This bumper Festive Edition of the GARNet Research Roundup begins with two papers that have Beatriz Orosa-Puente as lead author following her work on SUMOylation with Ari Sadanandom at Durham. These papers looks at the role of SUMOylation in either auxin-mediated hydropatterning or in the defence response. Malcolm Bennett at Nottingham is a co-author on both papers and provided an audio description of the auxin-focused paper on the GARNet YouTube channel.
The next three papers are from the University of Edinburgh, the first that defines the role of HECT ubiquitin ligases in the defence response, the second that conducts a proteomic analysis of the GIGANTEA-interactome and the third that introduces a set of new tools for inducible gene expression in Arabidopsis roots.
The sixth and seventh papers feature authors from the John Innes Centre. Martin Howard and Caroline Dean are corresponding authors on a multi-scale analysis of the factors that control FLC expression whilst Myriam Charpentier’s lab has contributed to an investigation about LINC complexes in Medicago.
David Salt and Levi Yant from Nottingham lead the next paper that provides an analysis of the genetic determinants of adaptation to different salt conditions.
The final three papers are from Cambridge. Firstly Ian Henderson is the corresponding author on work that looks at crossover rates in specific disease resistance loci. Second is work from the Paszkowski lab at SLCU that introduces a new method for the analysis of active retrotransposons in crop plants whilst finally James Locke, also at SLCU, uses the method of distributed delays to simplify the complexity of biological network models.
Orosa-Puente B, Leftley N, von Wangenheim D, Banda J, Srivastava AK, Hill K, Truskina J, Bhosale R, Morris E, Srivastava M, Kümpers B, Goh T, Fukaki H, Vermeer J, Vernoux T, Dinneny JR, French AP, Bishopp A, Sadanandom A , Bennett MJ (2018) Roots branch towarss water by post-translational modification of the transcription factor ARF7 Science DOI: 10.1126/science.aau3956
Orosa B, Yates G, Verma V, Srivastava AK, Srivastava M, Campanaro A, De Vega D, Fernandes A, Zhang C, Lee J, Bennett MJ, Sadanandom A (2018) SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nat Commun. doi: 10.1038/s41467-018-07696-8 Open Access
Beatriz Orosa-Puente is the lead author on two publications that have arisen from a collaboration between the labs of Ari Sadanandom at Durham and Malcolm Bennett at Nottingham. In the first paper Beatriz is co-first author with Nicola Leftley and Daniel von Wangenheim in research that links the auxin response, SUMOylation and the search for water. They reveal a novel mechanism for controlling the auxin response in which SUMOylation regulates the interaction between the ARF7 and IAA3 proteins. In turn this controls asymmetric expression of genes downstream of ARF7 and determines how different parts of the root response to the presence or absence of water.
The second paper continues with the Sadanandom lab’s focus on SUMOylation, in this case during control of the defence response. They show that SUMO is conjugated to the FLAGELLIN-SENSITIVE 2 (FLS2) receptor that senses bacterial flagellin. This releases downstream cytoplasmic effectors and enhances the immune response. The authors show that there is additional complexity to this system by also showing that flagellin induces degradation of the deSUMOylating enzyme Desi3a, thus allowing the plant to make a stronger immune response.
Furniss JJ, Grey H, Wang Z, Nomoto M, Jackson L, Tada Y, Spoel SH (2018) Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity. PLoS Pathog. doi: 10.1371/journal.ppat.1007447 Open Access
James Furniss is the lead author on this paper from the lab of current GARNet Chairman Steven Spoel at the University of Edinburgh. They show that a family of HECT domain-containing ubiquitin protein ligases (UPLs) are involved in defence responses mediated by the hormone salicylic acid (SA). Upl3 mutants show reprogramming of the entire SA transcriptional response and they are unable to establish immunity against a hemi-biotrophic pathogen, demonstrating their key role in this important process.
Krahmer J, Goralogia GS, Kubota A, Zardilis A, Johnson RS, Song YH, MacCoss MJ, LeBihan T, Halliday KJ, Imaizumi T, Millar AJ (2018) Time-resolved Interaction Proteomics of the GIGANTEA Protein Under Diurnal Cycles in Arabidopsis. FEBS Lett. doi: 10.1002/1873-3468.13311 Open Access
This paper is a collaboration between researchers in Edinburgh and Seattle for which Johanna Krahmer is lead author. They used a proteomic approach to identify proteins that interacted with a tagged-version of the key circadian regulator GIGANTEA. They successfully identified the novel transcription factor CYCLING DOF FACTOR (CDF)6. CDF6 was confirmed as interacting with GI and playing a role in the control of flowering. The time series of proteomic data produced in this study is available for use by any other interested researcher.
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD006859
Machin FQ, Beckers M, Tian X, Fairnie A, Cheng T, Scheible WR, Doerner P (2018) Inducible reporter/driver lines for the Arabidopsis root with intrinsic reporting of activity state. Plant Journal. doi: 10.1111/tpj.14192
Frank Qasim Machin is the lead author on this Technical Advance from Peter Doerner’s lab at the University of Edinburgh. They have developed a Gateway-based system for tightly controlled inducible expression across all the major cell types of the Arabidopsis roots. They have fully characterised reference driver lines that can be adapted for specific experimental requirements and hope that this contributes towards enhancing reproducibility of qualitative and quantitative analyses.
Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, Säll T, Holm S, Dean C, Howard M (2018) Temperature Sensing Is Distributed throughout the Regulatory Network that Controls FLC Epigenetic Silencing in Vernalization. Cell Syst. doi: 10.1016/j.cels.2018.10.011 Open Access
This work results from the successful collaboration between Caroline Dean and Martin Howard at the John Innes Centre and includes Rea Antoniou-Kourounioti and Jo Hepworth as co-first authors. They attempt to understand how the upregulation of VERNALIZATION INSENSITIVE3 (VIN3) and silencing of FLOWERING LOCUS C (FLC) is controlled during fluctuating temperatures over month-long time scales. They develop a mathematical model that integrates information from hour, day and month-long datasets to show that temperature is sensed across the entire regulatory network and not focussed on specific nodes. This allows a final effect to only be realised once all parts of the network have been appropriately changed. This model with matches new field data and therefore represents a predictive tool for the effects of climate change on plant growth.
Newman-Griffis AH, Del Cerro P, Charpentier M, Meier I (2018) Medicago LINC complexes function in nuclear morphology, nuclear movement, and root nodule symbiosis Plant Physiol. http://www.plantphysiol.org/content/early/2018/12/10/pp.18.01111 Open Access
Pablo del Cerro and Myriam Charpentier at the John Innes Centre are co-authors on this paper from Iris Meier’s lab at The Ohio State University. They identify and characterise the Linker of Nucleoskeleton and Cytoskeleton (LINC) family of nucleus-membrane-associated proteins. They show that, as in Arabidopsis, these proteins are required for nucleus movement in the root tip cells of Medicago truncatula and that they are an important contributor to nodulation. Both Iris and Myriam are members of the INDEPTH consortium that includes researchers who study this broad area of plant cell biology.
Busoms S, Paajanen P, Marburger S, Bray S, Huang XY, Poschenrieder C, Yant L, Salt DE (2018) Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1816964115 Open Access
This UK-Sino-Spanish collaboration is led by David Salt and Levi Yant at the University of Nottingham. Silvia Busoms is the first author on the study that investigates the genetics of adaptive salt tolerance in a cohort of 77 individuals grown across a salinity gradient in a coastal region of Catalonia. By integrating their data with the 1135 genomes project they are able to trace the ancestry of these populations and define that growth in high salt conditions is associated with increased expression of the high-affinity K+ transporter (HKT1;1). This demonstrates that this gene plays a key role in the adaptation to salt stress.
Serra H, Choi K, Zhao X, Blackwell AR, Kim J, Henderson IR. Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes (2018) PLoS Genet. doi: 10.1371/journal.pgen.1007843 Open Access
This UK-Korean collaboration is led by the Heidi Serra and Ian Henderson at the University of Cambridge. They mapped the meiotic crossover hotspots that are located within the RAC1 and RPP13 disease resistance genes in Arabidopsis. They assessed these locations in plants with altered recombination rates and surprisingly showed that these effects have little impact at the RAC1 loci. Therefore they show that chromosome location and local chromatin environment are important for regulation of crossover activity. Overall they demonstrate that interhomolog divergence is important in shaping recombination within plant disease resistance genes and crossover hotspots.
Cho J, Benoit M, Catoni M, Drost HG, Brestovitsky A, Oosterbeek M, Paszkowski J (2018) Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. Nat Plants. doi: 10.1038/s41477-018-0320-9
Open Access with link: rdcu.be/bdLjy
For the second edition in succession, the GARNet research roundup features work from Jerzy Paszkowski’s lab at SLCU. In this case Jungnam Cho is lead author on work that has developed a new technique called ALE-seq (amplification of LTR of eclDNAs followed by sequencing) for analysis of transposon-rich genomes from crop plants. Through characterisation of extrachromosomal linear DNA (eclDNA), ALE-seq allows the identification of active transposons. The authors use this technique in both rice and tomato and successfully identify a set of developmentally regulated transposable elements. This paper includes details of a bioinformatic pipeline that is adapted for ALE-seq data analyses, the scripts for which are available on GitHub.
Tokuda IT, Akman OE, Locke JCW. Reducing the Complexity of Mathematical Models for the Plant Circadian Clock by Distributed Delays (2018) J Theor Biol. doi: 10.1016/j.jtbi.2018.12.014
This UK-Japanese study includes James Locke at SLCU as corresponding author. They address the challenge of integrating an increasing number of parameters into large biological network models. Their system of study is the Arabidopsis circadian clock and they use the method of distributed delays to simplify the complexity of existing models. They demonstrate this effect by updating a model that explains the regulation of the PRR9 and PRR7 genes by LHY. They use recent experimental data and revise the previous model to show that it is more accurately reproduces the LHY-induction experiments of core clock genes. As stated they show that overall use of distributed delays facilitates the optimisation and reformulation of genetic network models.