European Plant Science Retreat 2019:

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: July 15, 2019

University of Nottingham, July 8th-10th 2019

By Sophie Mogg, University of Manchester. @Mini_Moggy

The European Plant Science Retreat is an annual event hosted by PhD students for PhD students.

The fact that this event was orchestrated by my own peers was simply amazing and a feat not to be sniffed at.  As any PhD student knows, sometimes walking into those big society-led conferences can be daunting and even more so when you want to approach those in your field.

However, at the EPSR, it was a level playing field allowing for a more easy-going approach to networking – especially as those we were talking to could be potential collaborators in the near future.

The Organising Team!

The three days of proudly presented research was arranged in a series of talks and poster sessions to open the floor to like-minded students. Somewhat unusually only a few hours over the whole conference was dedicated to more experienced keynote speakers. This for me is what made the conference. Both new and more experienced PhD students were able to interact, share ideas and advice and feel free to ask questions that otherwise might not have been asked in a more ‘serious’ setting.

The keynote speakers themselves made quite the contribution, sharing with us their journey from being PhD students to their current revered positions! It was important for us to learn that each journey was DIFFERENT. What stuck with me was that there was no necessity to jump ship to another country, or even publish a single paper, in order to gain a post doc position.

Therefore as long as you persevere, remained passionate and show your worth, many doors will remain open for your future! It was great to hear their love for science in their voices as they told their tales.


Speaking with others at the conference, my experience wasn’t unique and I didn’t hear a single negative comment, no doubt owing to the great organisation and planning done by the EPSR2019 team.

Sadly, this was my first and only European Plant Science Retreat, but I hope that the tradition continues for many years, allowing students from across Europe to practice their networking skills, present their research and have a all round great experience at a conference designed especially for them.

Jason and Marty, part of the EPSR2019 team, offered words of wisdom for the 2020 organising team. They highlighted that although it may seem like a giant undertaking, especially in terms of sourcing funding from sponsors, that the entire team had improved their organisation and team-work skill sets, giving them invaluable experience that they will undoubtedly make use of in the future.

Finally they advised to keep it light and enjoy it! Because how often do you get to organise a conference?

Meeting attendees in the University of Nottingham Millennium Garden

Meeting Report from ICAR2019

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: July 11, 2019

Gina Garzón Martínez, Aberystwyth University

Four days full of knowledge, innovative research, interesting culture this is what summarizes my time at the ICAR2019, Wuhan, China.

Thanks to the Gatsby foundation and GARNet, I had the opportunity to attend the ICAR2019 conference in Wuhan, China. The meeting was hosted by the Huazhong Agricultural University-a partnership University which I also managed to visit during my stay in Wuhan.

Mornings at ICAR2019 started with a plenary sessions leading by scientists from Asia, Australia, USA and Europe who delighted us with their latest work in Arabidopsis. In particular, I found interesting a plenary session called “From Models to Crops”, where Barry Pogson from Australia showed us the importance of translational genetics. As an example, he showed us drought stress regulators discovered in Arabidopsis that also play a role in a range of crop plants such as wheat.

Barry Pogson gave a fantastic talk!

Every afternoon, there were concurrent sessions and more interesting talks given by PI researchers and early career scientists from all around the world. Of particular interest to me were the talks on the use of Arabidopsis to elucidate biotic and abiotic interactions. As an example, Lin Li from Fudan University gave a good talk about how the transcription factor PHY7 is involved in shade avoidance response when plants compete with their neighbours. Also, Ling Li from Mississippi State University shared with us her work in a starch gene with great potential to improve protein and disease resistance in other crops such as rice, soybean and corn, using innovative strategies.

Poster Session

At the end of the day, there was a poster session and a range of different workshops. I really enjoyed the workshop called “Communicating your science to the broader community” organized by Isabel Mendoza (Global Plant Council) and including Geraint Parry (GARNet) and Mary Williams (ASPB). This workshop gave me ideas of how I can increase the impact of my work by using social media and how to share my work not only to the scientific community but also to the regular public. Thanks to this workshop I gained more encouragement to be more active in social media, considering the importance of sharing my work with others at this stage of my PhD.

I really encourage all PhD students to not miss this kind of opportunities of networking, learning, sharing your work, along with having a cultural experience and making friends from other parts of the world. Next year, ICAR2020 will be held in the USA, followed by Belfast, UK in 2021, so I already recommend you to book some time off in your calendar and prepare for another productive and exciting week of science!

Gina with her poster

GARNet Research Roundup: July 5th 2019

This edition of the GARNet research roundup begins with a study from the University Leicester that investigates the rate of selection of genes expressed in Arabidopsis pollen.

The second and third papers focus on the function of members of the AP2 family of transcription factors. Sarah McKim’s lab in Dundee characterizes the role of APETALA2 during barley stem elongation whilst the other paper investigates the function of the Arabidopsis PUCHI gene and includes co-authors from the University of Nottingham.

The fourth paper is from Lars Ostergaard’s lab at the John Innes Centre and demonstrates the benefit of using models to understand developmental processes in crop plants. The next paper from the University of Glasgow investigates the plant response to low fluence rates of UV-B light.

The penultimate paper features authors from Oxford Brookes University and characterizes a novel LINC-KASH protein in maize whilst the final paper is from the University of Cambridge and investigates the novel function of two members of DUF579 family in methylation of glucuronic acid residues.


Harrison MC, Mallon EB, Twell D, Hammond RL (2019) Deleterious mutation accumulation in Arabidopsis thaliana pollen genes: a role for a recent relaxation of selection. Genome Biol Evol. doi: 10.1093/gbe/evz127

Open Access

This research from Hammond and Twell lab’s at the University of Leicester uses Arabidopsis to investigate the hypothesis that pollen genes evolve faster than sporophytic genes. This study is challenging to perform in Arabidopsis as for the past million years the plant has been self-compatible, which causes reduction in pollen competition, increased homozygosity and a dilution of masking in diploid expressed, sporophytic genes. This study has two main findings: firstly prior to becoming self-compatible pollen genes evolved faster than sporophytic genes. Secondly, since becoming self-compatible selection has relaxed causing higher polymorphism levels and a higher build-up of deleterious mutations.


Patil V, McDermott HI, McAllister T, Cummins M, Silva JC, Mollison E, Meikle R, Morris J, Hedley PE, Waugh R, Dockter C, Hansson M, McKim SM (2019) APETALA2 control of barley internode elongation. Development. doi: 10.1242/dev.170373

Open Access

Vrushali Patil leads his study from the lab of current GARNet committee member Sarah McKim at the James Hutton Institute in Dundee. They show that the APETALA2 (AP2) transcription factor is necessary for stem elongation in Barley. In addition they demonstrate that AP2 expression is controlled by the activity of the microRNA mi172 as well as jasmonate signaling.

https://dev.biologists.org/content/146/11/dev170373.long

Trinh DC, Lavenus J, Goh T, Boutté Y, Drogue Q, Vaissayre V, Tellier F, Lucas M, Voß U, Gantet P, Faure JD, Dussert S, Fukaki H, Bennett MJ, Laplaze L, Guyomarc’h S (2019) PUCHI regulates very long chain fatty acid biosynthesis during lateral root and callus formation. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1906300116

Julien Lavenus, Ute Voß and Malcolm Bennett from University of Nottingham are co-authors on this French-led study that investigates the mechanism by which the AP2 family transcription factor PUCHI controls lateral root development. By performing a transcriptional analysis of developing lateral root cells they show that genes involved in very long chain fatty acid (VLCFA) biosynthesis enzymes are induced in a PUCHI dependent manner. Concomitantly they show puchi-1 mutant roots have reduced VLCFA content when compared with wildtype roots. They conclude that PUCHI regulates VLCFA biosynthesis as part of a pathway controlling cell proliferation during lateral root formation.


Stephenson P, Stacey N, Brüser M, Pullen N, Ilyas M, O’Neill C, Wells R, Østergaard L (2019) The power of model-to-crop translation illustrated by reducing seed loss from pod shatter in oilseed rape. Plant Reprod. doi: 10.1007/s00497-019-00374-9

Open Access

Pauline Stephenson and Lars Østergaard at the John Innes Centre lead this study in which they demonstrate that lessons learnt from understanding the genes involved in fruit ripening in Arabidopsis lead to an ability to adjust the pod-opening process in oilseed rape. They have combined two mutant alleles, first characterized in Arabidopsis, to develop OSR plants that have significantly increased yield. In addition they present a new software tool for the analysis of pod shatter data in other crops plants.


O’Hara A, Headland LR, Díaz-Ramos LA, Morales LO, Strid Å, Jenkins GI (2019) Regulation of Arabidopsis gene expression by low fluence rate UV-B independently of UVR8 and stress signaling. Photochem Photobiol Sci. doi: 10.1039/c9pp00151d

Open Access

This UK-Swedish collaboration is led by Andrew O’Hara from the Jenkins lab in the University of Glasgow. They continue the lab focus on the UV-B receptor UVR8, in this case performing a transcriptomic analysis of wildtype and uvr8 mutants grown under low UV-B fluence rates. They analyse one differentially expressed gene in more detail, the transcription factor ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 13 (ANAC13), which was induced by UV-B but by the activity of any other photoreceptor.


Gumber HK, McKenna JF, Tolmie AF, Jalovec AM, Kartick AC, Graumann K, Bass HW (2019) MLKS2 is an ARM domain and F-actin-associated KASH protein that functions in stomatal complex development and meiotic chromosome segregation Nucleus. doi: 10.1080/19491034.2019.1629795

Open Access

Hardeep Gumber is first author on this US-led study that includes Joe KcKenna, Andrea Tolmie and Katja Graumann from Oxford Brookes as co-authors. They characterise the Maize LINC KASH AtSINE-like2 protein, MLKS2, whose targeting to the nuclear periphery requires its N-terminal armadillo repeats. Mutant mlks2 plants have pleiotropic plant phenotypes and on a nuclear level show defects in chromosome segregation and positioning. These findings support a model in which cytoplasmic actin is linked to chromatin through the LINC-KASH nuclear envelope network.

https://www.tandfonline.com/doi/full/10.1080/19491034.2019.1629795

Temple H, Mortimer JC, Tryfona T, Yu X, Lopez-Hernandez F, Sorieul M, Anders N, Dupree P (2019) Two members of the DUF579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct. doi: 10.1002/pld3.117

Open Access

Henry Temple is first author on this work from the University of Cambridge that characterizes two members of the DUF579 family (AGM1 and AGM2). These proteins are required for 4-O-methylation of glucuronic acid within highly glycosylated arabinogalactan proteins (AGPs).


Remember to download the latest edition of the GARNish newsletter.

GARNish Edition 31 available to download!

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: July 2, 2019

The 31st edition of the GARNish newletter is now available for download.

Included in this edition is:

– Update from UKPSF and the Global Plant Council

– List of Upcoming Events

– Introducing the Shiny 3D RNA-Seq analysis App

– Reports from UK Plant Networks

– Update from UKRI-BBSRC including about transfers of responsive mode grants

– Stories from Fascination of Plants Day

– Report from ICAR2019

– The Future of Gene Editing in the UK

– Spotlight on the University of Liverpool

– Analysis of Arabidopsis Publications

If you like to suggest any articles to be included in future edition then please contact the GARNet coordinator, Geraint Parry.

https://www.garnetcommunity.org.uk/sites/default/files/newsltr/GARNish31_Online_.pdf

GARNet Research Roundup: June 12th 2019

In another big edition of the GARNet Research Roundup we cover many different areas of research that utilise a varied group of experimental organisms!

The first paper from the Feng lab at the John Innes Centre performs an assessment of the factors influencing heterochromatin activity in sperm companion cells. Second is work from the JIC and Cardiff University that looks at the role of an auxin minima during fruit valve margin differentiation.

The next two papers have authors from Edinburgh. Firstly the McCormick lab has developed a stereo-based 3D imaging system for plants while Steven Spoel is a co-author on a study that looks at the pathogen responsive gene NPR1.

Coming from across the M8 is a paper from the Christie lab in Glasgow that looks into using phototropin genes as potential targets for crop improvement.

The next paper is from Oxford Brookes University where they visualise the movement of protein nanodomain clusters within the plasma membrane. Elsewhere in Oxford is a paper from the van der Hoorn group that characterises the effect of a novel triazine herbicide.

Two papers from the University of Durham also identify and characterise the role of novel herbicides, in this case on the activity of inositol phosphorylceramide synthases.

The final five papers feature research that each use different experimental organisms. Firstly a paper from the Earlham Institute uses delayed fluorescence to investigate the circadian clock in wheat and OSR. Second is a paper from Warwick that assesses the role of nodulation during nitrogen uptake in Medicago. The next paper features the Yant lab at University of Nottingham looks at growth of two species of Arabidopsis in challenging environments.

The penultimate paper includes authors from the University of Oxford and provides a detailed analysis of the factors controlling leaf shape in Cardamine and Arabidopsis thaliana. The final paper uses the imaging facility at the Hounsfield facility in Nottingham to image the roots of date palms.


He S, Vickers M, Zhang J, Feng X (2019) Natural depletion of H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. Elife. doi: 10.7554/eLife.42530

Open Access

Lead author on his paper is Shengbo He from Xiaoqi Feng’s lab at the John Innes Centre. This work looks at activation of Transposable elements (TEs) in the sperm companion cell of Arabidopsis. This is catalyzed by the DEMETER-catalyzed DNA demethylation in regions depleted of histone H1, demonstrating a key role for H1 in determining heterochromatin activity.

https://elifesciences.org/articles/42530

Li XR, Vroomans RMA, Fox S, Grieneisen VA, Østergaard L, Marée AFM (2019) Systems Biology Approach Pinpoints Minimum Requirements for Auxin Distribution during Fruit Opening. Mol Plant. doi: 10.1016/j.molp.2019.05.003

Open Access

Xin-Ran Li and Renske Vroomans are co-lead authors on this work from the Ostergaard, Grieneisen and Maree labs from the John Innes Centre and (now) Cardiff University.They look at the role of an auxin minima in the control of valve margin differentiation in Arabidopsis fruit. They used a cycle of experimental-modeling to develop a model that predicts the maturation of the auxin minimum to ensure timely fruit opening and seed dispersal.


Bernotas G, Scorza LCT, Hansen MF, Hales IJ, Halliday KJ, Smith LN, Smith ML, McCormick AJ (2019) A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. Gigascience. doi: 10.1093/gigascience/giz056

Open Access

Gytis Bernotas from UWE and Livia Scorza from the McCormick lab at the University of Edinburgh lead this work that is the result of a 2+ year collaboration with the Melvyn Smith and others at the Computer Machine Vision (CMV) facility at UWE. The authors have developed hardware and software (including a deep neural network) to automate the 3D imaging and segmentation of rosettes and individual leaves using a photometric stereo approach.

https://academic.oup.com/gigascience/article/8/5/giz056/5498634

Chen J, Mohan R, Zhang Y, Li M, Chen H, Palmer IA, Chang M, Qi G, Spoel SH, Mengiste T, Wang D, Liu F, Fu ZQ (2019) NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol. doi: 10.1104/pp.19.00124

GARNet chairman Steven Spoel is a co-author on this US-led study with Jian Chen as lead author. The paper investigates the interacting partners of NPR1 (NONEXPRESSER OF PR GENES 1), which is a master regulator of salicyclic signaling and therefore an important regulation of plant defense response.


Hart JE, Sullivan S, Hermanowicz P, Petersen J, Diaz-Ramos LA, Hoey DJ, Łabuz J, Christie JM (2019) Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1902915116

Open Access

Jaynee Hart is first author on this research from Christie lab at the University of Glasgow in which they target the phototropin blue light receptor as a candidate for crop improvement. They showed plants that engineered to have a slow-photocycling version of PHOT1 or PHOT2 had increased biomass under low light conditions, due to their increased sensitivity to low light.


McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW, Martin-Fernandez ML, Hawes C, Runions J (2019) The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1819077116

Open Access

Joe McKenna from Oxford Brookes University leads this work that takes advantage of their superb imaging facilities to assess the dynamic regulation of specific protein clusters in the Arabidopsis plasma membrane. They show that the cytoskeleton (both actin and microtubule) and the cell wall play roles in the control of intra-PM moment of the pathogen receptor FLS2 and the auxin transporter PIN3.

https://www.pnas.org/content/early/2019/06/07/1819077116

Morimoto K, Cole KS, Kourelis J, Witt CH, Brown D, Krahn D, Stegmann M, Kaschani F, Kaiser M, Burton J, Mohammed S, Yamaguchi-Shinozaki K, Weerapana E, van der Hoorn RAL (2019) Triazine probes targeting ascorbate peroxidases in plants. Plant Physiol. doi: 10.1104/pp.19.00481

Open Access

Kyoko Morimoto is first author on this UK-German-Japanese collaboration led from the lab of GARNet committee member Renier van der Hoorn. They characterise the herbicidal effect of the small 1,3,5-triazine KSC-3 on ascorbate peroxidases (APXs) across a range of plant species.


Pinneh EC, Stoppel R, Knight H, Knight MR, Steel PG, Denny PW (2019) Expression levels of inositol phosphorylceramide synthase modulate plant responses to biotic and abiotic stress in Arabidopsis thaliana. PLoS One. doi: 10.1371/journal.pone.0217087

Open Access

Pinneh EC, Mina JG, Stark MJR, Lindell SD, Luemmen P, Knight MR, Steel PG, Denny PW (2019) The identification of small molecule inhibitors of the plant inositol phosphorylceramide synthase which demonstrate herbicidal activity. Sci Rep. doi: 10.1038/s41598-019-44544-1

Open Access

Elizabeth Pinneh leads these two papers from the Denny lab in Durham. In the first paper they use RNAseq data and analysis of overexpression transgenic lines to define the role of inositol phosphorylceramide synthase (IPCS) during abiotic and biotic stress responses.

Secondly they screened a panel of 11000 compounds for their activity against the AtIPCS2 in a yeast two-hybrid assay. Successful hits from the screen were confirmed with in vitro enzyme assays and in planta against Arabidopsis.


Rees H, Duncan S, Gould P, Wells R, Greenwood M, Brabbs T, Hall A (2019) A high-throughput delayed fluorescence method reveals underlying differences in the control of circadian rhythms in Triticum aestivum and Brassica napus. Plant Methods. doi: 10.1186/s13007-019-0436-6

Open Access

Hannah Rees from Anthony Hall’s lab at the Earlham Institute leads this methods paper that introduces the use of delayed fluorescence to investigate the circadian rhythms in wheat and oil seed rape.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0436-6

Lagunas B, Achom M, Bonyadi-Pour R, Pardal AJ, Richmond BL, Sergaki C, Vázquez S, Schäfer P, Ott S, Hammond J, Gifford ML (2019) Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula. Mol Plant. doi: 10.1016/j.molp.2019.03.014

Open Access

Beatriz Lagunas is lead author on this paper from the University of Warwick that investigates the role of nodulation in actual nitrogen uptake by the roots of Medicago truncatula. They use integrated molecular and phenotypic analysis to determine that the respond to nitrogen flux are processed on a whole plant level through multiple developmental processes.

https://www.cell.com/molecular-plant/fulltext/S1674-2052(19)30127-3?

Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L (2019) Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2018.0243

Open Access

Veronica Preite is first author on this UK-German collaboration led by Ute Kraemer and Levi Yant in Nottingham. They performed whole genome resequenced of 64 individuals of two Arabidopsis species that grow on calamine metalliferous sites (which have toxic levels of the zinc and cadmium). They revealed a modest amount of gene and network convergence in plants that have colonised these challenging environments.


Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska AL, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith RS, Tsiantis M (2019) A Growth-Based Framework for Leaf Shape Development and Diversity. doi: 10.1016/j.cell.2019.05.011

Open Access

Claudia Canales and Carla Galinha from Oxford are co-authors on this German-led study from Miltos Tsiantis’ lab that performs a detailed dissection of the growth parameters that control differences in leaf-shape in Cardamine and Arabidopsis. They show critical roles for the SHOOTMERISTEMLESS and REDUCED COMPLEXITY homeobox proteins to define differences in shape determination.


Xiao T, Raygoza AA, Pérez JC, Kirschner G, Deng Y, Atkinson B, Sturrock C, Lube V, Wang JY, Lubineau G, Al-Babili S, Ramírez LAC, Bennett MJ, Blilou I (2019) Emergent Protective Organogenesis in Date Palms: A Morpho-devo-dynamic Adaptive Strategy During Early Development. Plant Cell. doi: 10.1105/tpc.19.00008

Open Access

Members of the Hounsfield CT Imaging Facility 
at the University of Nottingham are co-authors on this paper that is led by Tingting Xiao from KAUST in Saudi Arabia. The paper takes a detailed look at root morphology in Date Palm.

Monogram 2019 by Laure Forquet

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: May 29, 2019

Monogram 2019 was my first conference attended as part of my master degree final year internship at NIAB. As it was my first conference, I was very excited to meet the UK cereal research community.

Being very new to wheat research and having focused mainly on model plants like ​Arabidopsis thaliana so far, I really enjoyed having such a complete overview of wheat research in the UK and abroad.
The talks were organized in clear sessions making the whole conference a lot easier to follow and connect between the talks.


The wide diversity of subjects covered was eye-opening. I was very interested in the bioinformatics session which opened the conference on the first morning as it relates to my project in quantitative genetic. It introduced me to the brilliant tools that are available for wheat genetic research such as the resources from the Designing Future Wheat program.

The plenary talk from Keith J. Edwards from the University of Bristol was a very nice introduction to the conference and was a good reminder of wheat hybridization history. He offered some new insight into the origin of the genetic variation in bread wheat resulting from the unaware side-by-side cultivation of the newly hybridized hexaploid wheat with the tetraploid wheat.

Opening keynote from Keith Edwards. Photo: @GuilleMendiondo

I also really enjoyed discovering about other subjects further away from my domain such as the quality and nutrition session. I especially liked the talk from Alison Lovegrove from Rothamsted Research. She presented insights on the way to improve the quality of cereals to increase the health benefits, with a focus on white versus brown rice. Brown rice has a higher quality for health but is not very popular with consumers who prefer the taste of white rice. Increasing the nutrient and fiber content and lowering the glycemic index of white rice, without altering the taste, would help improve global health, notably by reducing the risk of type 2 diabetes.


I was given the opportunity to present a poster on my project at NIAB on flowering time in wheat during the poster session. I enjoyed discussing the subject with other researcher and receiving outside perspective, advice and feedback. It was also a great occasion to have one-to-one conversation with the other people presenting their posters.

At the end of the second day there was a very interesting panel discussion covering the challenges that the breeding community. The panel discussed their points of view between and took questions from the audience.

Panel discussion. Photo @HuwJonesLabour

The conference was overall pretty intense so I really appreciated the opportunity to interact and meet professional researchers and students during the tea breaks, lunches and the formal conference diner.

I am very grateful to GARNet for offering me a travel grant to attend this exciting event and I hope I will be able to return next year to have updates on all these inspiring projects and meet the community again. I would recommend any students or early career researchers interested in cereals to go to the annual Monogram meeting!

GARNet Research Roundup: May 27th 2019

This bumper edition of the GARNet research roundup begins with a set of papers from the John Innes Centre. Anne Osbourn’s group is involved with two papers; firstly they discover how altering metabolic networks in the Arabidopsis root can cause changes in the associated microbiota. Second they characterise the role of a light-induced transcription factor in Artemisia. Next Caroline Dean’s group leads a global consortium that investigates the role of liquid-liquid phase separation in the formation of nuclear bodies. The final paper from the JIC is from Philippa Borrill and Cristobal Uauy, in which they identify novel transcription factors in wheat.

The fourth paper is led by Peter Etchells at Durham and characterises receptor kinase activity involved in vascular patterning in Arabidopsis.

The next two papers focus on stomatal patterning; firstly Julie Gray’s group at Sheffield looks at the stomatal responses to long-term pathogen infections. The second paper is from Glasgow and describes improvements in the OnGuard2 software, which models the factors controlling stomatal density.

Jose Gutierrez-Marcos is a co-author on a paper that uses FACS/ATAC-seq to define chromatin changes within cells of the shoot apical meristem. Richard Harrison leads the next paper that is also method-focused; describing use of CRISPR-Cas9 gene editing in Strawberry.

Andrew Miller at the University of Edinburgh is the corresponding author of the penultimate paper, which presents a whole-life-cycle, multi-model Framework that links many aspects of the Arabidopsis life cycle. The final paper is Seth Davies’s group at York and investigates the role of sucrose in the control of the circadian clock.


Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science. doi: 10.1126/science.aau6389

Ancheng Huang and Ting Jiang are first authors on this UK, Chinese and Belgian collaboration led by Anne Osbourn at the John Innes Centre. They reconstitute three biosynthesic pathways in the Arabidopsis roots and show how this affects the associated microbiota.


Hao X, Zhong Y, Nützmann HW, Fu X, Yan T, Shen Q, Chen M, Ma Y, Zhao J, Osbourn A, Li L, Tang K (2019) Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol. doi: 10.1093/pcp/pcz084

Anne Osbourn is a co-author on this Chinese-led study that has identified that the basic leucine zipper transcription factor (TF) AaHY5 regulated of light-induced biosynthesis of artemisinin in Artemisia annua.


Fang X, Wang L, Ishikawa R, Li Y, Fiedler M, Liu F, Calder G, Rowan B, Weigel D, Li P, Dean C (2019) Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature. doi: 10.1038/s41586-019-1165-8

Xiaofeng Fang, Liang Wang and Ryo Ishikawa are first authors of this UK, German and Chinese collaboration led by Caroline Dean’s lab at the John Innes Centre. They characterise the molecular factors that are required for the formation of nuclear bodies through liquid-liquid phase separation (PDF). These proteins are the Arabidopsis RNA-binding protein FCA and the coiled-coil protein FLL2.

From https://www.nature.com/articles/s41586-019-1165-8

Borrill P, Harrington SA, Simmonds J, Uauy C (2019) Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiol. doi: 10.1104/pp.19.00380

Open Access

Philippa Borrill, now a faculty member at the University of Birmingham, conducted this work with Cristobal Uauy at the John Innes Centre. They have developed a range of research tools for use in wheat and this paper describes the identification of novel transcription factors involved in senescence.


Wang N, Bagdassarian KS, Doherty RE, Kroon JT, Connor KA, Wang XY, Wang W, Jermyn IH, Turner SR, Etchells JP (2019) Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development. doi: 10.1242/dev.177105

Ning Wang works with Peter Etchells at Durham University where they have characterised the interactions between the receptor kinase gene families that regulate radial patterning in the development of vascular tissue.


Dutton C, Hõrak H, Hepworth C, Mitchell A, Ton J, Hunt L, Gray JE (2019) Bacterial infection systemically suppresses stomatal density. Plant Cell Environ. doi: 10.1111/pce.13570

Christian Dutton leads this work conducted at the University of Sheffield. They have investigated the longer-term systemic response to the presence of pathogens that involves reducing stomatal density. This process is mediated via salicylic acid signaling and slows disease progression.

From https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13570

Jezek M, Hills A, Blatt MR, Lew VL (2019) A constraint-relaxation-recovery mechanism for stomatal dynamics. Plant Cell Environ. doi: 10.1111/pce.13568

Mareike Jezek leads this work from the University of Glasgow in which they have updated the OnGuard2 modelling software that has demonstrated substantial predictive power to describe stomatal dynamics. Their improvements allow for the development of models that are more similar to in vivo observations.


Frerichs A, Engelhorn J, Altmüller J, Gutierrez-Marcos J, Werr W (2019) Specific chromatin changes mark lateral organ founder cells in the Arabidopsis thaliana inflorescence meristem. J Exp Bot. doi: 10.1093/jxb/erz181

Jose Gutierrez-Marcos from the University of Warwick is a co-author on this German study led by Anneke Frerichs in which they analysed the chromatin state of lateral organ founder cells (LOFCs) in the peripheral zone of the Arabidopsis inflorescence meristem in wildtype and apetala1-1 cauliflower-1 double mutants. Importantly they showed that the combined application of FACS/ATAC-seq is able to detect chromatin changes in a cell-type specific manner.


Wilson FM, Harrison K, Armitage AD, Simkin AJ, Harrison RJ (2019) CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods. doi: 10.1186/s13007-019-0428-6. eCollection 2019

Open Access

This paper is lead by Fiona Wilson at NIAB-EMR in which they present their methods to undertake gene editing in the challenging experimental system of diploid and octoploid strawberries.

From https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0428-6

Zardilis A, Hume A, Millar AJ (2019) A multi-model framework for the Arabidopsis life cycle. J Exp Bot. doi: 10.1093/jxb/ery394

Open Access

Argyris Zardilis conducted this modeling-focussed research at University of Edinburgh. The authors present a whole-life-cycle, multi-model Framework that links vegetative, inflorescence as fruit growth as well as seed dormancy in Arabidopsis. This Framework allows the authors to simulate at the population level in various genotype × environment scenarios.

From https://academic.oup.com/jxb/article/70/9/2463/5336616

Philippou K, Ronald J, Sánchez-Villarreal A, Davis AM, Davis SJ (2019) Physiological and Genetic Dissection of Sucrose Inputs to the Arabidopsis thaliana Circadian System. Genes (Basel). doi: 10.3390/genes10050334

Open Access

Koumis Philippou from Seth Davis’ research group the University of York leads this work that investigates the role of sucrose into the function of the circadian clock.

Monogram 2019 by Emily Marr

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: May 22, 2019

Emily Marr, NIAB and the University of Cambridge, ecm53@cam.ac.uk

After hearing scientists at NIAB (Cambridge) wax lyrical about Monogram year on year, I finally attended the conference this April, in the third year of my PhD. Monogram is an annual meeting for the small-grain cereal and grass research community, bringing together academics, commercial scientists and plant breeders. This year, it seemed that there were more presenters from Universities than previously; it is encouraging to see the University community becoming more engaged in the food system at a time when Food Security is a growing issue.


Monogram 2019 was held on the Jubilee Campus of the University of Nottingham, which – aside from the unexpected shattering of a glass window in the café (it couldn’t contain its excitement about Monogram) – proved to be a fantastic venue with excellent green credentials boosted by on-site lakes used for heating and cooling systems, solar panels and green roofs.

The meeting kicked off with a Bioinformatics session, an area that plays a significant role in the development of the agricultural sector. We received an overview of the genetic resources available for cereals online and a reminder that although new resources are constantly emerging, we must not forget the old resources, which can be just as useful.

The meeting continued with eight sessions: Below and Above Ground Processes, Phenotyping, Abiotic and Biotic Stress, Reproduction and Grain Development, Genomics and Technologies for Crop Improvement, Future Plant Sciences, Quality & Nutrition, Rice and Other Grasses.


The first day ended with a poster session, accompanied by wine and a BBQ. With a total of 76 posters, there was a lot to talk about. Topics ranged from molecular-scale research to large-scale phenotyping.

Poster session in full flow. Photo from @BazRaubach

From a personal point of view, the poster session catalysed a meeting with someone whose previous PhD student had worked with the same wheat mapping population as me, investigating a similar phenotype as the one I am focusing on. It was a fantastic to have the opportunity to compare results.


As a root researcher, I was particularly tuned into the talks on roots which featured heavily in the session entitled “Below and Above Ground Processes”. Root system architecture, the spatial configuration of roots in the soil, has often been overlooked in crop breeding due to the challenge of phenotyping organs below ground. However, it is becoming more of a hot topic as roots represent a target for improving the ability of crops to maintain high yield in spite of increasing exposure to drought. We heard from Vera Hecht about the impact of sowing density on root traits in barley from a phenotypic point of view. Linking in to this, Tom Bennett talked about the root density-sensing system in wheat as a means to regulate root and shoot growth. Silvio Salvi talked us through the role of mutant screens and bulk segregant analysis in providing information about position and effect of QTLs affecting root genetic variation.

Silvio Salvi on roots. Photo from @GuilleMendiondo

Richard Whalley focussed on the interaction of soil architecture and deep rooting while Alek Ligeza turned his attention to the relationship between roots and nitrogen uptake.

Overall it was a highly engaging conference that I highly recommend to anyone working with cereals. [Next year’s meeting will be at the James Hutton Institute- Ed].

«page 1 of 21

Follow Me
TwitterRSS
GARNetweets
July 2019
M T W T F S S
« Jun    
1234567
891011121314
15161718192021
22232425262728
293031  

Welcome , today is Sunday, July 21, 2019