GARNet Research Roundup: July 17th 2020

This edition of GARNet Research Roundup begins with a remarkable four papers that include work from Caroline Dean’s lab at the John Innes Centre. The first two papers are collaborations with members of Martin Howard’s lab and look at the molecular mechanisms that control long-term cold sensing or the antisense regulation of FLC respectively. The third paper looks at the function of the ICU1-associated PRC2 complex while the final ‘Dean-lab’ paper is a collaboration with Judith Irwin and looks at regulation of flowering time in Brassica napus.

The next three papers also feature authors from the John Innes Centre. The first looks at the role of mRNA methylation in the control of leaf organogenesis; the second paper investigates how AXR1 functions in the methylation of transposable elements and the final paper characterises a new method for the automated measurement of seeds.

The first non-JIC paper in this Roundup is led by Robert Caine from the University of Sheffield and characterises stomatal development in Physcomitrium patens. Andrea Harper at the University of York leads the next paper that applies an associative transcriptomics approach to the genome of Brassica juncea.

The next paper includes co-authors from Aberystwyth and characterises a molecular interaction from pollen tubes that can stimulate ectopic programmed cell death. The final two papers include co-authors from the University of Oxford. Firstly Paul Jarvis is involved with a Japanese study that looks at chloroplast autophagy and ubiquitination. Finally Nick Harberd is co-author on a Chinese study looking at iron accumulation in Arabidopsis seeds.


Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M (2020) Temperature-dependent growth contributes to long-term cold sensing Nature; 10.1038/s41586-020-2485-4. doi:10.1038/s41586-020-2485-4

Yusheng Zhao is first author on this work from the Howard and Dean labs at the John Innes Centre. They reveal a molecular mechanism that underpins the ability of plants to sense the winter period. They show that abundance of the transcription factor NTL8 is critical for the control of expression of the VERNALIZATION INSENSITIVE 3 protein, which in turn epigenetically silences FLC throughout the winter.

https://www.nature.com/articles/s41586-020-2485-4

Fang X, Wu Z, Raitskin O, et al (2020) The 3′ processing of antisense RNAs physically links to chromatin-based transcriptional control Proc Natl Acad Sci U S A. 2020;202007268. doi:10.1073/pnas.2007268117

Open Access

Xiaofeng Feng works with the Howard and Dean labs at the John Innes Centre and is lead author on this research. The authors provide molecular detail to the complex control of antisense RNA regulation of the FLC locus, which provides a link to epigenetic silencing via the Polycomb Repressive Complex 2.


Bloomer RH, Hutchison CE, Bäurle I, et al (2020) The Arabidopsis epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2 Proc Natl Acad Sci U S A. 2020;201920621. doi:10.1073/pnas.1920621117 Open Access

Rebecca Bloomer is first author on this collaboration between researchers at the John Innes Centre and the University of Edinburgh. They identify INCURVATA11 (ICU11) as a Polycomb Repressive Complex 2 (PRC2) accessory protein that co-localises with the core components of the PRC2. The ICU1-associated PRC2 complex controls H3K36me3 demethylation at the FLC locus, revealing an additional mechanism for the control of flowering time.


Tudor EH, Jones DM, He Z, et al (2020) QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus) Plant Biotechnol J. 2020;10.1111/pbi.13421. doi:10.1111/pbi.13421 Open Access

Eleri Tudor is first author on this work from the Dean and Irwin labs at the John Innes Centre. They characterise the key floral regulators FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING LOCUS T (BnaFT.A02) in Brassica napus, showing that allelic variation at these loci is importance for the close-association between vernalisation and flowering time.

https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.13421

Arribas-Hernández L, Simonini S, Hansen MH, et al (2020) Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis Development. doi:10.1242/dev.189134 Open Access

Laura Arribas-Hernández is lead author on this Danish-UK collaboration that includes Sara Simonini and Lars Ostergaard from the John Innes Centre as co-authors. They look at the role of YTH-domain proteins ECT2, ECT3 and ECT4 during leaf development. They show that the methylated mRNA (m6A)-binding site of these proteins is essential for their function, highlighting the m6A-ECT2/ECT3/ECT4 axis as an important module to stimulate plant organogenesis.

https://dev.biologists.org/content/early/2020/06/30/dev.189134.long

Christophorou N, She W, Long J, et al (2020) AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization PLoS Genet. 16(6):e1008894. doi:10.1371/journal.pgen.1008894 Open Access

This collaboration between Université Paris-Saclay and the John Innes Centre includes Nicolas Christophorou as first author. They investigate the role of the well-characterised NEDD8/RUB1 E1 ligase AXR1 in DNA methylation of transposable elements. This links the role of AXR1 with its previously characterised effects in hormone signalling and in the control of the formation of meiotic crossovers.


Colmer J, O’Neill CM, Wells R, et al (2020) SeedGerm: a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination New Phytol. 10.1111/nph.16736. doi:10.1111/nph.16736 Open Access

This UK-Chinese-Dutch collaboration is led by Joshua Colmer and introduces a new phenotyping platform that was tested against a diverse panel of Brassica napus varieties. This SeedGerm hardware and software measures seed germination, automates seed imaging and is a platform for machine-learning based phenotypic analysis. This will hopefully be a useful tool for the investigation of critical seed phenotypes.

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16736

Caine RS, Chater CCC, Fleming AJ, Gray JE (2020) Stomata and Sporophytes of the Model Moss Physcomitrium patens. Front Plant Sci. 2020;11:643. doi:10.3389/fpls.2020.00643 Open Access

Bobby Caine from the University of Sheffield is lead author on this research that characterises stomatal development in the model moss species Physcomitrium patens. Although they show key differences in stomatal development between Physcomitrium and Arabidopsis, key regulators of this process in higher plants also functions in mosses, providing important evolutionary insights.

https://www.frontiersin.org/articles/10.3389/fpls.2020.00643/full

Harper AL, He Z, Langer S, et al (2020) Validation of an Associative Transcriptomics platform in the polyploid crop species Brassica juncea by dissection of the genetic architecture of agronomic and quality traits Plant J. 2020;10.1111/tpj.14876. doi:10.1111/tpj.14876  Open Access

GARNet committee member Andrea Harper from the University of York leads this research that employs associative transcriptomics analysis in Brassica juncea. To generate this analysis platform they mapped transcriptome data from a diverse panel of B. juncea accessions to produce a pan-transcriptome reference. This will be a useful research for the mapping of loci involved in important agronomic traits.


Lin Z, Xie F, Trivino M, et al. (2020) Ectopic expression of a self-incompatibility module triggers growth arrest and cell death in vegetative cells Plant Physiol. doi:10.1104/pp.20.00292 Open Access

Zongcheng Lin is first author on this Belgium-led study that includes Marina Trivino and Maurice Bosch from IBERS, Aberystwyth University as co-authors. They look at the interaction between cognate PrsS and PrpS proteins that are involved in the pollen self-incompatibility response in poppy. By ectopic expression in Arabidopsis roots they show that this interaction can cause programmed cell death (PCD) in vegetative tissues. This signalling module may become an important tool for inducible PCD in other developmental contexts.

http://www.plantphysiol.org/content/early/2020/06/19/pp.20.00292.long

Kikuchi Y, Nakamura S, Woodson JD, et al (2020) Chloroplast autophagy and ubiquitination combine to manage oxidative damage and starvation responses Plant Physiol. 2020;pp.00237.2020. doi:10.1104/pp.20.00237 Open Access

Paul Jarvis from the University of Oxford is a co-author on this Japanese study led by Yuta Kikuchi. This work demonstrates that autophagy and chloroplast-associated ubiquitin ligase E3s cooperate for protein turnover, management of ROS accumulation, and adaptation to starvation.


Sun Y, Li JQ, Yan JY, et al (2020) Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor J Integr Plant Biol. 10.1111/jipb.12986. doi:10.1111/jipb.12986

Nick Harberd from the University of Oxford is a co-author on this Chinese study led by Ying Sun at Zhejiang University in Hangzhou. In this work they show that the ERF95 transcription factor regulates Arabidopsis seed Fe accumulation and through a series of investigations they are able to conclude that the gaseous hormone ethylene promotes seed Fe accumulation during seed maturation via an EIN3-ERF95-FER1-dependent signaling pathway.

GARNet Research Roundup: April 9th 2020

This Easter edition of the GARNet Research Roundup begins with research from Aberystwyth University that has developed a system for studying self-incompatability in self-compatible Arabidopsis. Next is an outstanding community-focussed study led from the John Innes Centre that outlines the development of new resources that better enable discovery-led science to be conducted within hexaploid wheat.

Third is a study led by the Dodd group at the JIC that links the circadian clock to water-use efficiency. The fourth paper is from the Edwards group at Bristol investigates the effect of higher temperatures on meiotic recombination in wheat. The fifth paper is from Rothamsted Research and introduces novel molecular tools that will be useful in future studies of the economically important weed Blackgrass.

The next paper includes co-authors from the Sainsbury lab in Norwich and looks at the role of carbonic anhydrases in plant immunity at higher levels of CO2. The seventh paper looks at the integration of light signaling and the circadian clock and includes Paul Devlin from RHUL as a co-author. The penultimate paper includes Gareth Jenkins from Glasgow as a co-author and looks at the perception of different wavelengths of UV light by the photoreceptor UVR8. The final paper includes Marko Hyvönen from Cambridge as a co-author and investigates the organisation of the RALF gene family in strawberry.


Wang L, Triviño M, Lin Z, Carli J, Eaves DJ, Van Damme D, Nowack MK, Franklin-Tong VE, Bosch M (2020) New opportunities and insights into Papaver self-incompatibility by imaging engineered Arabidopsis pollen. J Exp Bot. doi: 10.1093/jxb/eraa092 Open Access

Ludi Wang is first author on this work led from Maurice Bosch’s lab at Aberystwyth University. They have transferred their work on self-incompatability (SI) in Papaver into Arabidopsis, so as to take advantage of its excellent genetic resources. They show that the SI response can be recapitulated in Arabidopsis, even though it is self-compatible. This research has allowed them to discover new roles for clathrin-mediated endocytosis, the actin cytoskeleton and calcium signaling during SI.

Ludi and Maurice discuss this work on the GARNet Community podcast.


Adamski NM, Borrill P, Brinton J, Harrington SA, Marchal C, Bentley AR, Bovill WD, Cattivelli L, Cockram J, Contreras-Moreira B, Ford B, Ghosh S, Harwood W, Hassani-Pak K, Hayta S, Hickey LT, Kanyuka K, King J, Maccaferrri M, Naamati G, Pozniak CJ, Ramirez-Gonzalez RH, Sansaloni C, Trevaskis B, Wingen LU, Wulff BB, Uauy C (2020) A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. Elife. doi: 10.7554/eLife.55646 Open Access

This research is led from the Uauy lab at the John Innes Centre by Nikolai Adamski, Phillippa Borrill (now at Birmingham), Jemima Brinton, Sophie Harrington and Clemence Marchal. This team worked with collaborators based around the UK, in Australia, Canada and Mexico and they outline the resources that they have developed that will promote the use of wheat as an experimental organism for discovery-led research.


Simon NM, Graham CA, Comben NE, Hetherington AM, Dodd AN (2020) The circadian clock influences the long-term water use efficiency of Arabidopsis. Plant Physiol. doi: 10.1104/pp.20.00030 Open Access

This research is led by Noriane Simon who worked with Anthony Dodd at the University of Bristol and the John Innes Centre. They showed that misregulation of components that control the circadian oscillator causes alterations in water-use efficiency in Arabidopsis plants. This response is linked to the control of transpiration via circadian control of guard cell physiology.


Coulton A, Burridge AJ, Edwards KJ (2020) Examining the Effects of Temperature on Recombination in Wheat. Front Plant Sci. doi: 10.3389/fpls.2020.00230 Open Access

Alexander Coulton is lead author on this study from the University of Bristol that has looked at how temperature changes alter the landscape of meiotic recombination in wheat. Despite showing that high temperature induces movement of recombination events toward centromeres, the overall effect is limited due to the tight linkages of many wheat genes.


Mellado-Sánchez M, McDiarmid F, Cardoso V, Kanyuka K, MacGregor DR (2020) Virus-mediated transient expression techniques enable gene function studies in black-grass. Plant Physiol. doi: 10.1104/pp.20.00205 Open Access

This Letter to the editor of Plant Physiology is led by Macarena Mellado-Sánchez, who works with Dana MacGregor at Rothamsted Research. They demonstrate the first usage of Virus-mediated gene silencing (VIGS) and Virus-mediated protein overexpression (VOX) in Blackgrass, which is a significant crop weed. They use these techniques in genetic gain and loss of function studies that result in changes in herbicide resistance in transformed blackgrass. Hopefully this work can be a prelude to future research in this potentially important experimental system for understanding how weeds effect crop yields.

http://www.plantphysiol.org/content/early/2020/04/01/pp.20.00205.long

Zhou Y, Vroegop-Vos IA, Van Dijken AJH, Van der Does D, Zipfel C, Pieterse CMJ, Van Wees SCM (2020) Carbonic anhydrases CA1 and CA4 function in atmospheric CO(2)-modulated disease resistance. Planta. doi: 10.1007/s00425-020-03370-w

Yeling Zhou is first author on this Dutch-led research that includes Dieuwertje Van der Does and Cyril Zipfel from the Sainsbury lab in Norwich. They show that the Carbonic anhydrases CA1 and CA4 play a role in plant immunity under higher levels of atmospheric CO2. This indicates that these genes might be future targets for improving plant disease resistance.


Liu Y, Ma M, Li G, Yuan L, Xie Y, Wei H, Ma X, Li Q, Devlin PF, Xu X, Wang H (2020) Transcription Factors FHY3 and FAR1 Regulate Light-induced CIRCADIAN CLOCK ASSOCIATED1 Gene Expression in Arabidopsis. Plant Cell. doi: 10.1105/tpc.19.00981

Paul Devlin from RHUL is a co-author on this Chinese-study led by Yang Liu. They show that FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its paralogue FAR-RED IMPAIRED RESPONSE1 (FAR1) are essential for light induction of CCA1, which contracts to the repressive effect of PHYTOCHROME INTERACTING FACTOR 5 (PIF5). They introduce an integrated photosensory signaling pathway that brings together light signalling with control of the circadian clock.


Rai N, O’Hara A, Farkas D, Safronov O, Ratanasopa K, Wang F, Lindfors AV, Jenkins GI, Lehto T, Salojärvi J, Brosché M, Strid Å, Aphalo PJ, Morales LO. (2020) The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant Cell Environ. doi: 10.1111/pce.13752 Open Access

Neha Rai is first author on this Finnish-led study that includes Gareth Jenkins from the University of Glasgow as a co-author. They investigated the response of the photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) to UV wavelengths included in sunlight. They show that the wavelength of 350 nm is an important cut-off for the perception of UV-B and UV-A by these different photoreceptors.

https://onlinelibrary.wiley.com/doi/full/10.1111/pce.13752

Negrini F, O’Grady K, Hyvönen M, Folta KM, Baraldi E (2020) Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS One. doi: 10.1371/journal.pone.0226448 Open Access

Marko Hyvönen working at the University of Cambridge is a co-author on this Italian-US collaboration led by Francesca Negrini. This work describes the genomic organisation of the family of the Rapid Alkalinization Factors (RALFs) in octoploid strawberry. In addition they describe the upregulation of one family member, FanRALF3-1, during fungal infection. This will lead to future research aimed at defining the precise molecular relationship between FanRALF3-1 expression and the immune response in strawberry.

GARNet Research Roundup: June 12th 2019

In another big edition of the GARNet Research Roundup we cover many different areas of research that utilise a varied group of experimental organisms!

The first paper from the Feng lab at the John Innes Centre performs an assessment of the factors influencing heterochromatin activity in sperm companion cells. Second is work from the JIC and Cardiff University that looks at the role of an auxin minima during fruit valve margin differentiation.

The next two papers have authors from Edinburgh. Firstly the McCormick lab has developed a stereo-based 3D imaging system for plants while Steven Spoel is a co-author on a study that looks at the pathogen responsive gene NPR1.

Coming from across the M8 is a paper from the Christie lab in Glasgow that looks into using phototropin genes as potential targets for crop improvement.

The next paper is from Oxford Brookes University where they visualise the movement of protein nanodomain clusters within the plasma membrane. Elsewhere in Oxford is a paper from the van der Hoorn group that characterises the effect of a novel triazine herbicide.

Two papers from the University of Durham also identify and characterise the role of novel herbicides, in this case on the activity of inositol phosphorylceramide synthases.

The final five papers feature research that each use different experimental organisms. Firstly a paper from the Earlham Institute uses delayed fluorescence to investigate the circadian clock in wheat and OSR. Second is a paper from Warwick that assesses the role of nodulation during nitrogen uptake in Medicago. The next paper features the Yant lab at University of Nottingham looks at growth of two species of Arabidopsis in challenging environments.

The penultimate paper includes authors from the University of Oxford and provides a detailed analysis of the factors controlling leaf shape in Cardamine and Arabidopsis thaliana. The final paper uses the imaging facility at the Hounsfield facility in Nottingham to image the roots of date palms.


He S, Vickers M, Zhang J, Feng X (2019) Natural depletion of H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. Elife. doi: 10.7554/eLife.42530

Open Access

Lead author on his paper is Shengbo He from Xiaoqi Feng’s lab at the John Innes Centre. This work looks at activation of Transposable elements (TEs) in the sperm companion cell of Arabidopsis. This is catalyzed by the DEMETER-catalyzed DNA demethylation in regions depleted of histone H1, demonstrating a key role for H1 in determining heterochromatin activity.

https://elifesciences.org/articles/42530

Li XR, Vroomans RMA, Fox S, Grieneisen VA, Østergaard L, Marée AFM (2019) Systems Biology Approach Pinpoints Minimum Requirements for Auxin Distribution during Fruit Opening. Mol Plant. doi: 10.1016/j.molp.2019.05.003

Open Access

Xin-Ran Li and Renske Vroomans are co-lead authors on this work from the Ostergaard, Grieneisen and Maree labs from the John Innes Centre and (now) Cardiff University.They look at the role of an auxin minima in the control of valve margin differentiation in Arabidopsis fruit. They used a cycle of experimental-modeling to develop a model that predicts the maturation of the auxin minimum to ensure timely fruit opening and seed dispersal.


Bernotas G, Scorza LCT, Hansen MF, Hales IJ, Halliday KJ, Smith LN, Smith ML, McCormick AJ (2019) A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. Gigascience. doi: 10.1093/gigascience/giz056

Open Access

Gytis Bernotas from UWE and Livia Scorza from the McCormick lab at the University of Edinburgh lead this work that is the result of a 2+ year collaboration with the Melvyn Smith and others at the Computer Machine Vision (CMV) facility at UWE. The authors have developed hardware and software (including a deep neural network) to automate the 3D imaging and segmentation of rosettes and individual leaves using a photometric stereo approach.

https://academic.oup.com/gigascience/article/8/5/giz056/5498634

Chen J, Mohan R, Zhang Y, Li M, Chen H, Palmer IA, Chang M, Qi G, Spoel SH, Mengiste T, Wang D, Liu F, Fu ZQ (2019) NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol. doi: 10.1104/pp.19.00124

GARNet chairman Steven Spoel is a co-author on this US-led study with Jian Chen as lead author. The paper investigates the interacting partners of NPR1 (NONEXPRESSER OF PR GENES 1), which is a master regulator of salicyclic signaling and therefore an important regulation of plant defense response.


Hart JE, Sullivan S, Hermanowicz P, Petersen J, Diaz-Ramos LA, Hoey DJ, Łabuz J, Christie JM (2019) Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1902915116

Open Access

Jaynee Hart is first author on this research from Christie lab at the University of Glasgow in which they target the phototropin blue light receptor as a candidate for crop improvement. They showed plants that engineered to have a slow-photocycling version of PHOT1 or PHOT2 had increased biomass under low light conditions, due to their increased sensitivity to low light.


McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW, Martin-Fernandez ML, Hawes C, Runions J (2019) The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1819077116

Open Access

Joe McKenna from Oxford Brookes University leads this work that takes advantage of their superb imaging facilities to assess the dynamic regulation of specific protein clusters in the Arabidopsis plasma membrane. They show that the cytoskeleton (both actin and microtubule) and the cell wall play roles in the control of intra-PM moment of the pathogen receptor FLS2 and the auxin transporter PIN3.

https://www.pnas.org/content/early/2019/06/07/1819077116

Morimoto K, Cole KS, Kourelis J, Witt CH, Brown D, Krahn D, Stegmann M, Kaschani F, Kaiser M, Burton J, Mohammed S, Yamaguchi-Shinozaki K, Weerapana E, van der Hoorn RAL (2019) Triazine probes targeting ascorbate peroxidases in plants. Plant Physiol. doi: 10.1104/pp.19.00481

Open Access

Kyoko Morimoto is first author on this UK-German-Japanese collaboration led from the lab of GARNet committee member Renier van der Hoorn. They characterise the herbicidal effect of the small 1,3,5-triazine KSC-3 on ascorbate peroxidases (APXs) across a range of plant species.


Pinneh EC, Stoppel R, Knight H, Knight MR, Steel PG, Denny PW (2019) Expression levels of inositol phosphorylceramide synthase modulate plant responses to biotic and abiotic stress in Arabidopsis thaliana. PLoS One. doi: 10.1371/journal.pone.0217087

Open Access

Pinneh EC, Mina JG, Stark MJR, Lindell SD, Luemmen P, Knight MR, Steel PG, Denny PW (2019) The identification of small molecule inhibitors of the plant inositol phosphorylceramide synthase which demonstrate herbicidal activity. Sci Rep. doi: 10.1038/s41598-019-44544-1

Open Access

Elizabeth Pinneh leads these two papers from the Denny lab in Durham. In the first paper they use RNAseq data and analysis of overexpression transgenic lines to define the role of inositol phosphorylceramide synthase (IPCS) during abiotic and biotic stress responses.

Secondly they screened a panel of 11000 compounds for their activity against the AtIPCS2 in a yeast two-hybrid assay. Successful hits from the screen were confirmed with in vitro enzyme assays and in planta against Arabidopsis.


Rees H, Duncan S, Gould P, Wells R, Greenwood M, Brabbs T, Hall A (2019) A high-throughput delayed fluorescence method reveals underlying differences in the control of circadian rhythms in Triticum aestivum and Brassica napus. Plant Methods. doi: 10.1186/s13007-019-0436-6

Open Access

Hannah Rees from Anthony Hall’s lab at the Earlham Institute leads this methods paper that introduces the use of delayed fluorescence to investigate the circadian rhythms in wheat and oil seed rape.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0436-6

Lagunas B, Achom M, Bonyadi-Pour R, Pardal AJ, Richmond BL, Sergaki C, Vázquez S, Schäfer P, Ott S, Hammond J, Gifford ML (2019) Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula. Mol Plant. doi: 10.1016/j.molp.2019.03.014

Open Access

Beatriz Lagunas is lead author on this paper from the University of Warwick that investigates the role of nodulation in actual nitrogen uptake by the roots of Medicago truncatula. They use integrated molecular and phenotypic analysis to determine that the respond to nitrogen flux are processed on a whole plant level through multiple developmental processes.

https://www.cell.com/molecular-plant/fulltext/S1674-2052(19)30127-3?

Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L (2019) Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2018.0243

Open Access

Veronica Preite is first author on this UK-German collaboration led by Ute Kraemer and Levi Yant in Nottingham. They performed whole genome resequenced of 64 individuals of two Arabidopsis species that grow on calamine metalliferous sites (which have toxic levels of the zinc and cadmium). They revealed a modest amount of gene and network convergence in plants that have colonised these challenging environments.


Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska AL, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith RS, Tsiantis M (2019) A Growth-Based Framework for Leaf Shape Development and Diversity. doi: 10.1016/j.cell.2019.05.011

Open Access

Claudia Canales and Carla Galinha from Oxford are co-authors on this German-led study from Miltos Tsiantis’ lab that performs a detailed dissection of the growth parameters that control differences in leaf-shape in Cardamine and Arabidopsis. They show critical roles for the SHOOTMERISTEMLESS and REDUCED COMPLEXITY homeobox proteins to define differences in shape determination.


Xiao T, Raygoza AA, Pérez JC, Kirschner G, Deng Y, Atkinson B, Sturrock C, Lube V, Wang JY, Lubineau G, Al-Babili S, Ramírez LAC, Bennett MJ, Blilou I (2019) Emergent Protective Organogenesis in Date Palms: A Morpho-devo-dynamic Adaptive Strategy During Early Development. Plant Cell. doi: 10.1105/tpc.19.00008

Open Access

Members of the Hounsfield CT Imaging Facility 
at the University of Nottingham are co-authors on this paper that is led by Tingting Xiao from KAUST in Saudi Arabia. The paper takes a detailed look at root morphology in Date Palm.

GARNet Research Roundup: April 29th 2019

This edition of the GARNet research roundup features fundamental plant science research conducted in a range of experimental organisms. Firstly Liam Dolan’s lab in Oxford looks at the function of bHLHs proteins in cell differentiation across land plant evolution. Secondly Anthony Hall’s group at the Earlham Institute have identified a novel RecQ helicase involved in work exclusively conducted in wheat. Thirdly researchers from Nottingham work with Arabidopsis to characterise an EXPANSIN protein essential for lateral root development.

The fourth paper is the first of two that look at germination and uses a new model, Aethionema arabicum, to study the role of light in seed dormancy. This work includes research from Royal Holloway. The second ‘dormancy’ paper is from Peter Eastmond’s lab at Rothamsted and further characterises the DOG1 gene in Arabidopsis. The penultimate paper includes co-authors from Warwick and Leeds and introduces a novel chemical inhibitor of auxin transport. The final paper from researchers in Birmingham introduces the 3DCellAtlas Meristem, a powerful tool for cellular annotation of the shoot apical meristem.


Bonnot C, Hetherington AJ, Champion C, Breuninger H, Kelly S, Dolan L (2019) Neofunctionalisation of basic helix loop helix proteins occurred when embryophytes colonised the land. New Phytol. doi: 10.1111/nph.15829 https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15829

Clemence Bonnot is lead author on this study from Liam Dolan’s lab at the University of Oxford in which the authors assess the role of ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes during evolution of plant development. They look at the function of a member of this bHLH transcription factor family called CbbHLHVIII identified in the charophyceaen alga Chara braunii. This gene is expressed at specific morphologically important regions in the algae and cannot rescue the function of related RSL genes in Marchantia or Arabidopsis. This suggests that the function of RSL proteins in cell differentiation has evolved by neofunctionalisation through land plant lineages.


Gardiner LJ, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, Higgins JD, Hall N, Griffiths S, Clavijo BJ, Hall A (2019) Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol. 20(1):69. doi: 10.1186/s13059-019-1675-6 https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1675-6

Open Access

Laura Gardiner and Anthony Hall lead this work that was conducted at the Earlham Institute and uses a bespoke set of bioinformatic tools that allow fundamental questions to be asked in hexaploid wheat. They looked at crossover and gene conversion frequencies in 13 recombinant inbred mapping populations and were able to identity an important QTL and confirm functionality for a novel RecQ helicase gene. This gene does not exist in Arabidopsis and therefore this discovery-motivated research needed to be conducted in wheat. They hope that this identification will provide future opportunities to tackle the challenge of linkage drag when attempting to develop new crops varieties.


Ramakrishna P, Ruiz Duarte P, Rance GA, Schubert M, Vordermaier V, Vu LD, Murphy E, Vilches Barro A, Swarup K, Moirangthem K, Jørgensen B, van de Cotte B, Goh T, Lin Z, Voβ U, Beeckman T, Bennett MJ, Gevaert K, Maizel A, De Smet I (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci U S A. 2019 Apr 3. pii: 201820882. doi: 10.1073/pnas.1820882116 https://www.pnas.org/content/early/2019/04/02/1820882116.long

Open Access

This pan-European study is led by Priya Ramakrishna at the University of Nottingham and includes co-authors from the UK, Belgium, Germany and Denmark. The authors look at the lateral root development and characterise the function of the EXPANSIN A1 protein. This protein influences the physical changes in the cell wall that are needed to enable the asymmetry cell divisions that define the location of a new lateral root. Plants lacking EXPA1 function do not properly form lateral roots and are unable to correctly respond to an inductive auxin signal. This clearly demonstrates an important requirement for the activity of genes that transmit cell signals into the physical relationships that exist between cells.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

Mérai Z, Graeber K, Wilhelmsson P, Ullrich KK, Arshad W, Grosche C, Tarkowská D, Turečková V, Strnad M, Rensing SA, Leubner-Metzger G, Scheid OM (2019) Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. pii: erz146. doi: 10.1093/jxb/erz146

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz146/5428144

Open Access

This paper includes authors from the UK, Germany, Austria and the Czech Republic including Kai Graeber and Gerhard Leubner-Metzger at Royal Holloway. They introduce the Brassica Aethionema arabicum as a new model to investigate the mechanism of germination inhibition by light as they have identified accessions that are either light-sensitive or light-neutral. In contrast germination in Arabidopsis is stimulated by light. Transcriptome analysis of Aethionema arabicum accessions reveal expression changes in key hormone-regulated genes. Overall they show that largely the same module of molecular components are involved in control of of seed dormancy irrespective of the effect of light on germination. Therefore any phenotypic changes likely result from changes in the activity organisms-specific of these genes.

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz146/5428144

Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ (2019) Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR 67 transactivates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell. pii: tpc.00892.2018. doi: 10.1105/tpc.18.00892 http://www.plantcell.org/content/early/2019/04/08/tpc.18.00892.long

Open Access

http://www.plantcell.org/content/early/2019/04/08/tpc.18.00892.long

Fiona Bryant is lead author on this research from Rothamsted Research that investigates the factors that control expression of the DOG1 gene, which is a key regulator of seed dormancy. They show that LEUCINE ZIPPER TRANSCRIPTION FACTOR67 (bZIP67) regulates DOG1 expression and have uncovered a mechanism that describes the temperature-dependent regulation of DOG1 expression. Finally they identity a molecular change that explains known allelic difference in DOG1 function, which informs different levels of dormancy in different accessions.


Oochi A, Hajny J, Fukui K, Nakao Y, Gallei M, Quareshy M, Takahashi K, Kinoshita T, Harborough SR, Kepinski S, Kasahara H, Napier RM, Friml J, Hayashi KI (2019) Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiol. 2019 Apr 1. pii: pp.00201.2019. doi: 10.1104/pp.19.00201 http://www.plantphysiol.org/content/early/2019/04/01/pp.19.00201.long

Open Access

http://www.plantphysiol.org/content/early/2019/04/01/pp.19.00201.long

This Japanese-led study includes co-authors from the Universities of Warwick and Leeds and describes the identification of a novel positive chemical modulator of auxin cellular efflux. This aptly named PInStatic Acid (PISA) prevents PIN protein internalization yet does not impact the SCFTIR1/AFB signaling cascade. Therefore the authors hope that PISA will be a useful tool for unpicking the cellular mechanisms that control auxin transport.


Montenegro-Johnson T, Strauss S, Jackson MDB, Walker L, Smith RS, Bassel GW. (2019) 3D Cell Atlas Meristem: a tool for the global cellular annotation of shoot apical meristems. Plant Methods. 15:33. doi: 10.1186/s13007-019-0413-0

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

Open Access

Thomas Montenegro-Johnson, Soeren Strauss, Matthew Jackson and Liam Walker lead this methods paper that was prepared following research that took place at the University of Birmingham and the Max Planck Institute for Plant Breeding Research in Cologne. They describe the 3DCellAtlas Meristem, a tool allows the complete cellular annotation of cells within a shoot apical meristem (SAM), which they have successfully tested in both Arabidopsis and tomato. The authors state that ‘this provides a rapid and robust means to perform comprehensive cellular annotation of SAMs and digital single cell analyses, including cell geometry and gene expression’.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

GARNet Research Roundup: April 11th 2019

This edition of the GARNet Research Roundup is led by two papers from John Christie’s lab at the University of Glasgow. First is a study that looks at the function of the NPH3 protein during phototropism whilst the second paper is a collaboration with Mike Blatt’s group and has used an synthetic biology approach to increase plant biomass by altering stomatal conductance.

Third is a paper from the University Dundee and James Hutton Institute that looks at the extent of alternative splicing of long non-coding RNAs in response to cold stress.

The fourth paper is from Royal Holloway and defines the role of a MAP kinase module during meristem development. The fifth paper is led by Charles Spillane in Galway and includes Mary O’Connell at the University of Nottingham as a co-author and investigates the selective pressures that are applied to parentally imprinted genes.

The penultimate paper is from Aberystwyth and uses microCT imaging to determine grain parameters in wheat and barley whilst the final paper is from Queens Mary University of London looks at nonphotochemical quenching in Berteroa incana.


Sullivan S, Kharshiing E, Laird J, Sakai T, Christie J (2019) De-etiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL 3 Phosphorylation Status. Plant Physiol. doi: 10.1104/pp.19.00206

Open Access

Stuart Sullivan is first author on this work from John Christie’s lab at the University of Glasgow in which they investigate the functional significance of dephosphorylation of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) protein that occurs following activation of Phototropin receptor kinases. They show that plant greening (de-etiolation) enhances phototropic responses that are coincident with reduced NPH3 dephosphorylation and increased plasma membrane retention of the protein. They further investigate other genetic and environmental factors that impact NPH3 dephosphorylation, which allows young seedlings to maximise their establishment under changing light conditions.


Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR (2019) Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science. doi: 10.1126/science.aaw0046

Maria Papanatsiou is lead author on this work from the University of Glasgow that occured in the labs of Mike Blatt and John Christie. They aimed to address a phenomonen that occurs during changing environmental conditions in which stomatal dynamics lag behind biochemical photosynthetic changes. This prevents plants from maximising their outputs due to inefficiencies in gas and water exchange. In this work they express a synthetic blue light-gated K+ channel BLINK1 in guard cells. This introduced a K+ conductance to these cells resulting in accelerated stomatal opening under light exposure and closing after irradiation. Ultimately they show that this significantly increases biomass without incurring a water use cost. This approach has clear potential for improving plant productivity under changing environmental conditions.

https://science.sciencemag.org/content/363/6434/1456.long

Calixto CPG, Tzioutziou NA, James AB, Hornyik C, Guo W, Zhang R, Nimmo HG, Brown JWS (2019) Cold-Dependent Expression and Alternative Splicing of Arabidopsis Long Non-coding RNAs. Front Plant Sci. doi: 10.3389/fpls.2019.00235

Open Access

Cristiane Calixto and John Brown from the University of Dundee and the James Hutton Institute lead this study into alternative splicing of lncRNAs in response to cold. This is a follow-up to their large scale scale study on the extent of alternative splicing in Arabidopsis.  The authors identified 135 lncRNA genes with cold-dependent differential expression (DE) and/or differential alternative splicing (DAS), some of which were highly sensitive to small temperature changes. This system identified a set of lncRNAs that could be targets for future research aimed at understanding how plants respond to cold and freezing stresses.


Dóczi R, Hatzimasoura E, Farahi Bilooei S, Ahmad Z, Ditengou FA, López-Juez E, Palme K, Bögre L (2019) The MKK7-MPK6 MAP Kinase Module Is a Regulator of Meristem Quiescence or Active Growth in Arabidopsis. Front Plant Sci. doi: 10.3389/fpls.2019.00202

Open Access

Robert Doczi is the first author on this UK, Hungarian and German collaboration that is led from Royal Holloway University of London. They use genetic approaches to show that the MKK7-MPK6 MAP kinase module is a suppressor of meristem activity. They use mkk7 and mpk6 mutants as well as overexpression lines to demonstrate that perturbation of the MAPK signaling pathway alters both shoot and root meristem development and plays important roles in the control of plant developmental plasticity.


Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O’Connell MJ, Spillane C (2019) Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana. Mol Biol Evol. doi: 10.1093/molbev/msz063

Open Access

Reetu Tuteja from the National University of Ireland at Galway is first author on this paper that includes Mary O’Connell from the University of Nottingham. The authors used Arabidopsis to look at 140 endosperm-expressed genes that are regulated by genomic imprinting and found that they were evolving more rapidly than expected. This investigation was extended across 34 other plant species and they found that paternally, but not maternally imprinted genes were under positive selection, indicating that imprinted genes of different parental origin were subject to different selective pressures. This data supports a model wherein positive selection effects paternally-expressed genes that are under continued conflict with maternal sporophyte tissues.


Hughes N, Oliveira HR, Fradgley N, Corke FMK, Cockram J, Doonan JH, Nibau C (2019) μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. Plant J doi: 10.1111/tpj.14312

Open Access

Nathan Hughes and Candida Nibau at the Aberystwyth University lead this work that uses microCT imaging alongside novel image analysis techniques and mathematical modeling to assess grain size and shape across accessions of wheat and barley. They find that grain depth is a major driver of shape change and that it is also an excellent predictor of ploidy levels. In addition they have developed a model that enables the prediction of the origin of a grain sample from measurements of its length, width and depth.


Wilson S, Ruban AV (2019) Enhanced NPQ affects long-term acclimation in the spring ephemeral Berteroa incana. Biochim Biophys Acta Bioenerg. doi: 10.1016/j.bbabio.2019.03.005

This study is led by Sam Wilson and Alexander Ruban at QMUL and investigates nonphotochemical quenching in the Arabidopsis-relative Berteroa incana. They show that light tolerance and ability to recover from light stress is greatly enhanced in Berteroa compared to Arabidopsis. This is due to faster synthesis of zeaxanthin and a larger xanthophyll cycle (XC) pool available for deepoxidation. This result gives B.incana a greater capacity for protective NPQ allowing enhanced light-harvesting capability when acclimated to a range of light conditions. The authors suggest this short-term protection prevents the need for the metabolic toll of making long-term acclimations.

GARNet Research Roundup: Jan 11th 2019

The inaugural GARNet Research Roundup of 2019 firstly includes a paper from the University of Sheffield that has identified new pericentromeric epigenetic loci that affect the pathogen response. Secondly is a collaboration between researchers in Birmingham, Nottingham and Oxford that has identified a new mode of regulation of the VRN2 protein. Next are two papers from Jonathan Jones’ lab at The Sainsbury Laboratory in Norwich that firstly provides a toolkit for gene editing in Arabidopsis and secondly characterise the role of the NRG1 gene in the defense response. The penultimate paper is from Paul Devlin’s lab at RHUL and investigates the role of the circadian clock in the control of leaf overtopping whilst the final paper is a meeting report from a recent GARNet workshop on gene editing.


Furci L, Jain R, Stassen J, Berkowitz O, Whelan J, Roquis D, Baillet V, Colot V, Johannes F, Ton J (2019) Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. Elife. doi: 10.7554/eLife.40655.

Open Access

Leonardo Furci and Ritushree Jain are the lead authors on this study conducted at the University of Sheffield. The authors used a population of epigenetic recombinant inbred lines (epiRILs) to screen for resistance to the oomycete pathogen Hyaloperonospora arabidopsidis. These lines each share genetic information but have varied epigenetic changes. This analysis enabled the identification of plants with hypomethylated pericentromeric regions that were primed to better respond to the presence of this pathogen. The authors discuss the mechanism through which this might affect the defence response albeit without altering other aspects of plant growth.

https://elifesciences.org/articles/40655

Gibbs DJ, Tedds HM, Labandera AM, Bailey M, White MD, Hartman S, Sprigg C, Mogg SL, Osborne R, Dambire C, Boeckx T, Paling Z, Voesenek LACJ, Flashman E, Holdsworth MJ (2018) Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun. doi: 10.1038/s41467-018-07875-7

Open Access

This collaboration between the Universities of Birmingham, Nottingham, Oxford and colleagues in Utrecht is led by Daniel Gibbs. They demonstrate that the amount of VRN2 protein, which is a member of the Polycomb Repressive Complex2, is controlled by the N-end rule pathway and that this regulation responses to both cold and hypoxia stress. Whilst the VRN2 gene is expressed throughout the plant, the N-end rule degradation pathway ensures that the protein is restricted to meristematic regions until the plant senses the appropriate abiotic stress. Classically VRN2 has been linked to the regulation of flowering time by altering gene expression at the FLC locus so this study introduces new complexity into this process through the involvement of the N-end rule pathway. More information on this linkage will undoubtedly follow over the coming years.

Daniel kindly discusses this paper on the GARNet YouTube channel.


Castel B, Tomlinson L, Locci F, Yang Y, Jones JDG (2019) Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS One. doi: 10.1371/journal.pone.0204778

Open Access

Baptiste Castel is lead author of this work conducted at the Sainsbury Laboratory, Norwich in Jonathan Jones’ group. They have conducted a detailed analysis of the factors that contribute to successful gene editing by CRISPR-Cas9, specifically in Arabidopsis. This includes assessing the efficacy of different promotor sequences, guideRNAs, versions of Cas9 enzyme and associated regulatory sequences in the editing of a specific locus. Given that researchers are finding that different plants have different requirements when it comes to successful gene editing, this type of analysis will be invaluable for anyone who plans to conduct a gene editing experiment in Arabidopsis.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204778

Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG (2018) Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. doi: 10.1111/nph.15659

In this second paper led by Baptiste Castel, they used the techniques outlined in the paper above to generate a set of CRISPR mutants deficient in NRG1, which is a RPW8-NLR resistance (R) gene. These nrg1 mutants have compromised signalling in all tested downstream TIR-NLR resistance genes. In addition the authors demonstrate that this signalling is needed for resistance to oomycete but not bacterial infection. Therefore this study reveals some significant details regarding the components of the disease response that are influenced by the activity of NRG1.


Woodley Of Menie MA, Pawlik P, Webb MT, Bruce KD, Devlin PF (2018) Circadian leaf movements facilitate overtopping of neighbors. Prog Biophys Mol Biol. doi: 10.1016/j.pbiomolbio.2018.12.012

This work is led by Michael Woodley Of Menie from Paul Devlin’s lab at Royal Holloway College and investigates the role of circadian leaf movements during shade avoidance and overtopping. Arabidopsis plants were grow in a grid system that meant leaves would interact with their neighbours and the authors show that plants with a normal circadian rhythm gained an advantage over those adapted to a longer period in which they were grown. This overtopping was additive to the advantage gained through shade avoidance and overall this paper shows that maintainance of clock-aligned leaf movements are beneficial to growth.


Parry G, Harrison CJ (2019) GARNet gene editing workshop. New Phytol. doi: 10.1111/nph.15573

Open Access

GARNet advisory committee member Jill Harrison and GARNet coordinator Geraint Parry are authors on this meeting report resulting from a GARNet organised workshop on gene editing that took place in March 2018 at the University of Bristol. Coincidentally part of the paper discusses the work that was presented at the meeting by Baptiste Castel, which is published in the paper described above.

Arabidopsis Research Roundup: July 18th

Tags: No Tags
Comments: No Comments
Published on: July 18, 2017

This weeks Arabidopsis Research Roundup includes four studies from around the UK. Firstly is a systems-level study of the drought response that includes Alessandra Devoto from RHUL as a co-author. Secondly Anne Osbourn’s group at the JIC investigates sesterterpenoid biosynthesis across plant species. Thirdly Paul Jarvis from Oxford University adds to this groups portfolio of research on the mechanisms that control thylakoid import. Finally Patrick Gallois (University of Manchester) provides further insight into the regulation of programmed cell death.


Kim JM, To TK et al (2017) Acetate-mediated novel survival strategy against drought in plants Nature Plants http:/​/​dx.​doi.​org/10.1038/nplants.2017.97

Open with URL

Alessandra Devoto (Royal Holloway) is a co-author of this study led by Jong-Myong Kim, Mototaki Seki (RIKEN, Yokohama) and Taiko Kim Ko (University of Toyko) that investigates the system-wide alterations that plants make in response to drought stress. They demonstrate that the histone deacetylase HDA6 is the primary regulator of an epigenetic switch that leads to a metabolic flux conversion from glycolysis into acetate synthesis. This in turn stimulates the jasmonate signaling pathway that causes increased drought tolerance. Importantly the authors show that this critical survival response is evolutionarily conserved through monocots and dicots.


Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A (2017) Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. PNAS http:/​/​dx.​doi.​org/10.1073/pnas.1705567114

Open Access

Anne Osbourn (JIC) leads this study in which her group works with collaborators from Cambridge, Wageningen and UC Davis to perform a cross-species genome-wide analysis of sesterterpenoid biosynthesis. They use a novel search algorithm to identify paired enzymatic components that comprise sesterterpene synthases (STS). These enzymes were transiently overexpressed in tobacco leaves, resulting in the formation of fungal-like sesterterpenes, suggestive of convergent evolution of plant and fungal STS. This study illuminates possible future strategies for the beneficial use of sesterterpenes through metabolic and protein engineering


Bédard J, Trösch R, Wu F, Ling Q, Flores-Pérez Ú, Töpel M, Nawaz F, Jarvis P (2017) New Suppressors of the Chloroplast Protein Import Mutant tic40 Reveal a Genetic Link between Protein Import and Thylakoid Biogenesis. Plant Cell. http:/​/​dx.​doi.​org/10.1105/tpc.16.00962 Open Access

Paul Jarvis (Oxford University) leads this global collaboration that focuses on the chloroplast protein import protein Tic40. A suppressor screen identified two novel regulators of Tic40, ALB4 and STIC2 that they postulate are involved in the thylakoid targeting of a subset of proteins and that their influence becomes more important in the absence of Tic40.


Cai YM, Yu J, Ge Y, Mironov A, Gallois P (2017) Two proteases with caspase-3-like activity, cathepsin B and proteasome, antagonistically control ER-stress-induced programmed cell death in Arabidopsis. New Phytol.

http:/​/​dx.​doi.​org/10.1111/nph.14676 Open Access

Patrick Gallois is the corresponding author on this study that originates at the University of Manchester. They attempt to establish a role for cathepsin B and proteasome subunit PBA1 in the control of programmed cell death (PCD) and whether their functions interest with those of caspase-3. They reveal a complex system of regulation where aspects of PCD are differentially impacted by each of these proteins. They propose the role of cathepsin B might occur late in PCD following tonoplast rupture.

Arabidopsis Research Roundup: March 24th

Tags: No Tags
Comments: No Comments
Published on: March 24, 2016

Just three papers this week in the UK Arabidopsis Research Roundup. Firstly Professor Anna Amtmann provides an audio description of her groups characterisation of the binding partners of the Histone Deacetylase Complex1 protein. Secondly Dr Carine De Marcos Lousa leads a study that investigates a set of plant-specific proteins involved in the cellular secretory pathway. Finally Dr Paul Devlin is a contributor to a study that characterises the role of a nucleoporin protein in the shade avoidance response.

Perrella G, Carr C, Asensi-Fabado MA, Donald NA, Páldi K, Hannah MA, Amtmann A (2016) The Histone Deacetylase Complex (HDC) 1 protein of Arabidopsis thaliana has the capacity to interact with multiple proteins including histone 3-binding proteins and histone 1 variants. Plant Physiol. http://dx.doi.org/10.1104/pp.15.01760 Open Access

Anna Amtmann (Glasgow) leads this European collaboration that investigates the binding capability of the Histone Deacetylase Complex (HDC) 1 protein, which has been previously shown to regulate multiple growth phenotypes due to its interaction with histone deacetylases. HDC1 proteins are ubiquitously present throughout plant tissues yet their secondary structure offers little clue to their specific binding interactions. Therefore this attempt to dissect the interaction spectrum of HDC1 and discovered that the protein interacts with different histone3 (H3) binding proteins but not H3 itself. Interestingly HDC1 could also interact with different variants of the H1 histone linker protein. The authors show that the ancestral core of HDC1 had a narrower range of interactions indicating that over evolutionary time the protein had developed more promiscuous binding. However even the conserved portion of the protein is able to interact with H3-associated proteins and H1, indicating that HDC1 played an important role in the establishment of interactions between histones and modifying enzymes.

Professor Amtmann kindly provides a short audio description of this paper. Apologies for the variation in sound quality and volume!

de Marcos Lousa C, Soubeyrand E, Bolognese P, Wattelet-Boyer V, Bouyssou G, Marais C, Boutté Y, Filippini F, Moreau P (2016) Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway J Exp Bot. http://dx.doi.org/0.1093/jxb/erw094 Open Access

Carine De Marcos Lousa (Leeds Beckett)  is the lead author in the UK-French-Italian study that investigates the activity of plant specific R-SNARE proteins, called longins. SNARE proteins are critical for the membrane fusion events that occur during intracellular transport. A new four-member family of longins called ‘phytolongins’ (Phyl) that lack a typical SNARE domain have recently been discovered. These ubiquituosly expressed proteins are distributed throughout the secretory pathway with different members localised at ER, Golgi apparatus or post-Golgi compartments. Furthermore the export of the Phyl1.1 protein from the ER is dependent on a Y48F49 motif as well as the activity of at least three accessory proteins. This manuscript is the first characterisation of Phyl subcellular localisation and adds to our knowledge of specific mechanisms involved in the plant secretory pathway.

Gallemí M, Galstyan A, Paulišić S, Then C, Ferrández-Ayela A, Lorenzo-Orts L, Roig-Villanova I, Wang X, Micol JL, Ponce MR, Devlin PF, Martínez-García JF (2016) DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development. http://dx.doi.org/10.1242/dev.130211

This Spanish-led study includes Dr Paul Devlin (RHUL) and introduces a new gene that is involved in the shade-avoidance-response in Arabidopsis. The DRACULA2 gene is a homolog of the metazoan nucleoporin NUP98, which is a component of the nuclear pore complex (NPC). The authors find that other members of the NPC are also involved in the control of hypocotyl elongation in response to proximity of other plants. This is likely due to nuclear transport-dependent processes. However the authors suggest that DRA2 also has a transport-independent role that is related to its physical association with the NPC. This demonstrates that nucleoporins play an important role in plant signaling, although assigning specificity to their activity remains difficult given their general role in nucleocytoplasmic transport.

«page 1 of 2

Follow Me
TwitterRSS
GARNetweets
Categories
April 2024
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
2930  

Welcome , today is Sunday, April 28, 2024