GARNet Research Roundup: April 9th 2020

This Easter edition of the GARNet Research Roundup begins with research from Aberystwyth University that has developed a system for studying self-incompatability in self-compatible Arabidopsis. Next is an outstanding community-focussed study led from the John Innes Centre that outlines the development of new resources that better enable discovery-led science to be conducted within hexaploid wheat.

Third is a study led by the Dodd group at the JIC that links the circadian clock to water-use efficiency. The fourth paper is from the Edwards group at Bristol investigates the effect of higher temperatures on meiotic recombination in wheat. The fifth paper is from Rothamsted Research and introduces novel molecular tools that will be useful in future studies of the economically important weed Blackgrass.

The next paper includes co-authors from the Sainsbury lab in Norwich and looks at the role of carbonic anhydrases in plant immunity at higher levels of CO2. The seventh paper looks at the integration of light signaling and the circadian clock and includes Paul Devlin from RHUL as a co-author. The penultimate paper includes Gareth Jenkins from Glasgow as a co-author and looks at the perception of different wavelengths of UV light by the photoreceptor UVR8. The final paper includes Marko Hyvönen from Cambridge as a co-author and investigates the organisation of the RALF gene family in strawberry.


Wang L, Triviño M, Lin Z, Carli J, Eaves DJ, Van Damme D, Nowack MK, Franklin-Tong VE, Bosch M (2020) New opportunities and insights into Papaver self-incompatibility by imaging engineered Arabidopsis pollen. J Exp Bot. doi: 10.1093/jxb/eraa092 Open Access

Ludi Wang is first author on this work led from Maurice Bosch’s lab at Aberystwyth University. They have transferred their work on self-incompatability (SI) in Papaver into Arabidopsis, so as to take advantage of its excellent genetic resources. They show that the SI response can be recapitulated in Arabidopsis, even though it is self-compatible. This research has allowed them to discover new roles for clathrin-mediated endocytosis, the actin cytoskeleton and calcium signaling during SI.

Ludi and Maurice discuss this work on the GARNet Community podcast.


Adamski NM, Borrill P, Brinton J, Harrington SA, Marchal C, Bentley AR, Bovill WD, Cattivelli L, Cockram J, Contreras-Moreira B, Ford B, Ghosh S, Harwood W, Hassani-Pak K, Hayta S, Hickey LT, Kanyuka K, King J, Maccaferrri M, Naamati G, Pozniak CJ, Ramirez-Gonzalez RH, Sansaloni C, Trevaskis B, Wingen LU, Wulff BB, Uauy C (2020) A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. Elife. doi: 10.7554/eLife.55646 Open Access

This research is led from the Uauy lab at the John Innes Centre by Nikolai Adamski, Phillippa Borrill (now at Birmingham), Jemima Brinton, Sophie Harrington and Clemence Marchal. This team worked with collaborators based around the UK, in Australia, Canada and Mexico and they outline the resources that they have developed that will promote the use of wheat as an experimental organism for discovery-led research.


Simon NM, Graham CA, Comben NE, Hetherington AM, Dodd AN (2020) The circadian clock influences the long-term water use efficiency of Arabidopsis. Plant Physiol. doi: 10.1104/pp.20.00030 Open Access

This research is led by Noriane Simon who worked with Anthony Dodd at the University of Bristol and the John Innes Centre. They showed that misregulation of components that control the circadian oscillator causes alterations in water-use efficiency in Arabidopsis plants. This response is linked to the control of transpiration via circadian control of guard cell physiology.


Coulton A, Burridge AJ, Edwards KJ (2020) Examining the Effects of Temperature on Recombination in Wheat. Front Plant Sci. doi: 10.3389/fpls.2020.00230 Open Access

Alexander Coulton is lead author on this study from the University of Bristol that has looked at how temperature changes alter the landscape of meiotic recombination in wheat. Despite showing that high temperature induces movement of recombination events toward centromeres, the overall effect is limited due to the tight linkages of many wheat genes.


Mellado-Sánchez M, McDiarmid F, Cardoso V, Kanyuka K, MacGregor DR (2020) Virus-mediated transient expression techniques enable gene function studies in black-grass. Plant Physiol. doi: 10.1104/pp.20.00205 Open Access

This Letter to the editor of Plant Physiology is led by Macarena Mellado-Sánchez, who works with Dana MacGregor at Rothamsted Research. They demonstrate the first usage of Virus-mediated gene silencing (VIGS) and Virus-mediated protein overexpression (VOX) in Blackgrass, which is a significant crop weed. They use these techniques in genetic gain and loss of function studies that result in changes in herbicide resistance in transformed blackgrass. Hopefully this work can be a prelude to future research in this potentially important experimental system for understanding how weeds effect crop yields.

http://www.plantphysiol.org/content/early/2020/04/01/pp.20.00205.long

Zhou Y, Vroegop-Vos IA, Van Dijken AJH, Van der Does D, Zipfel C, Pieterse CMJ, Van Wees SCM (2020) Carbonic anhydrases CA1 and CA4 function in atmospheric CO(2)-modulated disease resistance. Planta. doi: 10.1007/s00425-020-03370-w

Yeling Zhou is first author on this Dutch-led research that includes Dieuwertje Van der Does and Cyril Zipfel from the Sainsbury lab in Norwich. They show that the Carbonic anhydrases CA1 and CA4 play a role in plant immunity under higher levels of atmospheric CO2. This indicates that these genes might be future targets for improving plant disease resistance.


Liu Y, Ma M, Li G, Yuan L, Xie Y, Wei H, Ma X, Li Q, Devlin PF, Xu X, Wang H (2020) Transcription Factors FHY3 and FAR1 Regulate Light-induced CIRCADIAN CLOCK ASSOCIATED1 Gene Expression in Arabidopsis. Plant Cell. doi: 10.1105/tpc.19.00981

Paul Devlin from RHUL is a co-author on this Chinese-study led by Yang Liu. They show that FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its paralogue FAR-RED IMPAIRED RESPONSE1 (FAR1) are essential for light induction of CCA1, which contracts to the repressive effect of PHYTOCHROME INTERACTING FACTOR 5 (PIF5). They introduce an integrated photosensory signaling pathway that brings together light signalling with control of the circadian clock.


Rai N, O’Hara A, Farkas D, Safronov O, Ratanasopa K, Wang F, Lindfors AV, Jenkins GI, Lehto T, Salojärvi J, Brosché M, Strid Å, Aphalo PJ, Morales LO. (2020) The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant Cell Environ. doi: 10.1111/pce.13752 Open Access

Neha Rai is first author on this Finnish-led study that includes Gareth Jenkins from the University of Glasgow as a co-author. They investigated the response of the photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) to UV wavelengths included in sunlight. They show that the wavelength of 350 nm is an important cut-off for the perception of UV-B and UV-A by these different photoreceptors.

https://onlinelibrary.wiley.com/doi/full/10.1111/pce.13752

Negrini F, O’Grady K, Hyvönen M, Folta KM, Baraldi E (2020) Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS One. doi: 10.1371/journal.pone.0226448 Open Access

Marko Hyvönen working at the University of Cambridge is a co-author on this Italian-US collaboration led by Francesca Negrini. This work describes the genomic organisation of the family of the Rapid Alkalinization Factors (RALFs) in octoploid strawberry. In addition they describe the upregulation of one family member, FanRALF3-1, during fungal infection. This will lead to future research aimed at defining the precise molecular relationship between FanRALF3-1 expression and the immune response in strawberry.



No Comments - Leave a comment

Leave a Reply


Welcome , today is Thursday, June 4, 2020