes to general endomembrane trafficking. The precise mechanism of RAB-A5c activity is unknown but loss of its activity reduces cell wall stiffness at domain-specific locations, therefore perturbing cell growth in those directions. Therefore this study provides interesting insight into fundamental mechanisms that control the growth of cells in a developing organ.

Thatcher LF, Cevik V, Grant M, Zhai B, Jones JD, Manners JM, Kazan K (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum J Exp Bot. Open Access

Jonathan Jones (TSL) and Murray Grant (Exeter) are collaborators on this research that investigates the role of jasmonic acid signaling in plant resistance to the fungal pathogen Fusarium oxysporum. In this study they show that the JASMONATE ZIM-domain7 (JAZ7) gene is induced by Fusarium oxysporum and that the jaz7-1D mutant has increased suspectibility to infection. This genotype has constitutive JAZ7 expression and also demonstrates sensitivity to a bacterial pathogen. To cause alterations in gene expression, the JAZ7 protein interacts with a range of transcriptional activators and repressors. The authors postulate that in wildtype plants JAZ7 represses the JA-transcriptional network through its interaction with the co-repressor TOPLESS protein and that in the jaz7-1D plants this response network is hyper-activated leading to an inappropriately high response to pathogen attack.

Yun BW, Skelly MJ, Yin M, Yu M, Mun BG, Lee SU, Hussain A, Spoel SH, Loake GJ (2016) Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol.

Gary Loake and GARNet Advisory board member Steven Spoel (Edinburgh) are the leaders of this UK-Korean collaboration that studies the role of Nitric Oxide (NO) in the plant defence response. NO often undergoes S-nitrosylation to produce S-nitrosothiol (SNO), which is important for its bioactivity. This reaction involves the S-nitrosoglutathione reductase 1 (GSNOR1) enzyme, which serves to turnover the NO donor, S-nitrosoglutathione (GSNO). In this study the authors investigate mutant plants that accumulate NO and some a reduction in the basal defence response due to a reduction in salicylic acid (SA) signaling. This response was not rescued by the overexpression of GSNOR1 even though this was able to reduce phenotypes resulting from SNO accumulation. Mutant plants that have increased NO accumulation but lower activity of GSNOR1, so therefore an increased ratio of NO:SNO, were more suspectible to growth of bacterial pathogens. The authors conclude that the relationship between NO and GSNO is critically for plant immunity and development.

Lindsay ER, Maathuis FJ (2016) Arabidopsis thaliana NIP7;1 is Involved in Tissue Arsenic Distribution and Tolerance in Response to Arsenate FEBS Lett.

Francois Maathuis (York) is the corresponding author of this study that investigates the role of the Arabidopsis aquaglyceroporin NIP7;1 in the uptake of different chemical forms of arsenic. Mutant nip7;1 plants improved the tolerance of arsenic by reducing uptake of the chemical. This is the first demonstration for the role of a NIP transporter in the response to arsenic and highlights the possibility of focussing on these proteins as a target for breeding or genetically-modifying tolerance to this toxic metal.

Wang H, He L, Song J, Cui W, Zhang Y, Jia C, Francis D, Rogers HJ, Sun L, Tai P, Hui X, Yang Y, Liu W (2016) Cadmium-induced genomic instability in Arabidopsis: Molecular toxicological biomarkers for early diagnosis of cadmium stress Chemosphere 150:258-265

Hilary Rodgers (Cardiff) is the sole UK representative on this Chinese study that has developed screening parameters to evaluate the growth of plants on cadmium. The study uses microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) to define a range of genomic alterations that occurred after growth of Arabidopsis plants across a range of concentrations of cadmium. They conclude that analysis of genomic methylation polymorphisms were the most sensitive biomarkers to diagnosis early cadmium stress in these plants and provide important insights for future biomonitoring strategies.

Arabidopsis Research Roundup: February 24th

Just three papers in this weeks Arabidopsis Research Roundup and they each cover fundamental aspects of the hormone and environmental control of gene expression. First Keith Lindsey provides an audio description of work that aims to dissect the complex hormonal regulation of root growth while secondly, Nick Harberd is involved in a study that investigates the HY5 shoot-root signaling protein. Finally Ian Graham leads a study into factors that regulate seed dormancy.

Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin New Phytol. 10.1111/nph.13882 Open Access
Keith Lindsey (Durham) is the corresponding author for this study that investigates the complex hormonal network that regulates the Arabidopsis root response to osmotic stress. The effect of ABA, cytokinin and ethylene on auxin transport are assessed through changes in the dynamics of PIN protein expression. Unsurprisingly they discover a wide range of effects transmitted via crosstalk between these four hormones and that these effects act in a tissue specific manner, as the expression of PIN1 (in the vascular tissue) and PIN2 (in the lateral root cap and epidermis) are altered in different ways. Ultimately the authors conclude that the classic ‘stress hormone’ ABA regulates the root response to drought together with auxin, ethylene and cytokinin in a complex signaling network.

Keith has kindly supplied a brief audio description of this work.

Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition
GARNet committee member Nick Harberd (Oxford) is the UK representative on this Chinese-led study that investigates the mode of action of the mobile transcription factor ELONGATED HYPOCOTYL5 (HY5). It has been long known that HY5, a bZIP TF, regulates growth responses to light and in this study the authors demonstrate that HY5 controls light-regulated root growth and nitrate uptake. Remarkably, HY5 from the shoot can activate root-derived HY5, in turn switching on the nitrate transporter NRT2.1. This response involves a mechanism that senses carbon:nitrogen balance across different light conditions, thus placing HY5 as a key regulator in the whole-plant response to changing environmental conditions.

Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA (2016) Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid Journal of Experimental Botany Open Access

This paper results from a collaboration between the labs of Ian Graham (CNAP, York) and Steve Penfield (John Innes Centre) and features an investigation into factors that regulate seed germination. Previously it was known that oxylipin 12-oxo-phytodienoic acid (OPDA) acts together with ABA to regulate germination but this study elucidates that OPDA specifically acts via the ABI5 and RGL2 hormone-regulated proteins. Furthermore the OPDA-ABA signal also acts via another dormancy promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Therefore maintenance of dormancy in Arabidopsis seedlings is regulated by ABA and MFT promoting the accumulation of OPDA, highlighting this as a critical control point in this complex process.

Arabidopsis Research Roundup: November 5th

Academics from the John Innes Centre lead two of the papers featured in this week Arabidopsis Research Roundup. Firstly Veronica Grieneisen leads a study that combines modeling and experimental work to assess the factors that establish the root auxin maximum and secondly the structural biologist David Lawson heads up an investigation into the plastid-localised enzyme, DPE1. Seemingly a common theme in UK-Arabidopsis research focuses on the factors that control the dynamics of stomatal opening and this week Mike Blatt from Glasgow heads a team that investigates the role of potassium and nitric oxide in this process. Finally we present a paper that investigates proteins that interact within the ER.

El-Showk S, Help-Rinta-Rahko H, Blomster T, Siligato R, Marée AF, Mähönen AP, Grieneisen VA (2015) Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out PLoS Comput Biol. e1004450Picture Open Access

Veronica Grieneisen (JIC) is the UK-based leader of this work that was performed with her Finnish collaborators. They work on the modeling the processes that define the auxin maximum in the root meristem. This patterning is defined by the activity of the PIN-formed auxin efflux transport proteins and the AHP6 protein, an inhibitor of cytokinin signaling. The authors implement a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. They initially find that variation in cytokinin signaling, mediated by diffusion of the hormone is insufficient for patterning but rather it is an auxin-dependent modification of the cytokinin signal that can define the auxin maximum. Although the role that the PIN proteins play in root vascular patterning is well established, the authors experimentally verify a role for the AUX/LAX auxin influx carrier family of proteins. They also show that polar PIN localisation generates a flux of auxin flow that ultimately causes its own accumulation in the pericycle cells that signal for lateral root initiation. Finally their model confirms the supposition that these pericycle cells compete for auxin accumulation, therefore ensuring that lateral roots develop in the correct localisation. The associated figure is from this paper.

O’Neill EC, Stevenson CE, Tantanarat K, Latousakis D, Donaldson MI, Rejzek M, Nepogodiev SA, Limpaseni T, Field RA, Lawson DM (2015) Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Enzyme DPE1. Journal of Biological Chemistry Open Access

This is another paper led by JIC researchers, this time in collaboration with Thai partners. This focuses on determining the structure of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1) that acts to convert two maltotriose molecules to a molecule of maltopentaose and a molecule of glucose, which, for different reasons, are both more functional useful molecules for the plant. They have used ligand soaking techniques to trap the DPE1 in a different set of conformational states and have found that it exists as a homodimer with a variety of interesting features. This includes a dynamic ‘gate’ loop that may play a role in substrate capture, subtle changes in which could alter the efficacy of the active site. The structural insights provided by this study allow the authors to confidently delineate the complete AtDPE1 disproportionation cycle

Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, García-Mata C, Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt MR (2015) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis New Phytol. Open Access

<a href="http://www.gla cialis vente en” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘’, ‘Mike Blatt’]);” target=”_blank”>Mike Blatt (Glasgow) is the lead on this UK-Sino-Australino-Argentine collaboration that investigates the role of nitrate reductase enzyme in potassium flux in guard cells. This flux is necessary for a plants adaption to the environment and is controlled by the activity of ABA via the activity of H2O2 and Nitric Oxide (NO). The authors showed that multiple responses to ABA were impaired in nia1nia2 nitrate reductase mutants, which includes the K+ IN current in guard cells, required for stomatal closure. This response was rescued by exogenous NO and allowed the authors to demonstrate that there exists a complex interaction involving ABA, NO, potassium nutrition and nitrogen metabolism that is necessary to ensure correct stomatal responses.

Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C (2015) Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane Plant Physiol. 169(3):1933-45

This proteomic analysis of endoplasmic reticulum components is a collaboration between the Central Laser Facility at Didcot, Warwick, Edinburgh and Oxford Brookes Universities, led by Professor Chris Hawes. Plant Reticulon proteins (RTNLB) specifically populate and tubulate the ER, mediated by their varied multi-meric interactions. In addition, certain RTNLB are also present in plasmodesmata (PD) and two of these proteins, RTNLB3 and RTNLB6 were GFP-tagged, Co-IPed and interacting proteins were analysed by MS. This identified a range of known PD-localised proteins, and these interactions were experimentally verified in tobacco cells using FRET-microscopy. The authors suggest that this data shows that RTNLB proteins may play important roles in linking the cortical ER to the plasma membrane. This paper is the ‘sister’ to another manuscript in Plant Physiology that was highlighted in a recent Arabidopsis Research Roundup.

«page 1 of 2

Follow Me
July 2018
« Jun    

Welcome , today is Tuesday, July 17, 2018