GARNet Research Roundup: September 24th 2019

Due to a significant delay this GARNet Research Roundup is a bumper overview of recent(ish) publications across discovery-led plant science, which have at least one contributor from a UK institution.

These can be (very) loosely separated into the following categories:

Circadian Clock: Greenwood et al, PloS Biology. Belbin et al, Nature Communications.

Environmental responses: Rodríguez-Celma et al, PNAS. Walker and Bennett, Nature Plants. Conn et al, PLoS Comput Biology. de Jong et al,PLoS Genetics. Molina-Contreras et al,The Plant Cell.

Defence signaling: Van de Weyer et al, Cell.Hurst et al, Scientific Reports. Xiao et al, Nature. Wong et al, PNAS.

Cell Biology: Miller et al, The Plant Cell. Coudert et al, Current Biology. Burgess et al,The Plant Cell. Harrington et al, BMC Plant Biology.

Metabolism: Jia et al, J Biol Chem. Perdomo et al, Biochem J. Gurrieri et al, Frontiers in Plant Science. Mucha et al, The Plant Cell. Atkinson et al, JXBot.

Cell Wall Composition: Wightman et al, Micron. Milhinhos et al, PNAS.

Signaling: Hartman et al, Nature Communications. Dittrich et al, Nature Plants. Villaécija-Aguilar et al, PLoS Genetics


Greenwood M, Domijan M, Gould PD, Hall AJW, Locke JCW (2019) Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biol. 17(8):e3000407. doi: 10.1371/journal.pbio.300040 Open Access

Lead author is Mark Greenwood. UK contribution from The Sainsbury lab University of Cambridge, University of Liverpool and Earlham Institute. Using a mixture of experimental and modeling this paper shows that individual organs have circadian clocks that runs at different speeds.


Belbin FE, Hall GJ, Jackson AB, Schanschieff FE, Archibald G, Formstone C, Dodd AN (2019) Plant circadian rhythms regulate the effectiveness of a glyphosate-based herbicide. Nat Commun. 2019 Aug 16;10(1):3704. doi: 10.1038/s41467-019-11709-5 Open Access

Lead author is Fiona Belbin. UK contribution from University of Bristol and Syngenta Jealott’s Hill. Activity of the circadian clock determines that the plant response to the herbicide glyphosate is lessened at dusk, promoting the idea of agricultural chronotherapy. Fiona discusses this paper on the GARNet Community Podcast.


Rodríguez-Celma J, Connorton JM, Kruse I, Green RT, Franceschetti M, Chen YT, Cui Y, Ling HQ, Yeh KC, Balk J (2019) Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907971116 Open Access

Lead author is Jorge Rodríguez-Celma. UK contribution from John Innes Centre, University of East Anglia.The Arabidopsis E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2 target the FIT transcription factor for degradation, altering the plant response to harmful level of iron.


Walker CH, Bennett T (2019) A distributive ‘50% rule’ determines floral initiation rates in the Brassicaceae. Nat Plants. doi: 10.1038/s41477-019-0503-z
Lead author Catriona Walker. UK contribution from the University of Leeds. The authors introduce the 50%-rule that defines the relationshop between the total number of flowers the number of secondary inflorescences


Conn A, Chandrasekhar A, Rongen MV, Leyser O, Chory J, Navlakha S (2019) Network trade-offs and homeostasis in Arabidopsis shoot architectures. PLoS Comput Biol. doi: 10.1371/journal.pcbi.100732 Open Access

Lead author is Adam Conn. UK contribution from Sainsbury Laboratory, University of Cambridge. This study performed 3D scanning of 152 Arabidopsis shoot architectures to investigate how plants make trade-offs between competing objectives.


de Jong M, Tavares H, Pasam RK, Butler R, Ward S, George G, Melnyk CW, Challis R, Kover PX, Leyser O (2019) Natural variation in Arabidopsis shoot branching plasticity in response to nitrate supply affects fitness. PLoS Genet. doi: 10.1371/journal.pgen.1008366 Open Access

Lead author is Maaike de Jong. UK contribution from the Sainsbury Laboratory, University of Cambridge, the University of York and the University of Bath. This study looks at phenotypic plasticity of shoot branching in Arabidopsis diversity panels grown until different nitrate concentrations.


Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, Morelli L, Roig-Villanova I, Jenkins H, Hallab A, Gan X, Gómez-Cadenas A, Tsiantis M, Rodriguez-Concepcion M, Martinez-Garcia JF (2019) Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell. doi: 10.1105/tpc.19.00275 Open Access

Lead author is Maria Jose Molina-Contreras. UK contribution from the University of Oxford. The authors looks at the response to different light conditions and how they contribute to phenotypic determination in Cardamine and Arabidopsis seedlings.


Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F (2019) A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell. doi: 10.1016/j.cell.2019.07.038 Open Access

Lead author is Anna-Lena Van de Weyer. UK contribution from The Sainsbury Laboratory, Norwich. Using sequence enrichment and long-read sequencing the authors present the pan-NLRome constructed from 40 Arabidopsis accessions.


Hurst CH, Wright KM, Turnbull D, Leslie K, Jones S, Hemsley PA (2019) Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does not necessarily impact upon function. Sci Rep. doi: 10.1038/s41598-019-49302-x Open Access

Lead author is Charlotte Hurst. UK contribution from the James Hutton Institute and the University of Dundee. They look at the functional role of post-translational modification S-acylation with a focus on the plant pathogen perceiving receptor-like kinase FLS2.


Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai J (2019) Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature. doi: 10.1038/s41586-019-1409-7
Lead author is Yu Xiao. UK contribution from The Sainsbury Laboratory, Norwich. This study investigates how RAPID ALKALINIZATION FACTOR (RALF) peptides induce receptor complex formation to regulate immune signaling.


Wong JEMM, Nadzieja M, Madsen LH, Bücherl CA, Dam S, Sandal NN, Couto D, Derbyshire P, Uldum-Berentsen M, Schroeder S, Schwämmle V, Nogueira FCS, Asmussen MH, Thirup S, Radutoiu S, Blaise M, Andersen KR, Menke FLH, Zipfel C, Stougaard J (2019). A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1815425116
Open Access

Lead author is Jaslyn Wong. UK contribution from The Sainsbury Laboratory, University of East Anglia. This work was conducted in the legume Lotus and after a proteomic screen, the authors identified NFR5-interacting cytoplasmic kinase 4 that is involved in control of Nod factor perception.


Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan MW (2019) Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size and crop yield in Brassica napus. Plant Cell. doi: 10.1105/tpc.18.00577
Open Access

Lead author in Charlotte Miller. UK contribution from the John Innes Centre. Activity of the Brassica napus HECT E3 ligase gene BnaUPL3 controls seed weight per pod through degradation of LEC2, a master transcriptional regulator of seed maturation and reveals a potential target for crop improvement


Coudert Y, Novák O, Harrison CJ (2019) A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants. Curr Biol. 2019 Aug 19;29(16):2743-2750.e5. doi: 10.1016/j.cub.2019.06.083

Lead author is Yoan Coudert. UK contribution from the University of Cambridge and University of Bristol. Class I KNOX gene activity is shown to be necessary for axis extension from an intercalary region of determinate moss shoots, in part through promotion of cytokinin biosynthesis.


Burgess SJ, Reyna-Llorens I, Stevenson SR, Singh P, Jaeger K, Hibberd JM (2019) Genome-wide transcription factor binding in leaves from C3 and C4 grasses Plant Cell.  doi: 10.1105/tpc.19.00078 Open Access

Lead author is Steven Burgess. UK contribution from University of Cambridge, The Sainsbury lab University of Cambridge, University of Leeds The authors use DNaseI-SEQ to assess the similarities and differences in transcription factor binding sites in the leaves across a set of four C3 and C4 grasses.


Harrington SA, Overend LE, Cobo N, Borrill P, Uauy C (2019) Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biol. doi: 10.1186/s12870-019-2022-
Lead author is Sophie Harrington. UK contributions from the John Innes Centre and University of Birmingham. The authors used a wheat TILLING resource to investigate mutrant allele with the NAC domain of the NAM-A1 transcription factor and their contribution to phenotypes in lab and field.


Jia Y, Burbidge CA, Sweetman C, Schutz E, Soole K, Jenkins C, Hancock RD, Bruning JB, Ford CM (2019) An aldo-keto reductase with 2-keto- L-gulonate reductase activity functions in L-tartaric acid biosynthesis from vitamin C in Vitis vinifera. J Biol Chem. doi: 10.1074/jbc.RA119.010196 Open Access

Lead author Yong Jia. UK contribution from the James Hutton Institute. This work conducted in grape reveals the mechanism by which an aldo-keto reductase functions in tartaric acid biosynthesis.


Perdomo JA, Degen GE, Worrall D, Carmo-Silva E (2019) Rubisco activation by wheat Rubisco activase isoform 2β is insensitive to inhibition by ADP. Biochem J. doi: 10.1042/BCJ2019011 Open Access

Lead author is Juan Alejandro Perdomo. UK contribution from Lancaster University. They show through analysis of site-directed mutations across three isoforms of wheat Rubisco activase that these isoforms have different sensitivities to ADP.


Gurrieri L, Distefano L, Pirone C, Horrer D, Seung D, Zaffagnini M, Rouhier N, Trost P, Santelia D, Sparla F (2019) The Thioredoxin-Regulated α-Amylase 3 of Arabidopsis thaliana Is a Target of S-Glutathionylation. Front Plant Sci. doi: 10.3389/fpls.2019.00993 Open Access

Lead author is Libero Gurrieri. UK contribution from John Innes Centre. The chloroplastic α-Amylases, AtAMY3 is post-translationally modified by S-glutathionylation in response to oxidative stress.


Mucha S, Heinzlmeir S, Kriechbaumer V, Strickland B, Kirchhelle C, Choudhary M, Kowalski N, Eichmann R, Hueckelhoven R, Grill E, Kuster B, Glawischnig E (2019) The formation of a camalexin-biosynthetic metabolon. Plant Cell. doi: 10.1105/tpc.19.00403 Open Access

Lead author is Stefanie Mucha. UK contribution from Oxford Brookes University and University of Warwick. The authors performed two independent untargeted co-immunoprecipitations to identify components involved in biosynthesis of the antifungal phytoalexin camalexin.


Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ (2019) The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. J Exp Bot. doi: 10.1093/jxb/erz275
Open Access

Lead author is Nicky Atkinson. UK contribution from the University of Edinburgh. This study uses Arabidopsis-Chlamydomonas to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1).


Wightman R, Busse-Wicher M, Dupree P (2019) Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron. doi: 10.1016/j.micron.2019.102733
Lead author Raymond Wightman. UK contribution from the Sainsbury Laboratory, University of Cambridge and the University of Cambridge. This study uses applies a novelmethod of correlative FLIM-confocal-Raman imaging to analyse lignin composition in Arabidopsis stems.


Milhinhos A, Vera-Sirera F, Blanco-Touriñán N, Mari-Carmona C, Carrió-Seguí À, Forment J, Champion C, Thamm A, Urbez C, Prescott H, Agustí J (2019) SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1807863116
Lead author is Ana Milhinho. UK contribution from the University of Oxford. The authors used GWAS in Arabidopsis to identify the SOBIR1/EVR as an important regulator of the control of secondary growth in xylem fibers.


Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW, Visser EJW, Bailey-Serres J, Theodoulou FL, Hebelstrup KH, Gibbs DJ, Holdsworth MJ, Sasidharan R, Voesenek LACJ (2019) Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun. doi: 10.1038/s41467-019-12045-4 Open Access

Lead author is Sjon Hartman. UK contribution from the University of Nottingham, Rothamsted Research and the University of Birmingham. This multinational collaboration looks into the relationship of how ethylene mediated nitric-oxide signaling responds to environmental signals.


Dittrich M, Mueller HM, Bauer H, Peirats-Llobet M, Rodriguez PL, Geilfus CM, Carpentier SC, Al Rasheid KAS, Kollist H, Merilo E, Herrmann J, Müller T, Ache P, Hetherington AM, Hedrich R (2019) The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants. doi: 10.1038/s41477-019-0490-0
Lead author Marcus Dittrich. UK contribution from the University of Bristol. This work looks at the role of ABA signaling in stomatal responses and that the multiple ABA receptors can be modulated differentially in a stimulus-specific manner.


Villaécija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmid C, Dawid C, Bennett T, Gutjahr C (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet. doi: 10.1371/journal.pgen.1008327 Open Access

Lead author Jose Antonio Villaécija-Aguilar. UK contribution from the University of Leeds and The Sainsbury lab, University of Cambridge. This demonstrates that KAI2 signalling through SMAX1/SMXL2 , is an important new regulator of root hair and root development in Arabidopsis.

Meeting Report: Monogram 2019

Tags: No Tags
Comments: No Comments
Published on: July 31, 2019

by Cara Wheeldon, University of Leeds working in the Bennett Lab.


This April I attended Monogram 2019, my first conference, and I have to say that I had a great time. I didn’t know what to expect, but I was very pleased to discover how friendly and welcoming the UK cereal research community is. In addition to academic researchers, representatives from plant breeding companies were present.


The conference talks were grouped into sessions each with a different focus. I was fascinated to learn about all the exciting developments in cereal research from across the UK, and how varied these areas are. From grain size to root morphology to nutritional gain, the field is vast and brimming with new discoveries and technological developments.

I was especially interested in the work being carried out at NIAB, as presented by Alison Bentley. As my research is focussed on how plants respond to physical aspects of the rhizosphere such as soil volume and the presence of neighbouring plants, I found Vera Hecht’s work on field sowing density to be of particular interest. As highlighted by Vera, space is a valuable commodity in farming and over sowing can have costly, negative effects on plant growth. Research into this subject area has highly valuable applications to crop production.

Alison Bentley presenting her research. Photo @StephanieSwarbr

On the second day, there was an open discussion about the current and future requirements needed to facilitate advances in cereal research. Issues raised included the need for improvements in database access and use, in order to aid the exchange of knowledge amongst the research community.


On the first day I had the opportunity to present my poster titled ‘’Root density sensing allows pro-active modulation of shoot growth to avoid future resource limitation’’. During the poster session, and indeed during the following few days, I was able to have incredibly interesting and thought-provoking discussions with many of the delegates about both my own and their research. I certainly found this opportunity to discuss ideas with people from different areas of crop research highly valuable for project progression and forming new connections.

Cara presenting her poster. Photo @CaraWheeldon

Despite being a Masters by Research student, I achieved highly commended for my poster in the PhD category, several months before embarking on my PhD. I found this to be a brilliant validation of my hard work and dedication to this area of research and I am incredibly grateful for the recognition.

I would like to thank GARNet for providing me with a travel grant to attend this year’s conference and I hope to see you all next year!



GARNet Research Roundup: April 29th 2019

This edition of the GARNet research roundup features fundamental plant science research conducted in a range of experimental organisms. Firstly Liam Dolan’s lab in Oxford looks at the function of bHLHs proteins in cell differentiation across land plant evolution. Secondly Anthony Hall’s group at the Earlham Institute have identified a novel RecQ helicase involved in work exclusively conducted in wheat. Thirdly researchers from Nottingham work with Arabidopsis to characterise an EXPANSIN protein essential for lateral root development.

The fourth paper is the first of two that look at germination and uses a new model, Aethionema arabicum, to study the role of light in seed dormancy. This work includes research from Royal Holloway. The second ‘dormancy’ paper is from Peter Eastmond’s lab at Rothamsted and further characterises the DOG1 gene in Arabidopsis. The penultimate paper includes co-authors from Warwick and Leeds and introduces a novel chemical inhibitor of auxin transport. The final paper from researchers in Birmingham introduces the 3DCellAtlas Meristem, a powerful tool for cellular annotation of the shoot apical meristem.


Bonnot C, Hetherington AJ, Champion C, Breuninger H, Kelly S, Dolan L (2019) Neofunctionalisation of basic helix loop helix proteins occurred when embryophytes colonised the land. New Phytol. doi: 10.1111/nph.15829 https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15829

Clemence Bonnot is lead author on this study from Liam Dolan’s lab at the University of Oxford in which the authors assess the role of ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes during evolution of plant development. They look at the function of a member of this bHLH transcription factor family called CbbHLHVIII identified in the charophyceaen alga Chara braunii. This gene is expressed at specific morphologically important regions in the algae and cannot rescue the function of related RSL genes in Marchantia or Arabidopsis. This suggests that the function of RSL proteins in cell differentiation has evolved by neofunctionalisation through land plant lineages.


Gardiner LJ, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, Higgins JD, Hall N, Griffiths S, Clavijo BJ, Hall A (2019) Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol. 20(1):69. doi: 10.1186/s13059-019-1675-6 https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1675-6

Open Access

Laura Gardiner and Anthony Hall lead this work that was conducted at the Earlham Institute and uses a bespoke set of bioinformatic tools that allow fundamental questions to be asked in hexaploid wheat. They looked at crossover and gene conversion frequencies in 13 recombinant inbred mapping populations and were able to identity an important QTL and confirm functionality for a novel RecQ helicase gene. This gene does not exist in Arabidopsis and therefore this discovery-motivated research needed to be conducted in wheat. They hope that this identification will provide future opportunities to tackle the challenge of linkage drag when attempting to develop new crops varieties.


Ramakrishna P, Ruiz Duarte P, Rance GA, Schubert M, Vordermaier V, Vu LD, Murphy E, Vilches Barro A, Swarup K, Moirangthem K, Jørgensen B, van de Cotte B, Goh T, Lin Z, Voβ U, Beeckman T, Bennett MJ, Gevaert K, Maizel A, De Smet I (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci U S A. 2019 Apr 3. pii: 201820882. doi: 10.1073/pnas.1820882116 https://www.pnas.org/content/early/2019/04/02/1820882116.long

Open Access

This pan-European study is led by Priya Ramakrishna at the University of Nottingham and includes co-authors from the UK, Belgium, Germany and Denmark. The authors look at the lateral root development and characterise the function of the EXPANSIN A1 protein. This protein influences the physical changes in the cell wall that are needed to enable the asymmetry cell divisions that define the location of a new lateral root. Plants lacking EXPA1 function do not properly form lateral roots and are unable to correctly respond to an inductive auxin signal. This clearly demonstrates an important requirement for the activity of genes that transmit cell signals into the physical relationships that exist between cells.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

Mérai Z, Graeber K, Wilhelmsson P, Ullrich KK, Arshad W, Grosche C, Tarkowská D, Turečková V, Strnad M, Rensing SA, Leubner-Metzger G, Scheid OM (2019) Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. pii: erz146. doi: 10.1093/jxb/erz146

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz146/5428144

Open Access

This paper includes authors from the UK, Germany, Austria and the Czech Republic including Kai Graeber and Gerhard Leubner-Metzger at Royal Holloway. They introduce the Brassica Aethionema arabicum as a new model to investigate the mechanism of germination inhibition by light as they have identified accessions that are either light-sensitive or light-neutral. In contrast germination in Arabidopsis is stimulated by light. Transcriptome analysis of Aethionema arabicum accessions reveal expression changes in key hormone-regulated genes. Overall they show that largely the same module of molecular components are involved in control of of seed dormancy irrespective of the effect of light on germination. Therefore any phenotypic changes likely result from changes in the activity organisms-specific of these genes.

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz146/5428144

Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ (2019) Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR 67 transactivates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell. pii: tpc.00892.2018. doi: 10.1105/tpc.18.00892 http://www.plantcell.org/content/early/2019/04/08/tpc.18.00892.long

Open Access

http://www.plantcell.org/content/early/2019/04/08/tpc.18.00892.long

Fiona Bryant is lead author on this research from Rothamsted Research that investigates the factors that control expression of the DOG1 gene, which is a key regulator of seed dormancy. They show that LEUCINE ZIPPER TRANSCRIPTION FACTOR67 (bZIP67) regulates DOG1 expression and have uncovered a mechanism that describes the temperature-dependent regulation of DOG1 expression. Finally they identity a molecular change that explains known allelic difference in DOG1 function, which informs different levels of dormancy in different accessions.


Oochi A, Hajny J, Fukui K, Nakao Y, Gallei M, Quareshy M, Takahashi K, Kinoshita T, Harborough SR, Kepinski S, Kasahara H, Napier RM, Friml J, Hayashi KI (2019) Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiol. 2019 Apr 1. pii: pp.00201.2019. doi: 10.1104/pp.19.00201 http://www.plantphysiol.org/content/early/2019/04/01/pp.19.00201.long

Open Access

http://www.plantphysiol.org/content/early/2019/04/01/pp.19.00201.long

This Japanese-led study includes co-authors from the Universities of Warwick and Leeds and describes the identification of a novel positive chemical modulator of auxin cellular efflux. This aptly named PInStatic Acid (PISA) prevents PIN protein internalization yet does not impact the SCFTIR1/AFB signaling cascade. Therefore the authors hope that PISA will be a useful tool for unpicking the cellular mechanisms that control auxin transport.


Montenegro-Johnson T, Strauss S, Jackson MDB, Walker L, Smith RS, Bassel GW. (2019) 3D Cell Atlas Meristem: a tool for the global cellular annotation of shoot apical meristems. Plant Methods. 15:33. doi: 10.1186/s13007-019-0413-0

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

Open Access

Thomas Montenegro-Johnson, Soeren Strauss, Matthew Jackson and Liam Walker lead this methods paper that was prepared following research that took place at the University of Birmingham and the Max Planck Institute for Plant Breeding Research in Cologne. They describe the 3DCellAtlas Meristem, a tool allows the complete cellular annotation of cells within a shoot apical meristem (SAM), which they have successfully tested in both Arabidopsis and tomato. The authors state that ‘this provides a rapid and robust means to perform comprehensive cellular annotation of SAMs and digital single cell analyses, including cell geometry and gene expression’.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0413-0

GARNet Research Roundup: November 1st 2018

This week’s GARNet research roundup again features papers on a variety of topics. First is work from the University of Leeds that investigates the physical properties of callose:cellulose hydrogels and the implication for cell wall formation. Second is work from the University of York that assesses the role of the HSP90.2 protein in control of the circadian clock. The third paper features GARNet committee member Sarah McKim and looks at the genetic control of petal number whilst the next paper from the Universities of Warwick and Glasgow includes a proteomic analysis of different types of secretory vesicles.

The next two papers look at different aspects of hormone signaling. Firstly Alistair Hetherington from the University of Bristol is a co-author on a study that looks at the role of the BIG protein whilst Simon Turner’s lab in Manchester investigates the role of ABA in xylem fibre formation.

The penultimate paper includes Lindsey Turnbull from the University of Oxford and looks at the stability of epialleles across 5 generations of selection. Finally is a paper that includes researchers from TSL in Norwich who have contributed to a phosphoproteomic screen to identify phosphorylated amino acids that influence the defence response.


Abou-Saleh R, Hernandez-Gomez M, Amsbury S, Paniagua C, Bourdon M, Miyashima S, Helariutta Y, Fuller M, Budtova T, Connell SD, Ries ME, Benitez-Alfonso Y (2018) Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nature Communications DOI: 10.1038/s41467-018-06820-y

https://www.nature.com/articles/s41467-018-06820-y

Open Access
Radwa Abou-Saleh is lead author on this work from Yoselin Benitez-Alfonso’s lab at the University of Leeds. (1,3)-β-glucans such as callose play an important role in plant development yet their physical properties are largely unknown. This study analyses a set of callose:cellulose hydrogel mixtures as a proxy for different cell wall conditions. They show that callose:cellulose hydrogels are more elastic than those composed of only cellulose, providing evidence that the interactions between cellulose and callose are important for the structural features of cell walls.


Davis AM, Ronald J, Ma Z, Wilkinson AJ, Philippou K, Shindo T, Queitsch C, Davis SJ (2018) HSP90 Contributes To Entrainment of the Arabidopsis Circadian Clock via the Morning Loop. Genetics. doi: 10.1534/genetics.118.301586

http://www.genetics.org/content/early/2018/10/18/genetics.118.301586.long

Open Access
Amanda Davies is the first author on this study from Seth Davies’ lab at the University of York in which they assess the role of the molecular chaperone HSP90.2 on function of the circadian clock. The show hsp90.2-3 mutant plants have a lengthened circadian period with a specific defect in the morning. This data allows the authors to better understand the pathway through which HSP90.2 functions to entrain the circadian clock.


Monniaux M, Pieper B, McKim SM, Routier-Kierzkowska AL, Kierzkowski D, Smith RS, Hay A. The role of APETALA1 in petal number robustness. Elife. doi: 10.7554/eLife.39399

https://elifesciences.org/articles/39399

Open Access
GARNet committee member Sarah McKim is a co-author on this paper, that is led by Marie Monniaux, which includes research from her time at the University of Oxford. This work from the Hay lab in Cologne compares petal number in Arabidopsis thaliana, in which the number is invariant, and Cardamine hirsute, in which it varies. They show that petal number robustness can be attributed to the activity of the APETALA1 (AP1) floral regulator and that AP1 masks the activity of several genes in Arabidopsis but not in Cardamine.


Waghmare S, Lileikyte E, Karnik RA, Goodman JK, Blatt MR, Jones AME (2018) SNAREs SYNTAXIN OF PLANTS 121 (SYP121) and SYP122 mediate the secretion of distinct cargo subsets . Plant Physiol. doi: 10.1104/pp.18.00832

http://www.plantphysiol.org/content/early/2018/10/23/pp.18.00832.long

Open Access

This collaboration between the Universities of Glasgow and Warwick is led by Sakharam Waghmare, who works with Mike Blatt in Glasgow. This study uses proteomic approaches to characterise the secretory cargos within vesicles decorated with either of the SNARE proteins SYNTAXIN OF PLANTS 121 (SYP121) or SYP122. Genetic analysis suggests that SYP121 and SYP122 have redundant functions but this new research is able to identify cargo proteins that are either contained within both types of vesicle or that are specific to one or the other.


Zhang RX, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng YQ, Xiong L, Li C, Hetherington AM, Liang YK (2018) BIG regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytol. doi: 10.1111/nph.15568

Alistair Hetherington is a co-author on this China-based study led by Ruo‐Xi Zhang from Wuhan. This work adds to some recent interest in the BIG protein; in this study showing that it is involved in the interaction between JA and ethylene signaling during stress responses. In a complex set of interactions they show that the BIG protein differently alters opposing arms of the JA signaling pathway providing additional evidence that this protein is a key regulator of plant hormone signaling, albeit by a set of as yet unknown mechanisms.


Campbell L, Etchells JP, Cooper M, Kumar M, Turner SR. An essential role for Abscisic acid in the regulation of xylem fibre differentiation. Development. doi: 10.1242/dev.161992

This work from Simon Turner’s lab at the University of Manchester is led by Liam Campbell and identifies a novel role for ABA in the formation of xylem fibres during secondary thickening of the Arabidopsis hypocotyl. The action of ABA doesn’t alter the xylem:phloem ratio but rather the activity focuses on the formation of fibres within the already defined xylem tissue.


Schmid MW, Heichinger C, Coman Schmid D, Guthörl D, Gagliardini V, Bruggmann R, Aluri S, Aquino C, Schmid B, Turnbull LA, Grossniklaus U (2018) Contribution of epigenetic variation to adaptation in Arabidopsis. Nat Commun. doi: 10.1038/s41467-018-06932-5

https://www.nature.com/articles/s41467-018-06932-5

Open Access
Lindsey Turnbull (University of Oxford) is a co-author on this paper from Ueli Grossniklaus’ group in Zurich. Marc Schmid is lead author of the study that investigates the inheritance of Arabidopsis epialleles over 5 generations during conditions of simulated selection. The authors show that variations in methylation state are subject to selection and do indeed contribute to adaptive responses


Kadota Y, Liebrand TWH, Goto Y, Sklenar J, Derbyshire P, Menke FLH, Torres MA, Molina A, Zipfel C, Coaker G, Shirasu K (2018) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol. doi: 10.1111/nph.15523

Members of Cyril Zipfel’s group at The Sainsbury lab in Norwich are co-authors on this paper led by Yasuhiro Kadota from the RIKEN in Yokohama. They use a phosphoproteomic screen to identify a set of newly identified phosphorylation sites on membrane-associated proteins involved in effector-triggered immunity (ETI). Some of these phosphosites overlap with those known to be important for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), indicating a convergence of signaling control of both these pathways to certain key residues.

GARNet Research Roundup: June 4th

This weeks GARNet Research Roundup begins with a paper from researchers at the University of Dundee, James Hutton Institute, Durham University and the University of Glasgow that characterises a functional role for alternative splicing during the cold response. Second is a paper from Newcastle University that investigates the role of the OXI1 kinase during aphid predation. Third is a paper that includes University of Bristol co-authors that looks at strigolactone signaling in moss whilst the fourth paper from researchers at Leeds and QMUL studies the role of ascorbate during photosynthesis. The final paper from Warwick and York uses gene expression data from pathogen-infected plants to generate a model for predicting a strategy for synthetic engineering of the defence response.


Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo H, Zhang R, Brown JWS (2018) Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome. Plant Cell doi: 10.1105/tpc.18.00177.

www.plantcell.org/content/early/2018/05/15/tpc.18.00177.long

Open Access

Cristiane Calixto and Wenbin Guo work with John Brown at University of Dundee and the James Hutton Institute and in this large-scale biology paper they characterise the role of alternative splicing (AS) during a stress response. RNAseq was performed on plants exposed to cold stress and they showed that hundreds of genes undergo AS just a few hours after temperature decrease and that this response is sensitive to small changes. The authors propose that AS is a mechanism to fine-tune changes in thermo-plasticity of gene expression and in addition they investigate the activity of the novel splicing factor U2B”-LIKE.

Christiane will discuss this research at the upcoming GARNet2018 meeting held at the University of York in September 2018.


Shoala T, Edwards MG, Knight MR, Gatehouse AMR. OXI1 kinase plays a key role in resistance of Arabidopsis towards aphids (Myzus persicae) (2018) Transgenic Res. doi: 10.1007/s11248-018-0078-x.

Open Access

This work is led by Tahsin Shoala in the lab of Angharad Gatehouse at Newcastle University and demonstrates a novel role for MAPK cascades in resistance to aphid predation. They investigate mutants in OXI1 kinase, a gene that activates MAPK signaling and demonstrate a reduction in the aphid population build-up. Furthermore they show that the effect of OXI works through a mechanism that involves callose deposition, demonstrated as oxi1 mutants lack the upregulation of a set of β-1,3-glucanase genes following predation.


Lopez-Obando M, de Villiers R, Hoffmann B, Ma L, de Saint Germain A, Kossmann J, Coudert Y, Harrison CJ, Rameau C, Hills P, Bonhomme S (2018) Physcomitrella patens MAX2 characterization suggests an ancient role for this F-box protein in photomorphogenesis rather than strigolactone signalling. New Phytol. doi: 10.1111/nph.15214

GARNet committee member Jill Harrison is a co-author on this paper that is led by Mauricio Lopez‐Obando working at Université Paris-Saclay. In Physcomitrella patens development they investigate the role of the moss ortholog of the Arabidopsis strigolactone signaling mutant MAX2. Previous work had shown that moss does response to SL signaing but they find that although Ppmax2 mutants showed defects in early development and photomorphogenesis they do not show changes in the SL response. Fascinatingly this indicates that the molecular components that control SL signaling have diverged in vascular plants and seemingly co-opted a role for MAX2 that was previously not required in mosses.


https://academic.oup.com/jxb/article/69/11/2823/4991886

Plumb W, Townsend AJ, Rasool B, Alomrani S, Razak N, Karpinska B, Ruban AV, Foyer CH. Ascorbate-mediated regulation of growth, photoprotection and photoinhibition in Arabidopsis thaliana (2018) J Exp Bot. doi: 10.1093/jxb/ery170

William Plumb (Leeds) and Alexandra Townsend (QMUL) are the lead authors on this study that investigates the importance of ascorbate during photosynthesis. In this work they analysed the growth of ascorbate synthesis mutants that are smaller and have less biomass than wildtype plants. However these plants have normal levels of non-photoinhibiton, allowing the authors to conclude that ascorbate is needed for growth but not photoprotection.


Foo M, Gherman I, Zhang P, Bates DG, Denby K (2018) A Framework for Engineering Stress Resilient Plants using Genetic Feedback Control and Regulatory Network Rewiring. ACS Synth Biol. doi: 10.1021/acssynbio.8b00037
Mathias Foo and Iulia Gherman (University of Warwick) are lead authors on work that analyses gene expression data taken from Botrytis cinerea-infected Arabidopsis. They have identified a network of genes involved in the defence response. They validate their model against previously obtained time series data and then perturb the model in two differences ways, focused on the transcription factor CHE. This analysis demonstrates the potential of combining feedback control theory with synthetic engineering in order to generate plants that are resistant to biotic stress.

https://pubs.acs.org/doi/10.1021/acssynbio.8b00037

GARNet Research Roundup: April 11th 2018

This weeks GARNet research roundup begins with a microscopy-based study led by Lorenzo Frigerio from the University of Warwick that investigates the origin of Protein Storage Vacuoles. The second paper from John Doonan at Aberystwyth University looks at how differential splicing of cyclin-dependent Kinase G1 effects the thermosensory response. Reiner van de Hoorn from Oxford leads the next paper that characterises the use of activity-based protein profiling (ABPP) to identify novel α-glycosidases in model and non-model plants. Simon McQueen-Mason from York is corresponding author of the next paper that identified a new QTL from Brachypodium that is involved in cell wall formation. The fifth paper is led by Anthony Dodd from Bristol and characterises the role of the SnRK1 complex in hypocotyl elongation whilst the penultimate manuscript from Julia Davies’s lab in Cambridge performs patch clamp analysis of dorn1 mutant plants. The final paper from Brendan Davies at the University of Leeds characterises the SMG kinase, a gene that is lacking from the Arabidopsis genome, in Physcomitrella patens.


http://www.plantphysiol.org/content/early/2018/03/19/pp.18.00010.long

Feeney M, Kittelmann M, Menassa R, Hawes C, Frigerio L. Protein storage vacuoles originate from remodelled pre-existing vacuoles in Arabidopsis thaliana (2018) Plant Physiol. 2018 Mar 19. pii: pp.00010.2018. doi: 10.1104/pp.18.00010 Open Access

This collaboration between the Universities of Warwick and Oxford Brookes is led by Lorenzo Frigerio and Chris Hawes. They have investigated the origin of seed Protein Storage Vacuoles (PSV) using a two-pronged approach using confocal and immunoelectron microscopy. They looked at embryo development as well as in leaf cells that have been reprogrammed for embryonic cell fate by overexpression of the LEAFY COTYLEDON2 TF. These studies indicate that PSVs are formed following the reprogramming of pre-existing embryonic vacuole (EV) rather than from de novo assembly.


https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.13914

Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, Doonan JH. The Cyclin Dependent Kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A (2018) Plant J. doi: 10.1111/tpj.13914 Open Access

John Doonan (Aberystwyth University) is the corresponding author on this UK-Austrian collaboration that presents the role of the cyclin-dependent Kinase G1 (CDKG1) in thermosensing in Arabidopsis. Ambient temperature change causes altered gene expression of the spliceosome component, ATU2AF65A. Interestingly the CDKG1 gene is differentially spliced and to produces two protein isoforms that are both needed to complement the expression of ATU2AF65A across a temperature range. This alternative splicing is dependent on CDKG2 and CYCLIN L1 and is a novel control mechanism in the temperature control response.


Husaini AM, Morimoto K, Chandrasekar B, Kelly S, Kaschani F, Palmero D, Jiang J, Kaiser M, Ahrazem O, Overkleeft HS, van der Hoorn RAL (2018) Multiplex fluorescent, activity-based protein profiling identifies active α-glycosidases and other hydrolases in plants. Plant Physiol. pii: pp.00250.2018. doi: 10.1104/pp.18.00250 Open Access

Renier Van de Hoorn (University of Oxford) leads this pan-european study that uses novel cyclophellitol aziridine probes that label α-glycosidase enzymes. They identified two novel α-glycosidases in Arabidopsis as well as using the technique in non-model saffron crocus. Finally they showed that this multiplex fluorescent labelling in combination with probes for serine hydrolases and cysteine proteases can be used to identify changes in hydrolase activity in response to pathogen infection.


Whitehead C, Ostos Garrido FJ, Reymond M, Simister R, Distelfeld A, Atienza SG, Piston F, Gomez LD, McQueen-Mason SJ (2018) A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. New Phytol. doi: 10.1111/nph.15089 Open Access

Simon McQueen-Mason (University of York) leads this study that use QTL mapping to identify a gene in Bracypodium that is involved in cell wall architecture, which might then be a target to develop plants with improved cellulose digestibility. This glycosyl transferase family (GT) 43 protein is an orthologue of Arabidopsis IRX14, which is involved in xylan biosynthesis. When RNAi was used to reduce expression of this gene the resulting plants showed increased digestibility, indicating that this BdGT43A will be a good target for future breeding plans.


Wang L, Wilkins KA, Davies JM (2018) Arabidopsis DORN1 extracellular ATP receptor; activation of plasma membrane K(+) -and Ca(2+) -permeable conductances New Phytol. 2018 Mar 25. doi: 10.1111/nph.15111. Open Access

This letter to New Phytologist from the lab of Julia Davis (University of Cambridge) outlines some experiments to determine whether the DORN1 plasma membrane receptor is responsible for transmitting a signal from extracellular ATP (eATP). They performed patch clamp analysis on isolated protoplasts and showed that DORN1 is involved in the activation of Ca+ and K+ pumps by eATP as, in contrast to wildtype, dorn1 mutant protoplast showed no voltage changes after incubation with eATP.


Simon NML, Sawkins E, Dodd AN. Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation (2018) Plant Signal Behav. 27:1-9. doi: 10.1080/15592324.2018.1457913.

Anthony Dodd (University of Bristol) is the corresponding author of this follow-on study from one that previously featured on the GARNet YouTube channel. This study measures sucrose-induced hypocotyl elongation in two T-DNA mutants of the SnRK1 subunit KIN10 gene. These mutants had altered responses to sucrose leading to the hypothesis that the SnRK1 complex suppresses hypocotyl elongation in the presence of external sugar.


Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B (2018) The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res. doi: 10.1093/nar/gky225 Open Access

Brendan Davis (University of Leeds) is the corresponding author on research that investigates the role of the SMG1 kinase during nonsense-mediated mRNA decay (NMD) in the moss Physcomitrella patens. This kinase plays a critical role in animals but as it is not present in Arabidopsis, its function is not well studied in plants. However moss smg mutants show expression changes in genes involved in a variety of processes indicating that NMD is a common control mechanism in moss. In addition these plants have increased susceptibility to DNA damage, which suggests that the SMG1 kinase is a key player in quality control mechanisms in plants.

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky225/4955258

Arabidopsis Research Roundup: March 2nd.

Tags: No Tags
Comments: No Comments
Published on: March 2, 2018

The first two papers in this weeks Arabidopsis Research Roundup investigate different aspects of the plants response to temperature fluctuations. Firstly Lars Ostergaard (JIC) looks at the influence of temperature in the control of fruit dehiscence whilst Phil Wigge (SLCU) investigates crosstalk between chloroplast and nuclear signaling.

The third paper from Ian Henderson (University of Cambridge) studies the genetic elements that control rates of meiotic recombination. The next paper from the University of Leeds looks at the potential of using MET1 in the induction of novel epi-alleles whilst the penultimate paper includes the GARNet PI Jim Murray (Cardiff University) as a co-author and defines the role of CYCD7;1 in guard cell formation.

The final paper focusses on an enzyme involved in chlorophyll biosynthesis and includes Guy Hanke (QMUL) as a co-author.


https://linkinghub.elsevier.com/retrieve/pii/S1674-2052(18)30023-6

Li XR, Deb J, Kumar SV, Østergaard L (2018) Temperature Modulates Tissue-Specification Program to Control Fruit Dehiscence in Brassicaceae. Molecular Plant doi: 10.1016/j.molp.2018.01.003 Open Access

Lars Ostergaard (John Innes Centre) is the corresponding author that continues his groups work on the function of the INDEHISCENT protein, on this occasion looking at its involvement in the link between temperature and fruit dehiscence. They show that fruit valve margin development is accelerated at higher temperatures, facilitated by the activity of IND. This activity is associated with the changes in the induction dynamics of the known thermosensory histone H2A.Z and demonstrate a molecular framework for the response to changing temperature during fruit ripening.


http://www.cell.com/cell-reports/references/S2211-1247(18)30103-7

Dickinson PJ, Kumar M, Martinho C, Yoo SJ, Lan H, Artavanis G, Charoensawan V, Schöttler MA, Bock R, Jaeger KE, Wigge PA (2018) Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell Rep. doi: 10.1016/j.celrep.2018.01.054 Open Access

Phil Wigge (SLCU) is the corresponding author on this study of the link between light-induced chloroplast signaling and thermotolerance. A forward genetic screen allowed the authors to identify two genes that demonstrated a key role for chloroplast signaling in controlling the activity of heat shock factors (HSFs), which enable the plant to cope with temperature variations. Subsequently they show that altering the binding activities of the HSFA1a protein can mimic heat shock response independent of any changes in temperature.


Serra H, Lambing C, Griffin CH, Topp SD, Nageswaran DC, Underwood CJ, Ziolkowski PA, Séguéla-Arnaud M, Fernandes JB,, Mercier R, Henderson IR (2018) Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. PNAS doi: 10.1073/pnas.1713071115

Ian Henderson (University of Cambridge) is the corresponding author on this collaboration with French colleagues in a study that investigates the factors that control recombination frequency in meiosis. During normal meiotic recombination the majority of double stranded breaks will not form crossovers (over 90%) so to increase this frequency they altered the active dosage of genetic elements that are either pro-crossover or anti-crossover control. This strategy results in a massive increase in crossovers and provides a genetic framework for increasing recombination, a strategy that can be critically important for increasing variation during crop breeding.


Brocklehurst S, Watson M, Carr IM, Out S, Heidmann I, Meyer P (2018) Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1). PLoS One. doi: 10.1371/journal.pone.0192170 Open Access

This study from the University of Leeds is led by Peter Meyer and investigates how overexpression of the METHYLTRANSFERASE1 (MET1) gene might generate novel epi-alleles that result in altered gene expression. This strategy indeed generated novel epi-alleles that increased expression at loci encoding TEs, non-coding RNAs and protein coding genes. Importantly any altered expression can be transmitted to the next generation, independent of the presence of a MET1 expressing transgene. However the long term stability of these epi-alleles differs in an loci-specific manner.


Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC (2018) Lineage and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development. doi: 10.1242/dev.160671

GARNet PI Jim Murray and Walter DeWitte (Cardiff University) are co-authors on this US-led study that adds complexity to our understanding of the molecular players that control guard cell specification. The authors show that the D-type cyclin CYCD7;1 is expressed during a short time window prior to the symmetry division that forms two guard cells. This activity is controlled by cell-type specific transcription factors acting in the appropriate time period.

http://dev.biologists.org/content/early/2018/02/14/dev.160671.long


Herbst J, Girke A, Hajirezaei MR, Hanke G, Grimm B (2018) Potential Roles of YCF54 and Ferredoxin-NADPH Reductase for Magnesium Protoporphyrin Monomethylester Cyclase. Plant J. doi: 10.1111/tpj.13869

Guy Hanke (QMUL) is a co-author on this German-led study that investigates an enzyme reactions that occur during chlorophyll biosynthesis. Specifically they showed that plants lacking the LCAA/YCF54 subunit of the enzyme MgProto monomethylester (MgProtoME) cyclase causes accumulation of MgProtoME and destabilization of the entire cyclase enzyme. This disrupts chlorophyll synthesis and negatively effects photosynthetic activity.

Arabidopsis Research Roundup: January 23rd.

This weeks Arabidopsis Research Roundup begins with two papers from Royal Hollaway University of London that investigate the factors that control leaf development in the dark and the control of PIN1 phosphorylation. Third is a paper from Bristol that demonstrates the translation of research from Arabidopsis into coriander with regard the control of the response to UV light. Next is research from the John Innes Centre that characterises the role of DNA methylation during meiosis in the male lineage.

Christine Foyer (Leeds) leads the next paper that defines the relationship between cold treatment and strigolactone signalling. The penultimate paper is led by Richard Napier from the University of Warwick and determines the parameters that define the substrates of the AUX1 protein whilst the final paper includes Cyril Zipfel (TSL) as a co-author and uses systems biology approaches to characterise the interactions between leucine-rich repeat receptor kinases (LRR-RKs).


Mohammed B, Farahi Bilooei S, Doczi R, Grove E, Railo S, Palme K, Ditengou FA, Bögre L, Lopez-Juez E (2017) Converging energy and hormonal signalling control meristem activity, leaf initiation and growth Plant Phys doi: 10.1104/pp.17.01730

http://www.plantphysiol.org/content/early/2017/12/28/pp.17.01730.long

Open Access

Enrique Lopez-Juez (RHUL) leads this collaboration with German and Hungarian colleagues that investigates the fundamental question; ‘Why don’t leaves grow in the dark’. They show that this response is influenced by both auxin transport and the plants energy sensing mechanisms. Interestingly when energy is provided via external sucrose, leaves develop differently in the dark than they do in the light indicating that multiple signaling pathways differentially influence this phenotype.

Enrique discusses this paper on the GARNet YouTube page.


Dory M, Hatzimasoura E, Kállai BM, Nagy SK, Jäger K, Darula Z, Nádai TV, Mészáros T, López-Juez E, Barnabás B, Palme K,,, Bögre L, Ditengou FA,,, Dóczi R (2017) Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Lett. doi: 10.1002/1873-3468.12929

Laszlo Bogre and Enrique Lopez-Juez (RHUL) are co-authors on this Hungarian-led study that has discovered 3 conserved putative MAPK sites within the auxin transport protein PIN1. Phosphorylation of two of these sites causes partial loss of PIN1 membrane localization and therefore opposes the effect of the PINOID kinase, whose activity promotes PIN1 membrane localisation.


https://www.nature.com/articles/s41598-017-18073-8

Fraser DP, Sharma A, Fletcher T, Budge S, Moncrieff C, Dodd AN, Franklin KA (2017) UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Sci Rep. doi: 10.1038/s41598-017-18073-8 Open Access

Keara Franklin and Anthony Dodd (University of Bristol) lead this collaboration between academic researchers and those in the company Vitacress. They translate research from Arabidopsis into Coriander that looks at the effect of UV-B on stem elongation and the interaction with flavonoid signaling. This work shows that alterations to the UV-B regime during growth of potted herbs might reduce deleterious effects caused by neighbour proximity.


Walker J, Gao H, Zhang J, Aldridge B, Vickers M, Higgins JD, Feng X (2017) Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat Genet. doi: 10.1038/s41588-017-0008-5

Xiaoqi Feng (JIC) is the corresponding author on this collaboration with James Higgins from Leicester and they investigate the role of DNA methylation in the control of male meiosis. They demonstrate that RNA-directed DNA methylation (RdDM) in the male lineage regulates gene expression in meiocytes and results in the mis-splicing of the MPS1/PRD2 transcipt, which causes aberrant alterations in spindle formation.


Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, Beveridge CA, Foyer CH (2018) Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ. doi: 10.1111/pce.13147

Christine Foyer (Leeds) is the corresponding author on this collaboration with Australian, Turkish and South African colleagues that looks into the role strigolactones play during chilling tolerance in both Arabidopsis and pea plants. Plants that have been chilled during the night have reduced biomass, which was not observed in either pea or Arabidopsis strigolactone mutants. This demonstrates a clear role for this hormone in this response and provides a potential target for the manipulation of plant growth under environmental conditions.


Hoyerova K, Hosek P, Quareshy M, Li J, Klima P, Kubes M,, Yemm AA, Neve P, Tripathi A, Bennett MJ, Napier RM (2017) Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates. New Phytol. doi: 10.1111/nph.14950

onlinelibrary.wiley.com/doi/10.1111/nph.14950/abstract

Together with Czech co-authors Richard Napier (Warwick University) leads this investigation into the mode of action of the AUX1 auxin influx carrier and its substrate preferences. This work made use of a novel auxin accumulation assay and associated mathematical modeling to describe the parameters that make difference auxins to be good candidates for the AUX1 transport. Interesting they find that many commonly used auxinicide herbicides are poor substrates for AUX1 and the relevance of this finding for herbicide management strategies.


https://www.nature.com/articles/nature25184

Smakowska-Luzan E et al (2018) An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature doi: 10.1038/nature25184

Cyril Zipfel (TSL) is a co-author on this US-European study that performs a systems-biology analysis on the possible interactions between extracellular domains of the leucine-rich repeat receptor kinases (LRR-RKs) gene family in Arabidopsis. Analysis of 40K potential interactions allows the generation of a LRR-based cell surface interaction network (CSI-LRR). This was used to discover previously uncharacterized interactions between LRR-RKs and to demonstrate that these interactions allow the translocation of extracellular signals in balanced and tightly regulated patterns.

«page 1 of 3

Follow Me
TwitterRSS
GARNetweets
November 2019
M T W T F S S
« Oct    
 123
45678910
11121314151617
18192021222324
252627282930  

Welcome , today is Thursday, November 14, 2019