Arabidopsis Research Roundup: April 20th

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: April 20, 2017

This Easter basket of papers again features a selection across many topics of research involving Arabidopsis work. Firstly is a paper led from Dundee that introduces a novel Arabidopsis genome assembly that takes into account alternatively spliced transcripts. Secondly is a paper that identifies a role for an auxin influx carrier in nodule formation in Medicago. Thirdly is a novel characterization of two enzymes involved in SA biosynthesis whilst the fourth paper identifies a novel signaling component that acts during innate immunity to nematodes. Finally is a study that demonstrates a use for microfluidics in the generation of in vitro plant membrane bilayers.

Zhang R, Calixto CP, Marquez Y, Venhuizen P, Tzioutziou NA, Guo W,, Spensley M, Entizne JC, Lewandowska D, Ten Have S, Frei Dit Frey N, Hirt H, James AB, Nimmo HG, Barta A, Kalyna M, Brown JW (2017) A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx267

Open Access

This work is led by John Brown (James Hutton Institute, University of Dundee) in collaboration with colleagues from Glasgow, Vienna and Paris and Toronto. They have looked at the wide array of transcript isoforms that are produced in the Arabidopsis transcriptome. For analysis of these isoforms these researchers have generated a novel pipeline that effectively discriminates between isoforms and results in a Reference Transcript Dataset for Arabidopsis (AtRTD2) that contains over 80K non-redundant transcripts from approximately 35K genes. The testing of AtRTD2 showed that it can outperform other transcriptomes in RNAseq analysis. In addition to their specific Arabidopsis work they provide a methodology for the design of similar workflows for use in other species. The AtRTD2 is currently being integrated with the new Araport11 genome assembly.

The differences between the RTD2 and Araport11 assemblies are presented in the GARNish Vol25 newsletter


Roy S, Robson FC, Lilley JL, Liu C, Cheng X, Wen J, Bone C, Walker S, Sun J, Cousins D, Bennett MJ, Downie JA, Swarup R, Oldroyd GE, Murray JD (2017) MtLAX2, a functional homologue of the auxin importer AtAUX1, is required for nodule organogenesis. Plant Physiology

http:/​/​dx.​doi.​org/10.1104/pp.16.01473 Open Access

Researchers from the JIC and Nottingham lead this study that looks at the role of the auxin influx carrier LAX2 in nodule organogenesis in Medicago. In Arabidopsis there are no reported specific roles for LAX2 but in Medicago they show that MtLAX2 is necessary for nodule formation alongside other auxin-mediated root growth responses. This provides insights into a developmental-specific role for this protein during plant evolution.


Macaulay KM, Heath GA, Ciulli A, Murphy AM, Abell C, Carr JP, Smith AG (2017) The biochemical properties of the two Arabidopsis thaliana isochorismate synthases. Biochem J. http:/​/​dx.​doi.​org/10.1042/BCJ20161069 Open Access

Alison Smith (Cambridge) is the lead author of this study that characterises two isochorismate synthase (ICS) enzymes that are involved in salicylic acid biosynthesis. Expression of AtICS1 is induced by pathogens whilst AtICS2 is constitutive expressed, mostly in vascular tissues. This work shows that both proteins are enzymatically active yet have a narrow window of activity.


Mendy B, Wang’ombe MW, Radakovic ZS, Holbein J, Ilyas M, Chopra D, Holton N, Zipfel C, Grundler FM, Siddique S (2017) Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLoS Pathog.

http:/​/​dx.​doi.​org/10.1371/journal.ppat.1006284 Open Access

Cyril Zipfel (Sainsbury lab, Norwich) is a co-author on this study that investigates the role of the leucine-rich repeat receptor-like kinase NILR1 in the innate immune response. The novelty of this work comes in the fact that this is the first characterised immune receptor that responds to parasitic nematodes and therefore might provide a new target for pathogen control strategies in crop plants.


Barlow NE, Smpokou E, Friddin MS, Macey R, Gould IR, Turnbull C1, Flemming AJ, Brooks NJ, Ces O, Barter LM (2017) Engineering plant membranes using droplet interface bilayers. Biomicrofluidics. http:/​/​dx.​doi.​org/10.1063/1.4979045 Open Access

This fascinating study from resarchers at Imperial College describes the use of a microfluidic system to generate in vitro plant membrane bilayers. Droplet interface bilayers (DIBs) from Arabidopsis, tobacco and oat have been replicated by varying the amount of membrane components. In future this system could be used in experiments that study membrane translocation or in novel chemical biology screens.

Stockbridge Technology Centre

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: March 22, 2017

Following the conclusion of the CyVerseUK workshop at the University of York I was delighted to take a brief visit to StockBridge Technology Centre (STC) to have a look at their facilities.

STC are involved in a range of research projects that involve different aspects of plant growth across many conditions and species. As well as initiating independent research projects they are equally at home working with a broad cross section of collaborators and as such sit in an excellent position to make linkages between interest groups who can be challenging to bring together.

STC has received significant public interest for the work they do, with a number of high profile appearances in the mainstream media, most recently in early March on BBC Countryfile (see from 24minutes onward). At their site in the Vale of York they have a large number of highly adaptable greenhouses that sit in alongside 70 hectares appropriate for field trials. In addition they are involved with more technology-facing projects such as the LED4Crops that is run by Dr Phillip Davis at STC.
This project is highly relevant at a time when there are concerns about UK food security and our reliance of imported produce. Use of LED technology is proving extremely useful in improving our understanding of the light regimes that are required in order to both maximise biomass production and improve different traits. This is particularly relevant as there is a growing need to work on a constant 12-month rotation.

Researchers at the LED4Crops facility work with both ornamental and food crops and they are hoping to soon gain funding to greatly expand their operation. If the potential of Stacked Urban Farming is to be realised then the type of research undertaken at STC will be critical for understanding the light conditions needed to maximise production in those sunlight-less environments.

For academic researchers STC sits at an advantageous position of being able to bridge the gap between basic research, industry and farmers and are therefore happy to interact with any potential partners. Although researchers at STC are unable to indepedently apply for RCUK funding they are partners on many grants and work on plenty of EU-funded projects.

Please take a look at the STC website and I’m sure they’d be delighted to host anyone who is interested in visiting their facilities.

Phill Davis will be writing a longer piece for the next issue on the GARNish newsletter so please look out for that!

EMPHASIS on Plant Phenotyping

Categories: Uncategorized
Tags: No Tags
Comments: 1 Comment
Published on: February 28, 2017

Some readers might have heard of the EMPHASIS project but the likelihood is that the majority have not……yet it might be extremely significant for the future of plant science across Europe…. which, yes, even in these uncertain times, should include UK researchers!

The European Strategy Forum on Research Infrastructures (ESFRI) supports high quality research infrastructures across all disciplines and includes diverse projects such as ELIXIR, A distributed infrastructure for life-science information  and SKA, the Square Kilometer Array Telescope. The process of receiving support from ESFRI starts with inclusion in their annual Roadmap document that leads onto a series of discussions that aim to set the official agenda for the program. This might then result in the establishment of an official infrastructure project a further 5 years later. Importantly this is a different type of project when compared to Horizon2020 or FPs as the funding does not come from a centralised EU pot but is rather distributed from within the individual participating countries.


Last year was an exciting time for European Plant Phenotyping as through the work of Belgian, German, French and UK researchers, the EMPHASIS project (European Infrastructure for multi-scale Plant Phenomics and Simulation for food security in a changing climate) was included in the ESFRI Roadmap in 2016. Within the UK, it was largely members of the UKPPN (UK Plant Phenotyping Network) who worked with the BBSRC to ensure that UK scientists were represented in the EMPHASIS project that was included in the ESFRI Roadmap.

The genesis of EMPHASIS could be traced back to the FP7-funded EPPN (European Plant Phenotyping Network) which was the starting point of the overall aim to develop complimentary tools for lab, greenhouse and field phenotyping that integrates high-tech automated platforms with computer-aided measurements and data management.


EMPHASIS-PREP takes shape.

The EMPHASIS-PREP project has now been funded by Horizon2020 and over the coming years will document the strengths and weaknesses of European plant phenotyping before producing a final document that will highlight why the entire EMPHASIS project should be supported and how it might be regulated across up-to-30 participating countries. As the money for UK scientists will come directly from RCUK, it is hoped that issues surrounding Brexit will not be as significant an issue for this scheme as it might with other centrally administered EU funding. This will support a UK research infrastructure that integrates with European partners and conforms to certain EMPHASIS-defined access requirements to researchers from across the EU.

The EMPHASIS-PREP project is split into 6 work-packages and the BBSRC have taken the lead with WP5, which tackles the legal frameworks that are needed for the project to succeed with minimal interference.


The group participating in EMPHASIS-PREP is much smaller than the proposed final EMPHASIS project so those members involved at the present time (which will be expanded over the course of the discussions) have signed the ‘EMPHASIS Manifesto’ in which they agree to work for the good of the whole future consortium.

Ultimately the aim of EMPHASIS is to host all the necessary infrastructure for state-of-the-art phenotyping and can be split into five very broad topics:

> Controlled conditions: Phenotyping platforms in (semi-) controlled conditions for high resolution and high throughput phenotyping.

> Intensive field: Smart/ Intensive field experimental sites for high throughput phenotyping

> Lean field: Translational, coordinated network of field experiments with lean, efficient phenotyping close to practical breeding setups

> Modelling: Modelling platforms for testing existing or virtual combinations of alleles in a variety of climatic scenarios and management practices

> e-Infrastructure: establish interconnections between different nodes/ installations.


The final organisation of the project will take a classic European Hub-and-Node organisation. The EMPHASIS Hub will likely reside in Germany whilst each national Node will attempt to lead the organisation of the countries phenotyping infrastructure so that it is open, inclusive and conforms to the overall aims of the EMPHASIS program.

As this is a five-year process it will clearly be extremely complicated to organise and over the coming year EMPHASIS-PREP are holding regional meetings to introduce the aims of the project and to receive feedback from those participating countries. As the project planning gains pace then these meetings may become more frequent and could be organized on an individual national level.

These early EMPHASIS-PREP meetings have three main goals:

> Inform: about the EMPHASIS project

> Document: the status of plant phenotyping in each country

> Discuss: future national plans for plant phenotyping

In the early stages of EMPHASIS-PREP the UK will be represented by the University of Nottingham specifically led by Malcolm Bennett, Darren Wells and Tony Pridmore. They will work closely with the BBSRC to ensure that UK interests are represented at each meeting. The location of each meeting can be found on the EMPHASIS website.


What does it mean for me now?

At the moment not a great deal.

Please keep an eye out for developments and then contribute any thoughts and ideas that you have when the appropriate forums are opened up. GARNet has been a contributing member of the UKPPN and as we are mandated to support community infrastructures so we will endeavor to keep the UK community informed as the project rolls forward.

Hopefully in 2018 there will be a UK-based meeting in which members of our outstanding UK plant phenotyping community will be able to submit their opinions as to the direction of travel of this field (pardon the pun) of research that has enormous significance for the development of new crop varieties to mitigate the effects of climate change and ensure global food and nutritional security.

A Thermosensory ePIFphany!

Categories: Uncategorized
Tags: No Tags
Comments: 1 Comment
Published on: January 25, 2017

Often times in the scientific literature you will find that a topic suddenly becomes trendy. This might follow a technological advancement that opens up a new subject area, a serendipitous co-discovery or after an important publication opens a Pandoras box of questions. Over the past few months the Arabidopsis research literature has seen a number of exciting papers that have tackled different aspects of the plants response to heat, otherwise known as thermosensing.

These papers focus on two aspects of this response, either in heat perception or at the convergence point for the downstream cascade of signals. At the level of perception back-to-back papers published at the end of 2016 showed that phytochromeB, already a well known light receptor, also acts as a temperature sensor [1,2]. At the phenotypic level this involves the regulation of growth, as phyB mutants that have a single point mutation and are stuck in the Pfr form have longer hypocotyls. At the level of gene expression the mutant phyB protein constitutively binds to the promotors of warm-responsive genes. Temperature does not cause changes to PhyB mRNA or protein indicating that the protein directly act as a thermosensor. One of these papers show that PHYB negatively regulates the temperature-dependent expression of the PIF4 transcription factor [2] so in phyB mutants the longer hypocotyl can be traced, at least in part, due to extra PIF4 expression. This regulation is relevant to three more recent papers in which regulation of PIF4 activity is a central and recurring theme.

In the first of these papers Scott Hayes and colleagues investigate the response stimulated by UV light, which is perceived by the UVR8 receptor [3]. They show that whereas PIF4 is stimulated by increasing temperature, this is off-set by the activity of UVR8 which, when subject to high levels of UV-B, reduces PIF4 expression. A possible in vivo explanation for this response is provided in an associated comment piece [4] that postulates that in direct sunlight (where there is plentiful UV-B) there is no need for a hypocotyl elongation. However at high temperature without UV-B, the plant may interpret that it is growing in the shade so it might require a burst of hypocotyl elongation, which is mediated via PIF4.

The final two papers are from the lab of Vinod Kumar and focus on the activity of the PIF4 protein. Firstly they show that two well-studied signaling modules acting via either HY5 or DET1 differently impact PIF4 activity. Whereas DET1 directly interacts with PIF4, HY5 binds to the PIF4 recognition motif on its known DNA targets. At high temperature the HY5 protein is removed by the activity of the E3 ligase COP1, freeing up PIF4 expression. A previous study has shown UVR8 can sequester the COP1 protein so in high UV-B the activity of COP1 may be removed thus allowing HY5 to compete with PIF4 for its binding sites. Although the recent ‘UV-focused study’ [3] showed that HY5 gene expression was increased by UV-B, the role of HY5 in their experiments was slightly confused. The subtle and overlapping roles of these multiple proteins makes it challenging to obtain a complete picture of each of their roles independently of each other, which in any case would be an unrealistic in vivo situation.

As growth increases at higher temperature so does the plants suspectibility to pathogens, processes that are linked via PIF4. pif4 mutants are more resistant to infection and natural variation of the PIF4 gene provides a range of circumstances whereby plants become unresponsive to temperature change yet have higher levels of immunity. These findings have great significance for future crop improvement strategies that are extremely relevant for our warming world.

As with the integration of white light, UV-B and temperature signals, the link between temperature and disease is finely modulated to ensure that the plant maximizes its environmental situation and is able to rapidly adapt to its current conditions (such as on a windy day when the levels of shade and UV-B are highly variable).

This recent set of papers show that the PIF4 protein plays a central role through each adaptive molecular decision.

Vinod Kumar kindly provides an audio overview of this recent set of papers. Also on the GARNet YouTube Channel.

1- Jung et al (2016) Phytochromes function as thermosensors in Arabidopsis Science 354 doi: 10.1126/science.aaf6005

2- Legris et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis Science 354 http://dx.doi.org/10.1126/science.aaf5656

3- Hayes et al (2016) UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis Current Biology http://dx.doi.org/10.1016/j.cub.2016.11.004

4- Ezer and Wigge (2017) Current Biology 27, R19–R41

5- Huang et al (2013) Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B PNAS http://dx.doi.org/10.1073/pnas.1316622110

6- Gangappa and Kumar (2017) DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms Cell Reports 18, 344–351 January 10, 2017 a 2017 The Author(s). http://dx.doi.org/10.1016/j.celrep.2016.12.046

7- Gangappa et al. (2017) PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis Current Biology http://dx.doi.org/10.1016/j.cub.2016.11.012

Arabidopsis Research Roundup: January 17th

Todays Arabidopsis Research Roundup includes some excellent examples of UK labs engaged in collaborative work with researchers from around the globe. However first up is a study solely from the John Innes Centre, led by Vinod Kumar, that investigates the role of PIF4 during the thermosensory response. Secondly David Evans (Oxford Brookes University) is a co-author on a French-led study that has looked into the role of LINC complexes during interphase heterochromatin patterning. Thirdly is the description of the new PhenoTiki imaging tool that has come from the lab of Sotirios Tsaftaris in Edinburgh. Work from Paul Dupree (University of Cambridge) features in the ARR for the second consecutive week, this time with a study looking at the sugar composition of seed mucilage. The penultimate study is from the lab of Renier van der Hoorn (Oxford University) who investigates the role of Cys proteases during senescence and finally is a study from Seth Davis (University of York) that looks at the link between the circadian clock and the plants energy sensing mechanisms.


Gangappa SN, Berriri S, Kumar SV (2016) PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis. Current Biology

http:/​/​dx.​doi.​org/10.1016/j.cub.2016.11.012

Open Access
PIF4
Vinod Kumar (John Innes Centre) leads this study that looks at the role of the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) transcription factor during the thermosensory response and its effect on plant architecture. They looked at the natural variation of PIF4, demonstrating the role of different varients on the balance between growth and immunity to pathogens. Pertubing PIF4-mediated effects result in temperature-resilient disease resistance. This study links with a paper highlighted in last weeks ARR from Kerry Franklin and co-authors that presented the role of UVR8 on the control of PIF4 heat responsive effects. These studies further confirm the important role of PIF4 in plant development in response to environmental change and biotic challenges.

Vinod discusses this paper and a related manuscript from next weeks ARR. Also available on the GARNet YouTube channel.


Poulet A, Duc C, Voisin M, Desset S, Tutois S, Vanrobays E, Benoit M, Evans DE, Probst AV, Tatout C (2017) The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J Cell Science.

http:/​/​dx.​doi.​org/10.1242/jcs.194712

Open Access

This study is led by Christophe Tatout from Clermond-Ferrand and includes David Evans and Axel Poulet (Oxford Brookes University) as co-authors. The paper focuses on the role of the nuclear envelope-localised LInker of Nucleoskeleton and Cytoskeleton (LINC) complex on nuclear morphology and interphase chromatin localisation. This work is underpinned by the use of novel 3D imaging tools to define where in the nucleus the chromatin is localised in both wildtype and linc mutant plants. This allows the authors to show that the LINC complex is necessary for proper heterchromatin organisation at the nuclear periphery, which might have broad implications for gene expression and transcriptional silencing.
LINC


Minervini M, Giuffrida MV, Perata P, Tsaftaris SA (2017) Phenotiki: An open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. http:/​/​dx.​doi.​org/10.1111/tpj.13472

Open Access
PhenoTiki
This manuscript describes the PhenoTiki tool that is designed for the automated phenotyping of Arabidopsis rosettes, work which is led by Sofortios Tsaftaris (University of Edinburgh). PhenoTiki describes both the imaging software and also cheap-to-use off-the-shelf hardware that allows for facile imaging at reduced costs. The proof-of-concept study in the paper shows a comprehensive analysis from a range of parameters in 24 Arabidopsis rosettes from different genotypes. This data is compared favourably to more expensive methods of automated phenotyping so the authors hope PhenoTiki can be adopted as a low-cost method for image analysis. Full details can be found at http://phenotiki.com.


Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, Sandoval-Ibañez O, Doñas-Cofré DA, Parra-Rojas JP, Ebert B, Lehner A, Mollet JC, Dupree P, Scheller HV, Heazlewood JL, Reyes FC, Orellana A (2016) UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter that Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. Plant Cell. http:/​/​dx.​doi.​org/10.1105/tpc.16.00465

Open Access
CysProtease
Paul Dupree (University of Cambridge) is part of this global collaboration with colleagues from Australia, USA and Chile. The study investigates the intracellular movement of the plant cell polysaccharide pre-cursor UDP-glucuronic acid (UDP-GlcA). To identify genes involved in this process they cleverly screened mutants for alteration in seed mucilage, which has high level of other polysaccharides. This strategy identified UUAT1, which is a golgi-localised transporter of UDP-GlcA and UDP-galacturonic acid (UDP-GalA). Uuat1 mutants have altered sugar composition in both the seed coat mucilage and in other plant organs. These changes were also associated with an increase, by a currently unknown mechanism, of homogalacturonan methylation. Overall the authors show that UUAT1 is important for the correct distribution of cell wall polysaccahrides throughout growing embryo and will surely play important developmental roles in the function of the cell wall.


Pružinská A, Shindo T, Niessen S, Kaschani F, Tóth R, Millar AH, van der Hoorn RA (2017) Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves. BMC Plant Biol.

http:/​/​dx.​doi.​org/10.1186/s12870-016-0955-5

Open Access

In this paper Renier van der Hoorn (University of Oxford) interacts with US, German and Australian colleagues to use the activity-based protein profiling (ABPP) technique to assess the activity of active enzymes during senescence. They show that in Arabidopsis leaves the expression of several Papain-like Cys Proteases (PLCPs) is elevated but the activity of many Vacuolar Processing Enzymes (VPEs) is decreased, even though their transcript level increases. The amount of senescence was assessed in plants with mutations in different members of these protease families and surprisingly did not find any difference when compared to wildtype plants. One exception was in plants containing a mutation in the AALP PLCP which showed a significant, albeit slight, descrease in the rate of senescence.


Shin J, Sánchez-Villarreal A,, Davis AM,, Du SX, Berendzen KW, Koncz C, Ding Z, Li C, Davis SJ (2017) The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner. Plant Cell Environ.

<a href="http://onlinelibrary.wiley.com/doi/10.1111/pce.12903/full" onclick="_gaq.push(['_trackEvent', 'outbound-article', 'http://onlinelibrary.wiley generic cialis express.com/doi/10.1111/pce.12903/full’, ‘http:/​/​dx.​doi.​org/10.1111/pce.12903’]);” target=”_blank”>http:/​/​dx.​doi.​org/10.1111/pce.12903

Seth Davies (University of York) leads this study that includes German, Mexican and Chinese collaborators and looks at the link between the circadian clock and plant metabolism. The energy sensing Snf1 (sucrose non-fermenting 1)-related kinase 1 (SnRK1) complex contains the catalytic AKIN10 protein, which plays an important role in clock function by controlling expression of the key evening element GIGANTEA (GI). This AKIN10 effect requires the clock regulator TIME FOR COFFEE (TIC) demonstrating an important role for the plants energy sensing mechanisms, via the AKIN10, in conditional control of clock gene expression.

Arabidopsis Research Roundup: January 11th

The first Arabidopsis Research Roundup of 2017 includes a wide range of studies that use our favourite model organism.

Firstly Kerry Franklin (University of Bristol) is the corresponding author on a paper that describes the complex interaction between the responses to sunlight and heat. Secondly Paul Dupree (University of Cambridge) leads a study that defines the important structural relationship between xylan and cellulose. Thirdly members of Gos Micklem’s group in Cambridge are part of the Araport team that present their ThaleMine tool.

Richard Napier (University of Warwick) is a co-author on the fourth paper that introduces a new chemical tool for study of the auxin response. The penultimate paper includes Matthew Terry (University of Southampton) on a paper that investigates the role of a Fe-S-containing protein cluster in chlorophyll biosynthesis and finally there is a methods paper from Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre that describes the use of FISH to detect single molecules of RNA.


Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA (2016) UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Current Biology http:/​/​dx.​doi.​org/10.1016/j.cub.2016.11.004

Open Access

This collaboration between the research groups of Kerry Franklin (University of Bristol) and Gareth Jenkins (University of Glasgow) looks at how the perception of UV-B light inhibits the morphological changes that occur in response to increased temperatures (thermomorphogenesis). This response includes induced hypocotyl elongation, which is mediated via PIF4 and various players in the auxin response. Interestingly the authors show that UV-B light perceived by UVR8 attenautes this response by preventing PIF4 abundance and by stabilising the the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1) protein. These results suggest that there exists a precise mechanism for fine-tuning the growth responses that occur in sunlight that would usually include both increased temperature and UV-B irradiation.
UVB_pic


Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, deAzevedo ER, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun.

http:/​/​dx.​doi.​org/10.1038/ncomms13902 Open Access
In this paper Paul Dupree (University Cambridge) collaborates both with colleagues in Spain and with his father Ray, who is a physicist at the University of Warwick. They use NMR to perform a structural analysis of xylan, which is the most prevalent non-cellulosic polysaccharide in the cell wall matrix and binds to cellulose microfibrils. Whereas in solution xylan forms a threefold helical screw, it flattens into a twofold helical screw ribbon to closely bind to cellulose when in the cell wall. They used the cellulose-deficient Arabidopsis irx3 mutant to show that the xylan two-fold screw confirmation breaks down when it cannot bind cellulose. The authors state that this finding has important implications in our understanding of the formation of the cell wall and perhaps more importantly how it might be broken down during attempts to maximise economic usages of plant biomass.

A local Cambridge newspaper reported that this finding could ‘pave the way for wooden skyscrapers’
XylanPic


Krishnakumar V, Contrino S, Cheng CY, Belyaeva I, Ferlanti ES, Miller JR, Vaughn MW, Micklem G, Town CD, Chan AP (2016) ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery. Plant Cell Physiol http:/​/​dx.​doi.​org/10.1093/pcp/pcw200 Open Access

This paper is presented by the Araport team, which is based in the USA but includes representatives from Gos Micklem’s lab in University of Cambridge. They outline the functionality of the ThaleMine data warehouse which is an important component of the tools included on Araport (https://www.araport.org/). ThaleMine collects a wide variety of data from public datasets and presents it in a easy-to-interrogate form, facilitating the experiments of both lab-based researchers or bioinformaticians. This tool is build upon the InterMine software framework, which has been widely adopted across other model organisms.

Chris Town and Sergio Contrino provided a hands-on workshop describing the tools on Araport in last year GARNet2016 meeting and their workshop materials can be downloaded here.


Steenackers WJ, Klíma P, Quareshy M, Cesarino I, Kumpf RP, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack MK, Ljung K, Friml J, Blakeslee JJ, Novák O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) cis-cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol. http:/​/​dx.​doi.​org/pp.00943.2016 Open Access
cCApic
This pan-european collaboration includes members of Richard Napier’s lab at the University of Warwick. They outline the activity of a novel inhibitor of auxin efflux transport called cis-cinnamic acid (c-CA). When c-CA is applied to growth media plants appears to exhibit an auxin-response phenotype yet these experiments show that c-CA is neither an auxin or anti-auxin and in fact blocks local auxin efflux, thus causing buildup of cellular auxin. This effect does not occur with t-CA showing specificity for c-CA and it does not affect long distance auxin transport, which occurs through the phloem. Therefore this paper presents a new pharamolgical tool for the study of in planta auxin transport and homeostasis.


Hu X, Page MT, Sumida A, Tanaka A, Terry MJ, Tanaka R (2016) The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling. Plant J.

http:/​/​dx.​doi.​org/10.1111/tpj.13455

Matthew Terry and Mike Page (University of Southampton) are co-authors on this Japanese-led study that investigates the function of the SUFB subunit of the SUFBCD iron-sulfur cluster. These Fe-S protein clusters play roles in many metabolic processes and the SUFB mutant hmc1 exhibits a defect in chlorophyll biosynthesis due to an accumulation of Mg-containing biosynthetic intermediates. In addition both SUFC- and SUFD-deficient RNAi lines accumulated the same Mg intermediate indicating that the SUFBCD cluster is responsible for this step necessary for chlorophyll production.


Duncan S, Olsson TS, Hartley M, Dean C, Rosa S (2016) A method for detecting single mRNA molecules in Arabidopsis thaliana. Plant Methods. http:/​/​dx.​doi.​org/10.1186/s13007-016-0114-x

Open Access
This paper from is lead by Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre describes a novel method for imaging single molecules of RNA by smFISH. They analyse the localisation of both nascent and mature mRNAs, allowing for analysis of the location of RNA processing and translation.<
RosaPic

Arabidopsis Research Roundup: August 26th

Tags: No Tags
Comments: No Comments
Published on: August 26, 2016

This weeks Arabidopsis Research Roundup includes three papers across a wide range of topics. Firstly is a widely-reported study, described here with an audio description by Nik Cunniffe and Sanjie Ziang, of the evolutionary relationship between viral infection, pollinator attraction, plant fertility and miRNA-regulated gene expression. Secondly, Gordon Simpson is a co-author on a paper that has elucidated the crystal structure of the FPA proteins and finally Gareth Jenkins leads an investigation into the relationship between UV light, the UVR8 protein and histone modifications.

Groen SC, Jiang S, Murphy AM, Cunniffe NJ, Westwood JH, Davey MP, Bruce TJ, Caulfield JC, Furzer OJ, Reed A, Robinson SI, Miller E, Davis CN, Pickett JA, Whitney HM, Glover BJ, Carr JP (2016) Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts? PLoS Pathog. 12(8):e1005790

http:/​/​dx.​doi.​org/10.1371/journal.ppat.1005790

Open Access
BumbleBee
This pan-UK collaboration is led by John Carr, Beverly Glover and Nik Cunniffe at the University of Cambridge and has received wide attention in the general press. Nik Cunniffe also kindly provides an audio description of this work that looked into the effect of viral infection on the attraction of pollinators. The authors used GC-MS to look at the volatiles produced in virally infected Arabidopsis and tomato plants, showing that infection can alter the foraging behavior of bumblebees. Mutational analysis of both cucumber mosaic virus (CMV) and Arabidopsis showed that the microRNA pathway is involved in regulating the emission of these pollinator-perceivable volatiles. When virus-infected tomato plants were not pollinated there was a clear reduction in seed yield, indicating that the plant requires the volatile production following viral infection to attract pollinators, leading to reproductive success. Importantly the authors model the possible trade-off between viral infection and reproductive success in the wild, which might oppose the strong selective pressure for the establishment of disease-resistance genes. The authors speculate that this is a co-beneficial relationship for both virus and plant.

Nick Cunniffe and Sanjie Jiang kindly provide an audio description of this work.


 

Zhang Y, Rataj K, Simpson GG, Tong L (2016) Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA PLoS One 11(8):e0160694

http:/​/​dx.​doi.​org/10.1371/journal.pone.0160694

Open Access

Gordon Simpson (University of Dundee) in a co-author on this US-led study that has elucidated the crystal structure of the SPOC domain of the FPA floral regulator protein. FPA contains a N-terminal RNA recognition motif and a C-terminal SPEN paralog and ortholog C-terminal (SPOC) domain. This SPOC domain is highly conserved throughout plant species and this crystal structure is an important development in our understanding of the regulation of RNA 3’-end formation and how much the plant SPOC domains compare with an equivalent from metazoans.

 

Velanis CN, Herzyk P, Jenkins GI (2016) Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification Plant Mol Biol.

http:/​/​dx.​doi.​org/10.1007/s11103-016-0522-3

Open Access

Gareth Jenkins (Glasgow) leads this study that continues his groups work on the Arabidopsis UVR8 photoreceptor. They show that UV-B exposure increases histone lysine acetylation on UVR8-regulated genes in a UVR8 dependent manner. In fact all of the histone enrichments throughout the genome following UV-B required UVR8 activity. However the authors could find no direct interaction between UVR8 and the known enzymes involved in light-mediated histone modification indicating that UVR8 either interacts with a novel set of proteins or the UVR8 effect is mediated via a currently unknown signaling intermediate.
UVRpic

Arabidopsis Research Roundup: August 19th

This weeks Arabidopsis Research Roundup includes broad representation from Norwich Research Park with Caroline Dean, Enrico Coen and Cyril Zipfel each leading studies that focus respectively on the regulation of transcriptional state, auxin patterning that defines leaf shape or the molecular basis of the PAMP response.

Elsewhere Liam Dolan (Oxford) leads, and Malcolm Bennett (CPIB) is the principal UK contributor on studies that look into different aspects of the key molecular signals in either root hair or lateral root development.

Finally Richard Napier is a co-author on a study that better characterises the molecular basis of the well-used plant growth inhibitor MDCA.

Yang H, Howard M, Dean C (2016) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC PNAS http://dx.doi.org/10.1073/pnas.1605733113

Dame Caroline Dean and Martin Howard (JIC) lead this follow-on work from a paper highlighted in an ARR from the start of 2016. Here they use the FLOWERING LOCUS C (FLC) locus as a model to study the trans factors that control methylation state. They find a physical interaction between the H3K36 methyltransferase SDG8 (which promotes the active H3K36me3 mark) and the H3K27me3 demethylase ELF6 (which removes the silencing H3K27me3 mark). SDG8 also associated with RNA polymerase II and the PAF1 transcriptional regulatory complex. Therefore the authors suggest that the addition of active histone marks coincides with transcription at the locus whilst SDG8 and ELF6 exhibit co-dependent localisation to FLC chromatin. Therefore this interaction links activation and derepression and coordinates active transcription whilst preventing ectopic silencing.

Abley K, Sauret-Güeto S, Marée AF, Coen E (2016) Formation of polarity convergences underlying shoot outgrowths. Elife. http://dx.doi.org/10.7554/eLife.18165.

Open Access
elife-18165-fig7-v1
Enrico Coen (JIC) is the corresponding author on this investigation that had generated models that predict locations of leaf outgrowth linked to auxin biosynthesis and transport. They use live imaging in wildtype and kanadi1kanadi2 mutants to show that the cellular polarity of the PIN1 auxin transporter is orientated so as to move auxin away from regions with high levels of biosynthesis. In turn, this moves auxin toward regions with high expression of AUX/LAX auxin importers. This data allows the generation of detailed models that describe the processes that control auxin-mediated tissue-patterning (and are impossible to describe in a single paragraph).

Couto D, Niebergall R, Liang X, Bücherl CA, Sklenar J, Macho AP, Ntoukakis V, Derbyshire P, Altenbach D, Maclean D, Robatzek S, Uhrig J, Menke F, Zhou JM, Zipfel C (2016) The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1 PLoS Pathog. http://dx.doi.org/10.1371/journal.ppat.1005811

Open Access

Cyril Zipfel is the lead investigator on this study that links researchers at TSL with colleagues in China and Germany. The focus of this work is the cytoplasmic kinase BIK1, which is a target of several pattern recognition receptors (PRRs) that are involved in the defence response, and the novel protein phosphatase PP2C38, which acts as a negative regulator of BIK1. Under non-inductive conditions PP2C38 prevents BIK1 activity but following pathogen-associated molecular patterns (PAMP) perception, it is phosphorylated and dissociates from BIK1, allowing full activity. This study provides another layer of detail into the complex central immune response that allows plants to response to a vast array of pathogenic microorganisms.

Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M, Mimura T, Weijers D, Fukaki H, Laplaze L, Bennett MJ, Guyomarc’h S (2016) Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor Development. http://dx.doi.org/10.1242/dev.135319

Open Access

Malcolm Bennett and Darren Wells (CPIB) are authors on this international collaboration that links UK, Japanese, French and Dutch researchers. The essential role of the central organizer center (the quiescent center, QC) is well known in primary root meristem development but its role during lateral root (LR) formation remained unclear. LR formation is characterised by biphasic growth that involves early morphogenesis from the central stele and subsequent LR meristem formation. This study uses 3D imaging to demonstrate that LR QC cells originate from outer cell layers of early primordial, in a SCARECROW (SCR) dependent manner. Perturbing SCR function causes incorrect formation of the LR QC and prevents wildtype LR patterning. The manuscript also contains some excellent videos of growing LRs that are very informative.
AUX1-YFPKim CM, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon PLoS Genet.

http://dx.doi.org/10.1371/journal.pgen.1006211 Open Access

This study comes from Liam Dolan’s lab at the University of Oxford and moves their research focus on root hair development from Arabidopsis into the grass Brachypodium distachyon. ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix genes are expressed in cells that develop root hair fate in Arabidopsis and this study indentifies 3 RSl1 genes in Brachypodium which, when ecoptically expressed, are sufficient for the development of root hairs in all cell files. The function of these RSL proteins is conserved as the Brachypodium versions are able to restore a wildtype phenotype to root hair-less Arabidopsis mutants. Even though root hair patterning is significantly different in Brachypodium and Arabidopsis, this study shows the role of the RSL genes is conserved.
RootHairPic
Steenackers WJ, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novak O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology http://dx.doi.org/10.1104/pp.15.01972

Open Access

Richard Napier (Warwick) is the UK PI on this pan-European study that investigates the molecular basis behind the physiological role of the compound phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA), which inhibits the phenylpropanoid pathway, important in lignin formation. MDCA causes inhibition of primary root growth and increase proliferation of lateral roots, not through lignin perturbation but due to a disruption in auxin homeostasis. MS analysis demonstrates that MDCA causes overall changes in auxin biosynthesis, conjugation and catabolism, similar to changes observed in mutants involved in the phenylpropanoid pathways. These result link auxin and phenylpropanoid biosynthesis pathways and provide a new explanation for the well demonstrated phytotoxic properties of MDCA.

«page 1 of 8

Follow Me
TwitterRSS
GARNetweets
April 2017
M T W T F S S
« Mar    
 12
3456789
10111213141516
17181920212223
24252627282930

Welcome , today is Wednesday, April 26, 2017