GARNet Research Roundup: April 29th 2019

This edition of the GARNet research roundup features fundamental plant science research conducted in a range of experimental organisms. Firstly Liam Dolan’s lab in Oxford looks at the function of bHLHs proteins in cell differentiation across land plant evolution. Secondly Anthony Hall’s group at the Earlham Institute have identified a novel RecQ helicase involved in work exclusively conducted in wheat. Thirdly researchers from Nottingham work with Arabidopsis to characterise an EXPANSIN protein essential for lateral root development.

The fourth paper is the first of two that look at germination and uses a new model, Aethionema arabicum, to study the role of light in seed dormancy. This work includes research from Royal Holloway. The second ‘dormancy’ paper is from Peter Eastmond’s lab at Rothamsted and further characterises the DOG1 gene in Arabidopsis. The penultimate paper includes co-authors from Warwick and Leeds and introduces a novel chemical inhibitor of auxin transport. The final paper from researchers in Birmingham introduces the 3DCellAtlas Meristem, a powerful tool for cellular annotation of the shoot apical meristem.

Bonnot C, Hetherington AJ, Champion C, Breuninger H, Kelly S, Dolan L (2019) Neofunctionalisation of basic helix loop helix proteins occurred when embryophytes colonised the land. New Phytol. doi: 10.1111/nph.15829

Clemence Bonnot is lead author on this study from Liam Dolan’s lab at the University of Oxford in which the authors assess the role of ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes during evolution of plant development. They look at the function of a member of this bHLH transcription factor family called CbbHLHVIII identified in the charophyceaen alga Chara braunii. This gene is expressed at specific morphologically important regions in the algae and cannot rescue the function of related RSL genes in Marchantia or Arabidopsis. This suggests that the function of RSL proteins in cell differentiation has evolved by neofunctionalisation through land plant lineages.

Gardiner LJ, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, Higgins JD, Hall N, Griffiths S, Clavijo BJ, Hall A (2019) Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol. 20(1):69. doi: 10.1186/s13059-019-1675-6

Open Access

Laura Gardiner and Anthony Hall lead this work that was conducted at the Earlham Institute and uses a bespoke set of bioinformatic tools that allow fundamental questions to be asked in hexaploid wheat. They looked at crossover and gene conversion frequencies in 13 recombinant inbred mapping populations and were able to identity an important QTL and confirm functionality for a novel RecQ helicase gene. This gene does not exist in Arabidopsis and therefore this discovery-motivated research needed to be conducted in wheat. They hope that this identification will provide future opportunities to tackle the challenge of linkage drag when attempting to develop new crops varieties.

Ramakrishna P, Ruiz Duarte P, Rance GA, Schubert M, Vordermaier V, Vu LD, Murphy E, Vilches Barro A, Swarup K, Moirangthem K, Jørgensen B, van de Cotte B, Goh T, Lin Z, Voβ U, Beeckman T, Bennett MJ, Gevaert K, Maizel A, De Smet I (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci U S A. 2019 Apr 3. pii: 201820882. doi: 10.1073/pnas.1820882116

Open Access

This pan-European study is led by Priya Ramakrishna at the University of Nottingham and includes co-authors from the UK, Belgium, Germany and Denmark. The authors look at the lateral root development and characterise the function of the EXPANSIN A1 protein. This protein influences the physical changes in the cell wall that are needed to enable the asymmetry cell divisions that define the location of a new lateral root. Plants lacking EXPA1 function do not properly form lateral roots and are unable to correctly respond to an inductive auxin signal. This clearly demonstrates an important requirement for the activity of genes that transmit cell signals into the physical relationships that exist between cells.

Mérai Z, Graeber K, Wilhelmsson P, Ullrich KK, Arshad W, Grosche C, Tarkowská D, Turečková V, Strnad M, Rensing SA, Leubner-Metzger G, Scheid OM (2019) Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. pii: erz146. doi: 10.1093/jxb/erz146

Open Access

This paper includes authors from the UK, Germany, Austria and the Czech Republic including Kai Graeber and Gerhard Leubner-Metzger at Royal Holloway. They introduce the Brassica Aethionema arabicum as a new model to investigate the mechanism of germination inhibition by light as they have identified accessions that are either light-sensitive or light-neutral. In contrast germination in Arabidopsis is stimulated by light. Transcriptome analysis of Aethionema arabicum accessions reveal expression changes in key hormone-regulated genes. Overall they show that largely the same module of molecular components are involved in control of of seed dormancy irrespective of the effect of light on germination. Therefore any phenotypic changes likely result from changes in the activity organisms-specific of these genes.

Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ (2019) Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR 67 transactivates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell. pii: tpc.00892.2018. doi: 10.1105/tpc.18.00892

Open Access

Fiona Bryant is lead author on this research from Rothamsted Research that investigates the factors that control expression of the DOG1 gene, which is a key regulator of seed dormancy. They show that LEUCINE ZIPPER TRANSCRIPTION FACTOR67 (bZIP67) regulates DOG1 expression and have uncovered a mechanism that describes the temperature-dependent regulation of DOG1 expression. Finally they identity a molecular change that explains known allelic difference in DOG1 function, which informs different levels of dormancy in different accessions.

Oochi A, Hajny J, Fukui K, Nakao Y, Gallei M, Quareshy M, Takahashi K, Kinoshita T, Harborough SR, Kepinski S, Kasahara H, Napier RM, Friml J, Hayashi KI (2019) Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiol. 2019 Apr 1. pii: pp.00201.2019. doi: 10.1104/pp.19.00201

Open Access

This Japanese-led study includes co-authors from the Universities of Warwick and Leeds and describes the identification of a novel positive chemical modulator of auxin cellular efflux. This aptly named PInStatic Acid (PISA) prevents PIN protein internalization yet does not impact the SCFTIR1/AFB signaling cascade. Therefore the authors hope that PISA will be a useful tool for unpicking the cellular mechanisms that control auxin transport.

Montenegro-Johnson T, Strauss S, Jackson MDB, Walker L, Smith RS, Bassel GW. (2019) 3D Cell Atlas Meristem: a tool for the global cellular annotation of shoot apical meristems. Plant Methods. 15:33. doi: 10.1186/s13007-019-0413-0

Open Access

Thomas Montenegro-Johnson, Soeren Strauss, Matthew Jackson and Liam Walker lead this methods paper that was prepared following research that took place at the University of Birmingham and the Max Planck Institute for Plant Breeding Research in Cologne. They describe the 3DCellAtlas Meristem, a tool allows the complete cellular annotation of cells within a shoot apical meristem (SAM), which they have successfully tested in both Arabidopsis and tomato. The authors state that ‘this provides a rapid and robust means to perform comprehensive cellular annotation of SAMs and digital single cell analyses, including cell geometry and gene expression’.

GARNet Research Roundup: April 11th 2019

This edition of the GARNet Research Roundup is led by two papers from John Christie’s lab at the University of Glasgow. First is a study that looks at the function of the NPH3 protein during phototropism whilst the second paper is a collaboration with Mike Blatt’s group and has used an synthetic biology approach to increase plant biomass by altering stomatal conductance.

Third is a paper from the University Dundee and James Hutton Institute that looks at the extent of alternative splicing of long non-coding RNAs in response to cold stress.

The fourth paper is from Royal Holloway and defines the role of a MAP kinase module during meristem development. The fifth paper is led by Charles Spillane in Galway and includes Mary O’Connell at the University of Nottingham as a co-author and investigates the selective pressures that are applied to parentally imprinted genes.

The penultimate paper is from Aberystwyth and uses microCT imaging to determine grain parameters in wheat and barley whilst the final paper is from Queens Mary University of London looks at nonphotochemical quenching in Berteroa incana.

Sullivan S, Kharshiing E, Laird J, Sakai T, Christie J (2019) De-etiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL 3 Phosphorylation Status. Plant Physiol. doi: 10.1104/pp.19.00206

Open Access

Stuart Sullivan is first author on this work from John Christie’s lab at the University of Glasgow in which they investigate the functional significance of dephosphorylation of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) protein that occurs following activation of Phototropin receptor kinases. They show that plant greening (de-etiolation) enhances phototropic responses that are coincident with reduced NPH3 dephosphorylation and increased plasma membrane retention of the protein. They further investigate other genetic and environmental factors that impact NPH3 dephosphorylation, which allows young seedlings to maximise their establishment under changing light conditions.

Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR (2019) Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science. doi: 10.1126/science.aaw0046

Maria Papanatsiou is lead author on this work from the University of Glasgow that occured in the labs of Mike Blatt and John Christie. They aimed to address a phenomonen that occurs during changing environmental conditions in which stomatal dynamics lag behind biochemical photosynthetic changes. This prevents plants from maximising their outputs due to inefficiencies in gas and water exchange. In this work they express a synthetic blue light-gated K+ channel BLINK1 in guard cells. This introduced a K+ conductance to these cells resulting in accelerated stomatal opening under light exposure and closing after irradiation. Ultimately they show that this significantly increases biomass without incurring a water use cost. This approach has clear potential for improving plant productivity under changing environmental conditions.

Calixto CPG, Tzioutziou NA, James AB, Hornyik C, Guo W, Zhang R, Nimmo HG, Brown JWS (2019) Cold-Dependent Expression and Alternative Splicing of Arabidopsis Long Non-coding RNAs. Front Plant Sci. doi: 10.3389/fpls.2019.00235

Open Access

Cristiane Calixto and John Brown from the University of Dundee and the James Hutton Institute lead this study into alternative splicing of lncRNAs in response to cold. This is a follow-up to their large scale scale study on the extent of alternative splicing in Arabidopsis.  The authors identified 135 lncRNA genes with cold-dependent differential expression (DE) and/or differential alternative splicing (DAS), some of which were highly sensitive to small temperature changes. This system identified a set of lncRNAs that could be targets for future research aimed at understanding how plants respond to cold and freezing stresses.

Dóczi R, Hatzimasoura E, Farahi Bilooei S, Ahmad Z, Ditengou FA, López-Juez E, Palme K, Bögre L (2019) The MKK7-MPK6 MAP Kinase Module Is a Regulator of Meristem Quiescence or Active Growth in Arabidopsis. Front Plant Sci. doi: 10.3389/fpls.2019.00202

Open Access

Robert Doczi is the first author on this UK, Hungarian and German collaboration that is led from Royal Holloway University of London. They use genetic approaches to show that the MKK7-MPK6 MAP kinase module is a suppressor of meristem activity. They use mkk7 and mpk6 mutants as well as overexpression lines to demonstrate that perturbation of the MAPK signaling pathway alters both shoot and root meristem development and plays important roles in the control of plant developmental plasticity.

Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O’Connell MJ, Spillane C (2019) Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana. Mol Biol Evol. doi: 10.1093/molbev/msz063

Open Access

Reetu Tuteja from the National University of Ireland at Galway is first author on this paper that includes Mary O’Connell from the University of Nottingham. The authors used Arabidopsis to look at 140 endosperm-expressed genes that are regulated by genomic imprinting and found that they were evolving more rapidly than expected. This investigation was extended across 34 other plant species and they found that paternally, but not maternally imprinted genes were under positive selection, indicating that imprinted genes of different parental origin were subject to different selective pressures. This data supports a model wherein positive selection effects paternally-expressed genes that are under continued conflict with maternal sporophyte tissues.

Hughes N, Oliveira HR, Fradgley N, Corke FMK, Cockram J, Doonan JH, Nibau C (2019) μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. Plant J doi: 10.1111/tpj.14312

Open Access

Nathan Hughes and Candida Nibau at the Aberystwyth University lead this work that uses microCT imaging alongside novel image analysis techniques and mathematical modeling to assess grain size and shape across accessions of wheat and barley. They find that grain depth is a major driver of shape change and that it is also an excellent predictor of ploidy levels. In addition they have developed a model that enables the prediction of the origin of a grain sample from measurements of its length, width and depth.

Wilson S, Ruban AV (2019) Enhanced NPQ affects long-term acclimation in the spring ephemeral Berteroa incana. Biochim Biophys Acta Bioenerg. doi: 10.1016/j.bbabio.2019.03.005

This study is led by Sam Wilson and Alexander Ruban at QMUL and investigates nonphotochemical quenching in the Arabidopsis-relative Berteroa incana. They show that light tolerance and ability to recover from light stress is greatly enhanced in Berteroa compared to Arabidopsis. This is due to faster synthesis of zeaxanthin and a larger xanthophyll cycle (XC) pool available for deepoxidation. This result gives B.incana a greater capacity for protective NPQ allowing enhanced light-harvesting capability when acclimated to a range of light conditions. The authors suggest this short-term protection prevents the need for the metabolic toll of making long-term acclimations.

GARNet Research Roundup: Jan 11th 2019

The inaugural GARNet Research Roundup of 2019 firstly includes a paper from the University of Sheffield that has identified new pericentromeric epigenetic loci that affect the pathogen response. Secondly is a collaboration between researchers in Birmingham, Nottingham and Oxford that has identified a new mode of regulation of the VRN2 protein. Next are two papers from Jonathan Jones’ lab at The Sainsbury Laboratory in Norwich that firstly provides a toolkit for gene editing in Arabidopsis and secondly characterise the role of the NRG1 gene in the defense response. The penultimate paper is from Paul Devlin’s lab at RHUL and investigates the role of the circadian clock in the control of leaf overtopping whilst the final paper is a meeting report from a recent GARNet workshop on gene editing.

Furci L, Jain R, Stassen J, Berkowitz O, Whelan J, Roquis D, Baillet V, Colot V, Johannes F, Ton J (2019) Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. Elife. doi: 10.7554/eLife.40655.

Open Access

Leonardo Furci and Ritushree Jain are the lead authors on this study conducted at the University of Sheffield. The authors used a population of epigenetic recombinant inbred lines (epiRILs) to screen for resistance to the oomycete pathogen Hyaloperonospora arabidopsidis. These lines each share genetic information but have varied epigenetic changes. This analysis enabled the identification of plants with hypomethylated pericentromeric regions that were primed to better respond to the presence of this pathogen. The authors discuss the mechanism through which this might affect the defence response albeit without altering other aspects of plant growth.

Gibbs DJ, Tedds HM, Labandera AM, Bailey M, White MD, Hartman S, Sprigg C, Mogg SL, Osborne R, Dambire C, Boeckx T, Paling Z, Voesenek LACJ, Flashman E, Holdsworth MJ (2018) Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun. doi: 10.1038/s41467-018-07875-7

Open Access

This collaboration between the Universities of Birmingham, Nottingham, Oxford and colleagues in Utrecht is led by Daniel Gibbs. They demonstrate that the amount of VRN2 protein, which is a member of the Polycomb Repressive Complex2, is controlled by the N-end rule pathway and that this regulation responses to both cold and hypoxia stress. Whilst the VRN2 gene is expressed throughout the plant, the N-end rule degradation pathway ensures that the protein is restricted to meristematic regions until the plant senses the appropriate abiotic stress. Classically VRN2 has been linked to the regulation of flowering time by altering gene expression at the FLC locus so this study introduces new complexity into this process through the involvement of the N-end rule pathway. More information on this linkage will undoubtedly follow over the coming years.

Daniel kindly discusses this paper on the GARNet YouTube channel.

Castel B, Tomlinson L, Locci F, Yang Y, Jones JDG (2019) Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS One. doi: 10.1371/journal.pone.0204778

Open Access

Baptiste Castel is lead author of this work conducted at the Sainsbury Laboratory, Norwich in Jonathan Jones’ group. They have conducted a detailed analysis of the factors that contribute to successful gene editing by CRISPR-Cas9, specifically in Arabidopsis. This includes assessing the efficacy of different promotor sequences, guideRNAs, versions of Cas9 enzyme and associated regulatory sequences in the editing of a specific locus. Given that researchers are finding that different plants have different requirements when it comes to successful gene editing, this type of analysis will be invaluable for anyone who plans to conduct a gene editing experiment in Arabidopsis.

Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG (2018) Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. doi: 10.1111/nph.15659

In this second paper led by Baptiste Castel, they used the techniques outlined in the paper above to generate a set of CRISPR mutants deficient in NRG1, which is a RPW8-NLR resistance (R) gene. These nrg1 mutants have compromised signalling in all tested downstream TIR-NLR resistance genes. In addition the authors demonstrate that this signalling is needed for resistance to oomycete but not bacterial infection. Therefore this study reveals some significant details regarding the components of the disease response that are influenced by the activity of NRG1.

Woodley Of Menie MA, Pawlik P, Webb MT, Bruce KD, Devlin PF (2018) Circadian leaf movements facilitate overtopping of neighbors. Prog Biophys Mol Biol. doi: 10.1016/j.pbiomolbio.2018.12.012

This work is led by Michael Woodley Of Menie from Paul Devlin’s lab at Royal Holloway College and investigates the role of circadian leaf movements during shade avoidance and overtopping. Arabidopsis plants were grow in a grid system that meant leaves would interact with their neighbours and the authors show that plants with a normal circadian rhythm gained an advantage over those adapted to a longer period in which they were grown. This overtopping was additive to the advantage gained through shade avoidance and overall this paper shows that maintainance of clock-aligned leaf movements are beneficial to growth.

Parry G, Harrison CJ (2019) GARNet gene editing workshop. New Phytol. doi: 10.1111/nph.15573

Open Access

GARNet advisory committee member Jill Harrison and GARNet coordinator Geraint Parry are authors on this meeting report resulting from a GARNet organised workshop on gene editing that took place in March 2018 at the University of Bristol. Coincidentally part of the paper discusses the work that was presented at the meeting by Baptiste Castel, which is published in the paper described above.

Arabidopsis Research Roundup: July 18th

Tags: No Tags
Comments: No Comments
Published on: July 18, 2017

This weeks Arabidopsis Research Roundup includes four studies from around the UK. Firstly is a systems-level study of the drought response that includes Alessandra Devoto from RHUL as a co-author. Secondly Anne Osbourn’s group at the JIC investigates sesterterpenoid biosynthesis across plant species. Thirdly Paul Jarvis from Oxford University adds to this groups portfolio of research on the mechanisms that control thylakoid import. Finally Patrick Gallois (University of Manchester) provides further insight into the regulation of programmed cell death.

Kim JM, To TK et al (2017) Acetate-mediated novel survival strategy against drought in plants Nature Plants http:/​/​dx.​doi.​org/10.1038/nplants.2017.97

Open with URL

Alessandra Devoto (Royal Holloway) is a co-author of this study led by Jong-Myong Kim, Mototaki Seki (RIKEN, Yokohama) and Taiko Kim Ko (University of Toyko) that investigates the system-wide alterations that plants make in response to drought stress. They demonstrate that the histone deacetylase HDA6 is the primary regulator of an epigenetic switch that leads to a metabolic flux conversion from glycolysis into acetate synthesis. This in turn stimulates the jasmonate signaling pathway that causes increased drought tolerance. Importantly the authors show that this critical survival response is evolutionarily conserved through monocots and dicots.

Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A (2017) Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. PNAS http:/​/​dx.​doi.​org/10.1073/pnas.1705567114

Open Access

Anne Osbourn (JIC) leads this study in which her group works with collaborators from Cambridge, Wageningen and UC Davis to perform a cross-species genome-wide analysis of sesterterpenoid biosynthesis. They use a novel search algorithm to identify paired enzymatic components that comprise sesterterpene synthases (STS). These enzymes were transiently overexpressed in tobacco leaves, resulting in the formation of fungal-like sesterterpenes, suggestive of convergent evolution of plant and fungal STS. This study illuminates possible future strategies for the beneficial use of sesterterpenes through metabolic and protein engineering

Bédard J, Trösch R, Wu F, Ling Q, Flores-Pérez Ú, Töpel M, Nawaz F, Jarvis P (2017) New Suppressors of the Chloroplast Protein Import Mutant tic40 Reveal a Genetic Link between Protein Import and Thylakoid Biogenesis. Plant Cell. http:/​/​dx.​doi.​org/10.1105/tpc.16.00962 Open Access

Paul Jarvis (Oxford University) leads this global collaboration that focuses on the chloroplast protein import protein Tic40. A suppressor screen identified two novel regulators of Tic40, ALB4 and STIC2 that they postulate are involved in the thylakoid targeting of a subset of proteins and that their influence becomes more important in the absence of Tic40.

Cai YM, Yu J, Ge Y, Mironov A, Gallois P (2017) Two proteases with caspase-3-like activity, cathepsin B and proteasome, antagonistically control ER-stress-induced programmed cell death in Arabidopsis. New Phytol.

http:/​/​dx.​doi.​org/10.1111/nph.14676 Open Access

Patrick Gallois is the corresponding author on this study that originates at the University of Manchester. They attempt to establish a role for cathepsin B and proteasome subunit PBA1 in the control of programmed cell death (PCD) and whether their functions interest with those of caspase-3. They reveal a complex system of regulation where aspects of PCD are differentially impacted by each of these proteins. They propose the role of cathepsin B might occur late in PCD following tonoplast rupture.

Arabidopsis Research Roundup: March 24th

Tags: No Tags
Comments: No Comments
Published on: March 24, 2016

Just three papers this week in the UK Arabidopsis Research Roundup. Firstly Professor Anna Amtmann provides an audio description of her groups characterisation of the binding partners of the Histone Deacetylase Complex1 protein. Secondly Dr Carine De Marcos Lousa leads a study that investigates a set of plant-specific proteins involved in the cellular secretory pathway. Finally Dr Paul Devlin is a contributor to a study that characterises the role of a nucleoporin protein in the shade avoidance response.

Perrella G, Carr C, Asensi-Fabado MA, Donald NA, Páldi K, Hannah MA, Amtmann A (2016) The Histone Deacetylase Complex (HDC) 1 protein of Arabidopsis thaliana has the capacity to interact with multiple proteins including histone 3-binding proteins and histone 1 variants. Plant Physiol. Open Access

Anna Amtmann (Glasgow) leads this European collaboration that investigates the binding capability of the Histone Deacetylase Complex (HDC) 1 protein, which has been previously shown to regulate multiple growth phenotypes due to its interaction with histone deacetylases. HDC1 proteins are ubiquitously present throughout plant tissues yet their secondary structure offers little clue to their specific binding interactions. Therefore this attempt to dissect the interaction spectrum of HDC1 and discovered that the protein interacts with different histone3 (H3) binding proteins but not H3 itself. Interestingly HDC1 could also interact with different variants of the H1 histone linker protein. The authors show that the ancestral core of HDC1 had a narrower range of interactions indicating that over evolutionary time the protein had developed more promiscuous binding. However even the conserved portion of the protein is able to interact with H3-associated proteins and H1, indicating that HDC1 played an important role in the establishment of interactions between histones and modifying enzymes.

Professor Amtmann kindly provides a short audio description of this paper. Apologies for the variation in sound quality and volume!

de Marcos Lousa C, Soubeyrand E, Bolognese P, Wattelet-Boyer V, Bouyssou G, Marais C, Boutté Y, Filippini F, Moreau P (2016) Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway J Exp Bot. Open Access

Carine De Marcos Lousa (Leeds Beckett)  is the lead author in the UK-French-Italian study that investigates the activity of plant specific R-SNARE proteins, called longins. SNARE proteins are critical for the membrane fusion events that occur during intracellular transport. A new four-member family of longins called ‘phytolongins’ (Phyl) that lack a typical SNARE domain have recently been discovered. These ubiquituosly expressed proteins are distributed throughout the secretory pathway with different members localised at ER, Golgi apparatus or post-Golgi compartments. Furthermore the export of the Phyl1.1 protein from the ER is dependent on a Y48F49 motif as well as the activity of at least three accessory proteins. This manuscript is the first characterisation of Phyl subcellular localisation and adds to our knowledge of specific mechanisms involved in the plant secretory pathway.

Gallemí M, Galstyan A, Paulišić S, Then C, Ferrández-Ayela A, Lorenzo-Orts L, Roig-Villanova I, Wang X, Micol JL, Ponce MR, Devlin PF, Martínez-García JF (2016) DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development.

This Spanish-led study includes Dr Paul Devlin (RHUL) and introduces a new gene that is involved in the shade-avoidance-response in Arabidopsis. The DRACULA2 gene is a homolog of the metazoan nucleoporin NUP98, which is a component of the nuclear pore complex (NPC). The authors find that other members of the NPC are also involved in the control of hypocotyl elongation in response to proximity of other plants. This is likely due to nuclear transport-dependent processes. However the authors suggest that DRA2 also has a transport-independent role that is related to its physical association with the NPC. This demonstrates that nucleoporins play an important role in plant signaling, although assigning specificity to their activity remains difficult given their general role in nucleocytoplasmic transport.

Arabidopsis Research Roundup: March 18th

Tags: No Tags
Comments: No Comments
Published on: March 18, 2016

This weeks Arabidopsis Research Roundup includes three papers from the Norwich Research Park on very different topics. Firstly the team of Richard Morris investigates the nature of mRNA sequences that are transported over long-distances. Secondly Kristen Bomblies introduces a set of genes involved in the evolution of weediness whilst finally Cyril Zipfel is involved in research that developed a novel assay for identification of defence signaling components. Elsewhere Paul Devlin’s group from RHUL characterises the interactions between components of a light signaling pathway whilst Alex Webb and co-workers use a novel assay to confirm the activity of plant nucleotide cyclases involved in calcium signaling.

Calderwood A, Kopriva S, Morris RJ (2016) Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell Open Access

Richard Morris (JIC) is the lead author on this ‘Breakthrough Report’ that analyses previously generated data in order to ascertain whether populations of mRNAs that are transported long-distances in the phloem are selected by any mechanism. They showed that in general mobile transcripts can be explained by their abundance and half-life, leading to the conclusion that the majority of transported mRNAs are not selected on the basis of their primary sequence.


Recent ECR Research Grant awardee Kristen Bomblies (JIC) leads this investigation into growth variation in Arabidopsis Arenosa. This obligate outbreeding relative of A.thaliana is normally not weedy but can transition to weediness in conditions of high disturbance. This study uses transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to investigate a weedy population of A.arenosa that has been discovered growing along railway lines through central and Northern Europe. These plants show constitutive upregulation of genes involved in heat shock and freezing tolerance. Amongst the genes that were strongly selected in the weedy population was LATE ELONGATED HYPOCOTYL (LHY), which is known to regulate many stress-regulated genes in A.thaliana and therefore might be a significant determinant in the evolution of weediness.

Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana Proc Natl Acad Sci U S A.

This Australian-Austrian-UK collaboration includes work from the lab of Cyril Zipfel (TSL). The initial work in this study uses the Nicotiana benthamiana expression system to identify novel leucine-rich repeat (LRR)-containing pattern recognition receptors (PRR) that interact with the BRI1-ASSOCIATED KINASE1 (BAK1) protein, which is important in recognition of bacterial pathogens. N.benthamiana plants were treated with the effector peptide csp22 and the resulting samples were immunopurified with BAK1. They identified a protein termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR) which, when silenced in tobacco resulted in reduced defence responses to the csp22 peptide. Subsequent expression of NbCSPR in Arabidopsis caused antibacterial resistance. Primarily the authors demonstrate a novel protocol that could be used to identify further novel components in signaling pathways that response to pathogen attack.

Siddiqui H, Khan S, Rhodes BM, Devlin PF (2016) FHY3 and FAR1 Act Downstream of Light Stable Phytochromes Front Plant Sci. 7:175 Open Access
Paul Devlin (RHUL) is the lead on this study that looks at the regulation of the ELF4 gene. This gene is a light-dependent target for the transcription factors FHY3 and FAR1 and the authors demonstrate that this signaling acts via not only the phytochrome PhyA but also through phyB, phyD, and phyE. ELF4 induction by FHY3 and FAR1 occurs specifically in the evening, which allows expression of ELF4 beyond dusk during shortening days. Without the action of the two transcription factors, this ELF4 expression is not maintained resulting in further downstream gene expression changes that alters the cycling of the circadian clock.

Abdul-Awal SM, Hotta CT, Dodd AN, Davey MP, Smith AG, Webb AA (2016) NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis Plant Physiol. Open Access

This study continues Alex Webb’s (Cambridge) work in the area of calcium signaling by investigating the control of cyclic ADP-ribose (cADPR) production in Arabidopsis. Although the role of cADPR in plant signaling is well established there are no ADPR cyclase enzymes with strong similarity to known metazoan enzymes in previously interrogated plant genomes. This argues for either a unique synthesis route for cADPR or for the activity of an enzyme with low sequence similarity to previously characterized cyclases. To test these difference ideas the authors developed two novel fluorescence-based assays to measure ADPR cyclase activity. These assays reveal that indeed there is activity that resembles the characteristics of a cyclase, which additionally is activated by nitric oxide (NO). This potentially links NO signaling activity to increased levels of cADPR and mobilisation of a calcium signal.

page 1 of 1

Follow Me
May 2019
« Apr    

Welcome , today is Friday, May 24, 2019