GARNet Research Roundup: April 11th 2018

This weeks GARNet research roundup begins with a microscopy-based study led by Lorenzo Frigerio from the University of Warwick that investigates the origin of Protein Storage Vacuoles. The second paper from John Doonan at Aberystwyth University looks at how differential splicing of cyclin-dependent Kinase G1 effects the thermosensory response. Reiner van de Hoorn from Oxford leads the next paper that characterises the use of activity-based protein profiling (ABPP) to identify novel α-glycosidases in model and non-model plants. Simon McQueen-Mason from York is corresponding author of the next paper that identified a new QTL from Brachypodium that is involved in cell wall formation. The fifth paper is led by Anthony Dodd from Bristol and characterises the role of the SnRK1 complex in hypocotyl elongation whilst the penultimate manuscript from Julia Davies’s lab in Cambridge performs patch clamp analysis of dorn1 mutant plants. The final paper from Brendan Davies at the University of Leeds characterises the SMG kinase, a gene that is lacking from the Arabidopsis genome, in Physcomitrella patens.

Feeney M, Kittelmann M, Menassa R, Hawes C, Frigerio L. Protein storage vacuoles originate from remodelled pre-existing vacuoles in Arabidopsis thaliana (2018) Plant Physiol. 2018 Mar 19. pii: pp.00010.2018. doi: 10.1104/pp.18.00010 Open Access

This collaboration between the Universities of Warwick and Oxford Brookes is led by Lorenzo Frigerio and Chris Hawes. They have investigated the origin of seed Protein Storage Vacuoles (PSV) using a two-pronged approach using confocal and immunoelectron microscopy. They looked at embryo development as well as in leaf cells that have been reprogrammed for embryonic cell fate by overexpression of the LEAFY COTYLEDON2 TF. These studies indicate that PSVs are formed following the reprogramming of pre-existing embryonic vacuole (EV) rather than from de novo assembly.

Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, Doonan JH. The Cyclin Dependent Kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A (2018) Plant J. doi: 10.1111/tpj.13914 Open Access

John Doonan (Aberystwyth University) is the corresponding author on this UK-Austrian collaboration that presents the role of the cyclin-dependent Kinase G1 (CDKG1) in thermosensing in Arabidopsis. Ambient temperature change causes altered gene expression of the spliceosome component, ATU2AF65A. Interestingly the CDKG1 gene is differentially spliced and to produces two protein isoforms that are both needed to complement the expression of ATU2AF65A across a temperature range. This alternative splicing is dependent on CDKG2 and CYCLIN L1 and is a novel control mechanism in the temperature control response.

Husaini AM, Morimoto K, Chandrasekar B, Kelly S, Kaschani F, Palmero D, Jiang J, Kaiser M, Ahrazem O, Overkleeft HS, van der Hoorn RAL (2018) Multiplex fluorescent, activity-based protein profiling identifies active α-glycosidases and other hydrolases in plants. Plant Physiol. pii: pp.00250.2018. doi: 10.1104/pp.18.00250 Open Access

Renier Van de Hoorn (University of Oxford) leads this pan-european study that uses novel cyclophellitol aziridine probes that label α-glycosidase enzymes. They identified two novel α-glycosidases in Arabidopsis as well as using the technique in non-model saffron crocus. Finally they showed that this multiplex fluorescent labelling in combination with probes for serine hydrolases and cysteine proteases can be used to identify changes in hydrolase activity in response to pathogen infection.

Whitehead C, Ostos Garrido FJ, Reymond M, Simister R, Distelfeld A, Atienza SG, Piston F, Gomez LD, McQueen-Mason SJ (2018) A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. New Phytol. doi: 10.1111/nph.15089 Open Access

Simon McQueen-Mason (University of York) leads this study that use QTL mapping to identify a gene in Bracypodium that is involved in cell wall architecture, which might then be a target to develop plants with improved cellulose digestibility. This glycosyl transferase family (GT) 43 protein is an orthologue of Arabidopsis IRX14, which is involved in xylan biosynthesis. When RNAi was used to reduce expression of this gene the resulting plants showed increased digestibility, indicating that this BdGT43A will be a good target for future breeding plans.

Wang L, Wilkins KA, Davies JM (2018) Arabidopsis DORN1 extracellular ATP receptor; activation of plasma membrane K(+) -and Ca(2+) -permeable conductances New Phytol. 2018 Mar 25. doi: 10.1111/nph.15111. Open Access

This letter to New Phytologist from the lab of Julia Davis (University of Cambridge) outlines some experiments to determine whether the DORN1 plasma membrane receptor is responsible for transmitting a signal from extracellular ATP (eATP). They performed patch clamp analysis on isolated protoplasts and showed that DORN1 is involved in the activation of Ca+ and K+ pumps by eATP as, in contrast to wildtype, dorn1 mutant protoplast showed no voltage changes after incubation with eATP.

Simon NML, Sawkins E, Dodd AN. Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation (2018) Plant Signal Behav. 27:1-9. doi: 10.1080/15592324.2018.1457913.

Anthony Dodd (University of Bristol) is the corresponding author of this follow-on study from one that previously featured on the GARNet YouTube channel. This study measures sucrose-induced hypocotyl elongation in two T-DNA mutants of the SnRK1 subunit KIN10 gene. These mutants had altered responses to sucrose leading to the hypothesis that the SnRK1 complex suppresses hypocotyl elongation in the presence of external sugar.

Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B (2018) The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res. doi: 10.1093/nar/gky225 Open Access

Brendan Davis (University of Leeds) is the corresponding author on research that investigates the role of the SMG1 kinase during nonsense-mediated mRNA decay (NMD) in the moss Physcomitrella patens. This kinase plays a critical role in animals but as it is not present in Arabidopsis, its function is not well studied in plants. However moss smg mutants show expression changes in genes involved in a variety of processes indicating that NMD is a common control mechanism in moss. In addition these plants have increased susceptibility to DNA damage, which suggests that the SMG1 kinase is a key player in quality control mechanisms in plants.

Arabidopsis Research Roundup: March 2nd.

Tags: No Tags
Comments: No Comments
Published on: March 2, 2018

The first two papers in this weeks Arabidopsis Research Roundup investigate different aspects of the plants response to temperature fluctuations. Firstly Lars Ostergaard (JIC) looks at the influence of temperature in the control of fruit dehiscence whilst Phil Wigge (SLCU) investigates crosstalk between chloroplast and nuclear signaling.

The third paper from Ian Henderson (University of Cambridge) studies the genetic elements that control rates of meiotic recombination. The next paper from the University of Leeds looks at the potential of using MET1 in the induction of novel epi-alleles whilst the penultimate paper includes the GARNet PI Jim Murray (Cardiff University) as a co-author and defines the role of CYCD7;1 in guard cell formation.

The final paper focusses on an enzyme involved in chlorophyll biosynthesis and includes Guy Hanke (QMUL) as a co-author.

Li XR, Deb J, Kumar SV, Østergaard L (2018) Temperature Modulates Tissue-Specification Program to Control Fruit Dehiscence in Brassicaceae. Molecular Plant doi: 10.1016/j.molp.2018.01.003 Open Access

Lars Ostergaard (John Innes Centre) is the corresponding author that continues his groups work on the function of the INDEHISCENT protein, on this occasion looking at its involvement in the link between temperature and fruit dehiscence. They show that fruit valve margin development is accelerated at higher temperatures, facilitated by the activity of IND. This activity is associated with the changes in the induction dynamics of the known thermosensory histone H2A.Z and demonstrate a molecular framework for the response to changing temperature during fruit ripening.

Dickinson PJ, Kumar M, Martinho C, Yoo SJ, Lan H, Artavanis G, Charoensawan V, Schöttler MA, Bock R, Jaeger KE, Wigge PA (2018) Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell Rep. doi: 10.1016/j.celrep.2018.01.054 Open Access

Phil Wigge (SLCU) is the corresponding author on this study of the link between light-induced chloroplast signaling and thermotolerance. A forward genetic screen allowed the authors to identify two genes that demonstrated a key role for chloroplast signaling in controlling the activity of heat shock factors (HSFs), which enable the plant to cope with temperature variations. Subsequently they show that altering the binding activities of the HSFA1a protein can mimic heat shock response independent of any changes in temperature.

Serra H, Lambing C, Griffin CH, Topp SD, Nageswaran DC, Underwood CJ, Ziolkowski PA, Séguéla-Arnaud M, Fernandes JB,, Mercier R, Henderson IR (2018) Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. PNAS doi: 10.1073/pnas.1713071115

Ian Henderson (University of Cambridge) is the corresponding author on this collaboration with French colleagues in a study that investigates the factors that control recombination frequency in meiosis. During normal meiotic recombination the majority of double stranded breaks will not form crossovers (over 90%) so to increase this frequency they altered the active dosage of genetic elements that are either pro-crossover or anti-crossover control. This strategy results in a massive increase in crossovers and provides a genetic framework for increasing recombination, a strategy that can be critically important for increasing variation during crop breeding.

Brocklehurst S, Watson M, Carr IM, Out S, Heidmann I, Meyer P (2018) Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1). PLoS One. doi: 10.1371/journal.pone.0192170 Open Access

This study from the University of Leeds is led by Peter Meyer and investigates how overexpression of the METHYLTRANSFERASE1 (MET1) gene might generate novel epi-alleles that result in altered gene expression. This strategy indeed generated novel epi-alleles that increased expression at loci encoding TEs, non-coding RNAs and protein coding genes. Importantly any altered expression can be transmitted to the next generation, independent of the presence of a MET1 expressing transgene. However the long term stability of these epi-alleles differs in an loci-specific manner.

Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC (2018) Lineage and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development. doi: 10.1242/dev.160671

GARNet PI Jim Murray and Walter DeWitte (Cardiff University) are co-authors on this US-led study that adds complexity to our understanding of the molecular players that control guard cell specification. The authors show that the D-type cyclin CYCD7;1 is expressed during a short time window prior to the symmetry division that forms two guard cells. This activity is controlled by cell-type specific transcription factors acting in the appropriate time period.

Herbst J, Girke A, Hajirezaei MR, Hanke G, Grimm B (2018) Potential Roles of YCF54 and Ferredoxin-NADPH Reductase for Magnesium Protoporphyrin Monomethylester Cyclase. Plant J. doi: 10.1111/tpj.13869

Guy Hanke (QMUL) is a co-author on this German-led study that investigates an enzyme reactions that occur during chlorophyll biosynthesis. Specifically they showed that plants lacking the LCAA/YCF54 subunit of the enzyme MgProto monomethylester (MgProtoME) cyclase causes accumulation of MgProtoME and destabilization of the entire cyclase enzyme. This disrupts chlorophyll synthesis and negatively effects photosynthetic activity.

Arabidopsis Research Roundup: January 23rd.

This weeks Arabidopsis Research Roundup begins with two papers from Royal Hollaway University of London that investigate the factors that control leaf development in the dark and the control of PIN1 phosphorylation. Third is a paper from Bristol that demonstrates the translation of research from Arabidopsis into coriander with regard the control of the response to UV light. Next is research from the John Innes Centre that characterises the role of DNA methylation during meiosis in the male lineage.

Christine Foyer (Leeds) leads the next paper that defines the relationship between cold treatment and strigolactone signalling. The penultimate paper is led by Richard Napier from the University of Warwick and determines the parameters that define the substrates of the AUX1 protein whilst the final paper includes Cyril Zipfel (TSL) as a co-author and uses systems biology approaches to characterise the interactions between leucine-rich repeat receptor kinases (LRR-RKs).

Mohammed B, Farahi Bilooei S, Doczi R, Grove E, Railo S, Palme K, Ditengou FA, Bögre L, Lopez-Juez E (2017) Converging energy and hormonal signalling control meristem activity, leaf initiation and growth Plant Phys doi: 10.1104/pp.17.01730

Open Access

Enrique Lopez-Juez (RHUL) leads this collaboration with German and Hungarian colleagues that investigates the fundamental question; ‘Why don’t leaves grow in the dark’. They show that this response is influenced by both auxin transport and the plants energy sensing mechanisms. Interestingly when energy is provided via external sucrose, leaves develop differently in the dark than they do in the light indicating that multiple signaling pathways differentially influence this phenotype.

Enrique discusses this paper on the GARNet YouTube page.

Dory M, Hatzimasoura E, Kállai BM, Nagy SK, Jäger K, Darula Z, Nádai TV, Mészáros T, López-Juez E, Barnabás B, Palme K,,, Bögre L, Ditengou FA,,, Dóczi R (2017) Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Lett. doi: 10.1002/1873-3468.12929

Laszlo Bogre and Enrique Lopez-Juez (RHUL) are co-authors on this Hungarian-led study that has discovered 3 conserved putative MAPK sites within the auxin transport protein PIN1. Phosphorylation of two of these sites causes partial loss of PIN1 membrane localization and therefore opposes the effect of the PINOID kinase, whose activity promotes PIN1 membrane localisation.

Fraser DP, Sharma A, Fletcher T, Budge S, Moncrieff C, Dodd AN, Franklin KA (2017) UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Sci Rep. doi: 10.1038/s41598-017-18073-8 Open Access

Keara Franklin and Anthony Dodd (University of Bristol) lead this collaboration between academic researchers and those in the company Vitacress. They translate research from Arabidopsis into Coriander that looks at the effect of UV-B on stem elongation and the interaction with flavonoid signaling. This work shows that alterations to the UV-B regime during growth of potted herbs might reduce deleterious effects caused by neighbour proximity.

Walker J, Gao H, Zhang J, Aldridge B, Vickers M, Higgins JD, Feng X (2017) Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat Genet. doi: 10.1038/s41588-017-0008-5

Xiaoqi Feng (JIC) is the corresponding author on this collaboration with James Higgins from Leicester and they investigate the role of DNA methylation in the control of male meiosis. They demonstrate that RNA-directed DNA methylation (RdDM) in the male lineage regulates gene expression in meiocytes and results in the mis-splicing of the MPS1/PRD2 transcipt, which causes aberrant alterations in spindle formation.

Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, Beveridge CA, Foyer CH (2018) Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ. doi: 10.1111/pce.13147

Christine Foyer (Leeds) is the corresponding author on this collaboration with Australian, Turkish and South African colleagues that looks into the role strigolactones play during chilling tolerance in both Arabidopsis and pea plants. Plants that have been chilled during the night have reduced biomass, which was not observed in either pea or Arabidopsis strigolactone mutants. This demonstrates a clear role for this hormone in this response and provides a potential target for the manipulation of plant growth under environmental conditions.

Hoyerova K, Hosek P, Quareshy M, Li J, Klima P, Kubes M,, Yemm AA, Neve P, Tripathi A, Bennett MJ, Napier RM (2017) Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates. New Phytol. doi: 10.1111/nph.14950

Together with Czech co-authors Richard Napier (Warwick University) leads this investigation into the mode of action of the AUX1 auxin influx carrier and its substrate preferences. This work made use of a novel auxin accumulation assay and associated mathematical modeling to describe the parameters that make difference auxins to be good candidates for the AUX1 transport. Interesting they find that many commonly used auxinicide herbicides are poor substrates for AUX1 and the relevance of this finding for herbicide management strategies.

Smakowska-Luzan E et al (2018) An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature doi: 10.1038/nature25184

Cyril Zipfel (TSL) is a co-author on this US-European study that performs a systems-biology analysis on the possible interactions between extracellular domains of the leucine-rich repeat receptor kinases (LRR-RKs) gene family in Arabidopsis. Analysis of 40K potential interactions allows the generation of a LRR-based cell surface interaction network (CSI-LRR). This was used to discover previously uncharacterized interactions between LRR-RKs and to demonstrate that these interactions allow the translocation of extracellular signals in balanced and tightly regulated patterns.

Arabidopsis Research Roundup: November 1st.

Tags: No Tags
Comments: No Comments
Published on: November 1, 2017

This weeks Research Roundup includes three research and two methods papers. Firstly is work from the O’Connor and Leyser groups at SLCU that investigates the diversity of function in PIN auxin transporters between monocots and dicots. Secondly research from the Kover lab at the University of Bath has characterised the photosynthetic contribution of the inflorescence stem whilst the third paper is from the Bill Finch-Savage at the University of Warwick and looks at the effect of temperature on seed dormancy. Finally are two methods paper from the University of Warwick and Leeds that introduce protocols for the imaging of either the endoplasmic reticulum or the ultrastructure of pollen tubes.

O’Connor DL, Elton S, Ticchiarelli F, Hsia MM, Vogel JP, Leyser O (2017) Cross-species functional diversity within the PIN auxin efflux protein family. Elife. doi: 10.7554/eLife.31804

Open Access

Devin O’Connor and Ottoline Leyser (SLCU) lead this research that bridges the divide between a model dicot (Arabidopsis) and a model monocot (Brachypodium)as they investigate mechanisms of auxin transport, focussed on the PIN protein family. Arabidopsis lacks a clade of PIN proteins (termed Sister-of-PIN1 (SoPIN1) that are found in other plant species. They show that Brachypodium sopin1 mutants have inflorescence defects similar to Arabidopsis pin1 mutants, a similarity of function that is confirmed by the ability of soPIN1 to rescue the phenotype of null Atpin1 plants. However Brachy PIN1 is only able to rescue a less severe Atpin1 mutant. Overall they demonstrate that PIN1 functional specificity is determined by membrane and tissue-level accumulation and transport activity. As this paper is published in Elife, the journal provides reviewer comments and in this case they show that this manuscript was initially rejected. However the authors persisted and provided a reworked manuscript that convincing the reviewers that this study was appropriate for publication in Elife. An excellent lesson in persistence!

Gnan S, Marsh T, Kover PX (2017) Inflorescence photosynthetic contribution to fitness releases Arabidopsis thaliana plants from trade-off constraints on early flowering PLoS One doi: 10.1371/journal.pone.0185835

Open Access

In this study from Paula Kover’s lab at the University of Bath they investigate how the photosynthetic capacity of the Arabidopsis influoresence influences the time of flowering in a range of accessions. Interestingly after plants had flowering the authors removed rosette leaves to assess the ability of the influoresence to support future plant growth. Surprisingly there was a wide variation in general fitness following leaf removal, ranging from a growth reduction of 65% to no observed loss in fitness. These changes are due to both the differencies in the flowering time and in the number of lateral branches. This can explain how early flowering accessions can maintain fitness despite reduced vegetative growth.

Huang Z, Footitt S, Tang A, Finch-Savage WE (2017) Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behavior in Arabidopsis Plant Cell Environ. doi: 10.1111/pce.13082

William Finch-Savage (University of Warwick) leads this investigation into the effect of temperature on seed development and dormancy. They used specially designed polyethylene tunnels that allowed in vivo variations in temperature and light conditions. Perhaps unsurprisingly they showed that temperature plays a significant role in future seed development with lower temperatures promoting dormancy but higher temperatures reduced dormancy that subsequently alters the timing of future life cycles, which has consequences for the species fitness.

Dzimitrowicz N, Breeze E, Frigerio L (2018) Long-Term Imaging of Endoplasmic Reticulum Morphology in Embryos During Seed Germination. Methods Mol Biol. doi: 10.1007/978-1-4939-7389-7_6

Lorenzo Frigerio (University of Warwick) leads this methods paper that describes the imaging of the endoplasmic reticulum over long periods during seed germination.

Ndinyanka Fabrice T, Kaech A, Barmettler G, Eichenberger C, Knox JP, Grossniklaus U, Ringli C (2017) Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation. BMC Plant Biol. doi: 10.1186/s12870-017-1136-x

Paul Knox (University of Leeds) is a co-author on this methods paper that outlines the necessary steps for efficient preparation of pollen tubes for subsequent ultrastructural analysis.

Arabidopsis Research Roundup: October 5th

After a brief hiatus the UK Arabidopsis Research Roundup returns with eight papers that focus on different aspects of Arabidopsis cell biology.

Firstly GARNet PI Jim Murray leads a study that performs a genome-wide analysis of sub-nucleosomal particles whilst Phil Wigge’s lab at SLCU conducts a more focused study on G-box regulatory sequences.

Thirdly Veronica Grieneisen (JIC) and co-workers have modelled the process of boron transport in the root, revealing exciting insights into how traffic jams might form.

Fourthly is a large scale biology paper led by Miriam Gifford (University of Warwick) that looks at the temporal and spatial expression patterns that control lateral root development.

Next Alexander Ruban (QMUL) investigates how low-light acclimated plants respond to high light.

The sixth and seventh studies are led by Alison Baker (Leeds) or Bill Davies (Lancaster) and look at phosphate or hormone signaling respectively.

Finally Gareth Jenkins (University of Glasgow) compares the UV-B signaling module in lower plants with that in Arabidopsis.

Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH (2017) Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet. doi: 10.1371/journal.pgen.1006988

Open Access

GARNet PI Jim Murray is the corresponding author on this study that performs a whole-genome scan of sub-nucleosomal particles (subNSPs) that have been identified using differential micrococcal nuclease (MNase) digestion. They link the position of subNSPs with RNAseq data taken from plants grown in different light conditions. They show that this new technique is able to discriminate regulatory regions that have been obscured by previous experimental procedures and therefore represents a very useful experimental method.

Ezer D, Shepherd SJ, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger K, Wigge PA (2017) The G-box transcriptional regulatory code in Arabidopsis. Plant Physiol. 10.1104/pp.17.01086

Open Access

Phil Wigge (SLCU) is the corresponding author of this study that investigates the sequence elements that are linked to the conserved G-box regulatory motifs. They identify a set of bZIP and bHLH transcription factors that predict the expression of genes downstream of perfect G-boxes. In addition they have developed a website that provide visualisations of the G-box regulatory network (

Sotta N, Duncan S, Tanaka M, Takafumi S, Marée AF, Fujiwara T, Grieneisen VA (2017) Rapid transporter regulation prevents substrate flow traffic jams in boron transport. Elife. doi: 10.7554/eLife.27038

Open Access

Veronica Grieneisen (JIC) is the lead author on this detailed analysis of the regulatory circuits that are established during boron uptake in Arabidopsis roots. They used mathematical modelling to show that during boron uptake, swift regulation of transport activity is needed to prevent toxic accumulation of the metal. This system has analogy to the way in which traffic jams of nutrient flow might form and has relevance for regulatory systems outside of plant science.

Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A, Samavedam S, Bomono G, Hersh DS, Coruzzi GM, Burroughs NJ, Gifford ML (2017) Root architecture shaping by the environment is orchestrated by dynamic gene expression in space and time. Plant Cell. doi: 10.1105/tpc.16.00961

Open Access

Miriam Gifford (University of Warwick) leads this broad consortium that has taken a systems biology approach to better define the environmental factors that control dynamic root architecture. They track transcriptional responses during lateral root development in remarkable detail, looking at individual transcripts. They confirm the idea that the activity of a gene is not simply a function of its amino acid sequence but rather the temporal and spatial regulation of its expression.

Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV (2017) Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. J Exp Bot. doi: 10.1093/jxb/erx213. Open Access

Alexander Ruban (QMUL) is the corresponding author on this collaboration with Chinese colleagues that examined the effect of high-light stress on low-light acclimated Arabidopsis plants. Initially these plants showed significant photo-inhibition but that they recovered rapidly and after 2 weeks of treatment there was no change in photosynthetic yield. In addition high light acclimated plants showed accelerated reproductive phase change that coincided with higher seed yield.

Qi W, Manfield IW, Muench SP, Baker A (2017) AtSPX1 affects the AtPHR1 -DNA binding equilibrium by binding monomeric AtPHR1 in solution. Biochem J. doi: 10.1042/BCJ20170522 Open Access

Alison Baker (University of Leeds) leads this research that focusses on the binding of the Phosphate Starvation Response 1 (PHR1) transcription factor to regulatory P1BS DNA sequences. They show a tandem P1BS sequence is bound more strongly than a single P1BS site. Ultimately they demonstrate tight regulation of phosphate signaling both by the concentration of phosphate as well as the activity of the interacting SPX protein.

Li X, Chen L, Forde BG, Davies WJ (2017) The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. Front Plant Sci. doi: 10.3389/fpls.2017.01493 Open Access

Bill Davies and Brian Forde (Lancaster University) lead this work that investigates the effect on ethylene and auxin on the biphasic response to ABA during root elongation. They used a range of hormone signalling mutants to show that the response to high ABA is via both ethylene and auzin signalling. In contrast the response to low ABA does not require ethylene signalling.

Soriano G, Cloix C, Heilmann M, Núñez-Olivera E, Martínez-Abaigar J, Jenkins GI (2017) Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. New Phytol. doi: 10.1111/nph.14767

Gareth Jenkins (University of Glasgow) is the corresponding author of this work that looks at the role of the UVR8 UV-B receptor in lower plants. They expressed the versions of UVR8 from a moss or a liverwort in Arabidopsis and showed that although there appears to be differences in the regulation of this protein, the mechanism of UV-B signaling is evolutionarily conserved

Arabidopsis Research Roundup: August 23rd

There is a bumper crop of papers in this weeks UK Arabidopsis Research Roundup! First up is a remarkable piece of work from George Bassel’s (University of Birmingham) lab that defines the network of cellular interactions that occur in the hypocotyl. Second and third are papers from the JIC in which Lars Ostergaard’s group uncovers the extent of the ETTIN signaling network and Caroline Dean‘s and Martin Howard’s labs provide evidence for a two step progression toward stable gene silencing following vernalisation at the FLC locus. Fourthly is a study that includes members of Alex Webb’s group (University of Cambridge) as co-authors that investigates the link between the circadian clock and night time starch metabolism. Fifth is a paper from Christine Foyer (University of Leeds) that looks at the effect of commonly used inhibitors on cellular redox state and gene expression. The next paper includes Phillip Carella (SLCU) as a co-author and looks at the role of classic flowering time genes on the phenomenon of Age-Related Resistance and finally Lee Sweetlove’s (University of Oxford) lab has published a methods paper for the analysis of photorespiration in non-photosynthetic tissues.

Jackson MD, Xu H, Duran-Nebreda S, Stamm P, Bassel GW (2017) Topological analysis of multicellular complexity in the plant hypocotyl. Elife http:/​/​dx.​doi.​org/10.7554/eLife.26023

Open Access

George Bassel (University of Birmingham) is the corresponding author on this work that provides fantastic images of the plant hypocotyl taken as part of an analysis on the cell growth dynamics in this organ. They show that Arabidopsis epidermal atrichoblast cells demonstrate a reduced path length that coincides with preferential movement of small molecules through these cells. They analysis this process in various mutants showing which gene activities were necessary for the construction of this pattern. In addition they compared topological features in Arabidopsis, Poppy and Foxglove, showing that cell interactions and path length determinants differ between these organisms. Overall this manuscript defines the network principles that control complex organ construction as well as a function for higher order patterning.

Simonini S, Bencivenga S, Trick M, Ostergaard L (2017) Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis. Plant Cell 10.1105/tpc.17.00389

Open Access

Last year Lars Ostergaard (JIC) discussed a paper from his lab on the GARNet YouTube channel in which they defined a new auxin-signaling paradigm that involved the non-canoical Auxin Response Factor ETTIN. This follow up to that study investigates the genetic network controlled by ETTIN activity and defines a range of developmental processes dependent on ETTIN auxin sensing. Furthermore by looking at direct ETTIN targets they suggest that this protein acts as a central node for the coordination of auxin signaling in the shoot. Finally their analysis of the effect of auxin on interactions between ETTIN and other transcription factors indicates that these are important factors in the diverse set of growth process controlled by auxin.

Yang H, Berry S, Olsson TSG, Hartley M, Howard M, Dean C (2017) Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 10.1126/science.aan1121

This is another manuscript resulting from the extremely fruitful collaboration between the labs of Caroline Dean and Martin Howard at the John Innes Centre. This paper again focuses on the FLC locus and provides evidence for a new mechanism that defines how the binding of a subset of PRC2 factors nucleates a small region (<500bp) of chromatin at the FLC TSS, causing an increase in the repressive H3K27me2 histone mark. This metastable region serves as the seed for the development of stable epigenetic marks across the length of the locus through the activity of other distinct Polycomb factors. This occurs after a cold treatment and causes the spread of H3K27me2 repression. The novelty of this work is in the distinct temporal separation of phases of silencing, which ultimately result in the repression of FLC expression after a prolonged cold treatment.

Seki M, Ohara T, Hearn TJ, Frank A, da Silva VCH, Caldana C, Webb AAR, Satake A (2017) Adjustment of the Arabidopsis circadian oscillator by sugar signalling dictates the regulation of starch metabolism. Sci Rep. 10.1038/s41598-017-08325-y

Open Access

Research from Alex Webb’s group at the University of Cambridge features in the ARR for the second consecutive week, again on a similar topic. On this occasion they collaborate with Japanese colleagues to investigate the role of the circadian clock on determining the nighttime usage rate of starch that has accumulated during the day. They used a phase oscillator model to explain the link between the speed of the clock, starch breakdown and the maintenance of sucrose homeostasis. In addition they use Arabidopsis sugar response mutants to show that the circadian clock measures amount of cellular sucrose, which then controls the dynamics of starch breakdown.

Karpinska B, Alomrani SO, Foyer CH (2017) Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. Philos Trans R Soc Lond B Biol Sci. 10.1098/rstb.2016.0392 Open Access

Christine Foyer (University of Leeds) is the corresponding author on this paper that looks at the effect of cellular oxidation on retrograde signaling between chloroplasts, mitochondria and the nucleus. They use a novel in vivo redox reporter to measure the effect of commonly used organelle inhibitors on cellular redox state. They discovered that these inhibitors cause a variety of effects on redox state and gene expression, which differed dependent on cell type. Researchers should be aware of these effects when they are drawing conclusions from their own experiments using these inhibitors.

Wilson DC, Kempthorne CJ, Carella P, Liscombe DK, Cameron R (2017) Age-Related Resistance in Arabidopsis thaliana Involves the MADS-domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae. Mol Plant Microbe Interact 10.1094/MPMI-07-17-0172-R

Phillip Carella is a Research Fellow at SLCU and this work from this previous lab in Canada investigates Arabidopsis Age-Related Resistance (ARR), a process that requires SA accumulation, which is then thought to act as an antimicrobial agent. The ARR response is lacking in plants containing a mutation in for the SHORT VEGETATIVE PHASE (SVP) gene. These svp plants have reduced SA, thought to be due to uncoupled overactivity of the SUPPRESSOR OF OVEREXPRESSION OF CO 1 gene. Overall this study shows that the flowering time gene SVP plays a complementary role in the control of SA accumulation, which confers ARR to older plants.

Fernie AR, Bauwe H, Sweetlove LJ (2017) Investigating the Role of the Photorespiratory Pathway in Non-photosynthetic Tissues. Methods Mol Biol 10.1007/978-1-4939-7225-8_15

Lee Sweetlove (University of Oxford) describes a protocol for evaluating the role of the photorespiration on the control of growth in non-photosynthetic tissues. This can be scaled for use in both Arabidopsis and in larger plants.

Arabidopsis Research Roundup: May 17th

Tags: No Tags
Comments: No Comments
Published on: May 17, 2017

This weeks Arabidopsis research roundup begins with a paper led by CPIB at the University of Nottingham that discovers a somewhat surprisingly mechanism controling Arabidopsis root hydrotropism. Next are two papers from the University of Leeds that firstly investigate how the JAGGED LATERAL ORGANS gene influences the auxin response and secondly looks at the role of redox regulation in the control of the cell cycle and seed development. Finally are two papers that look at different aspects of the plant pathogen interactions. Jonathan Jones from the John Innes Centre is a co-author on a paper that dissects the multiple gene expression networks that control plant immunity whilst Charles Melnyk at the Sainsbury lab in Cambridge is involved with work that investigates the hormonal control mechanisms that influence the invasion of parasitic plants.

Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N, Miyazawa Y, Bae TW, Wells DM,, Owen MR,, Band LR,, Dyson RJ, Jensen OE, King JR, Tracy SR, Sturrock CJ,, Mooney SJ, Roberts JA, Bhalerao RP, Dinneny JR, Rodriguez PL, Nagatani A, Hosokawa Y, Baskin TI, Pridmore TP, De Veylder L, Takahashi H, Bennett MJ (2017) Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants


Open Access via access link:

Malcolm Bennett (University of Nottingham) leads a broad international collaboration that looks at the response of Arabidopsis roots to water. Surprisingly they show that this response occurs not in the root meristem but in the elongation zone and is controlled by a ABA signaling mechanism. They show that hydrotropism is dependent on cell elongation in the cortex but not in any other cell file. This is different to the gravitropic response and demonstrates that these tropisms are controlled by distinct tissue-specific mechanisms. To provide for information about this paper, lead author Daniela Dietrich joins Professor Bennett to discuss this paper on the GARNet YouTube channel and speculate on the function of different root cell layers in water uptake.

Rast-Somssich MI, Žádníková P, Schmid S, Kieffer M, Kepinski S, Simon R (2017) The Arabidopsis JAGGED LATERAL ORGANS (JLO) gene sensitizes plants to auxin. J Exp Bot.

http:/​/​dx.​doi.​org/10.1093/jxb/erx131 Open Access

This German-led study includes Stefan Kepinski (University of Leeds) as a co-author. They investigate the role of the JAGGED LATERAL ORGANS (JLO) transcription factor in the establishment of the stem cell niche in the root meristem. JLO interacts with auxin signaling pathway by influencing the degradation of the key regulator BODENLOS (BDL) via the TIR1-mediated degradation pathway. In jlo mutants BDL remains present in the meristem, which does not correctly develop. They discover a novel regulatory mechanism wherein the dosage of the TIR1 and AFB1 auxin receptors is reduced, which in turn prevents BDL degradation. This shows that the JLO transcription factor is a key upstream regulator of meristem formation by playing a significant role in the fine control of the auxin response.

De Simone A, Hubbard R, Vinegra de la Torre N, Velappan Y, Wilson M, Considine MJ, Soppe W, Foyer CH (2017) Redox changes during the cell cycle in the embryonic root meristem of Arabidopsis thaliana. Antioxid Redox Signal. http:/​/​dx.​doi.​org/10.1089/ars.2016.6959

Open Access

Christine Foyer (University of Leeds) collaborates with Australian and German researchers to unpick the role that redox regulation plays in the control of the plant cell cycle. They use an in vivo redox reporter (roGFP2) to show that a cycle of reduction and oxidation occurs throughout the cell cycle. Their experimental system is Arabidopsis seed germination and they show that vitamin c defective mutants with low redox buffering capacity have altered germination rates that coincide with a changed dry seed transcriptome. Overall this paper demonstrates that the cell cycle and embryo size are linked to redox regulation.

Hillmer RA, Tsuda K, Rallapalli G, Asai S, Truman W, Papke MD, Sakakibara H, Jones JDG, Myers CL, Katagiri F (2017) The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLoS Genet. http:/​/​dx.​doi.​org/10.1371/journal.pgen.1006639

Open Access

Jonathan Jones (John Innes Centre) is a co-author on this Japanese-led research that studies the signaling networks invovled in plant immunity. They use a systems biology approach to dissect the network of interactions that occur within the transcriptome when plants are exposed to the immune stimulant flagellin-22. This analysis discovers that there are separated networks that represent pathways controlled by different higher-level signals, such as jasmonate or salicylic acid. This provides the entire network with a degree of buffering that allows a more effective response to pathogen attack. This type of network analysis is able to reveal facets of the defence response that would not be possible when using simple null mutant analysis so adds consideration detail to the already complicated story of plant-pathogen interactions

Spallek T, Melnyk CW, Wakatake T, Zhang J, Sakamoto Y, Kiba T, Yoshida S, Matsunaga S, Sakakibara H, Shirasu K (2017) Interspecies hormonal control of host root morphology by parasitic plants. PNAS


Charles Melnyk (Sainsbury Lab, Cambridge) is an author on this study led by Ken Shirasu at RIKEN and uses Arabidopsis to investigate the relationship between parasitic plants and their hosts, specifically at the level of interspecies transport via a structure called the haustorium. Haustoria are structures through which substances, such as RNA and proteins, reciprocally move between host and parasite. In this paper they look at the interaction between Arabidopsis roots and the hemiparasitic plant Phtheirospermum japonicum, demonstrating that movement of molecules between species occurs via haustoria once a vascular connection is made. Arabidopsis secondary root growth is induced under infection, a response that requires the effect of the hormone cytokinin. They look at the genetics of this interaction and show that cytokinin signaling genes are important in establishing root hypertrophy. Overall this study demonstrates the important of cytokinin during infection with parasitic plants and might be an important target to design strategies to combat these negative interactions in systems.

Arabidopsis Research Roundup: March 17th

Tags: No Tags
Comments: No Comments
Published on: March 17, 2017

This weeks UK Arabidopsis Research Roundup includes three papers featuring researchers from the University of Nottingham as well as manuscripts from Leeds, Lancaster, QMUL and The Sainsburys Lab in Norwich

Firstly Stefan Kepinski (Leeds) leads a study that investigates how Gravitropic Set Point Angle (GSA) is controlled in response to different growth factors. Secondly are two Methods papers featuring researchers from CPIB in Nottingham, the first of which is in collaboration with Lancaster University and introduces the Microphentron, which is an automated phenotyping platform that can be used for chemical biology screens. The second paper describes a non-destructive method for imaging floral tissues using CT scanning.

Ranjan Swarup is also a member of CPIB and in the next paper he has collaborated with French colleagues to investigate the role of SHR on root development in rice.

The fourth paper includes Cyril Zipfel as a co-author and investigates the role of damage-associated molecular patterns (DAMPs) in the response to pathogen attack whereas this weeks final paper is from the lab of Alexander Ruban (QMUL) and discovers the phenotypic consequences of persistent damage to PSII by photoinhibition.

Suruchi Roychoudhry, Martin Kieffer, Marta Del Bianco, Che-Yang Liao, Dolf Weijers Stefan Kepinski (2017) The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean Scientific Reports

Open Access

Stefan Kepinski (University of Leeds) leads this study that involves a collaboration with Dolf Weijers from Wageningen University. They investigate the role of both auxin and environmental factors in determining gravitropic set point angle (GSA), which is a measure of the growth of lateral organs away from primary shoots and roots. They show that nitrogen and phosphorous deficiency causes opposing effects on lateral root GSA, each of which are auxin-dependent. This contrasts with previous findings from work using bean adventitious roots. They find that these differences are maintained when Arabidopsis and bean roots are treated with different auxin concentrations. Latterly they also look at the effect of different light conditions on shoot GSA and put these findings into the context of potentially altering crop growth.

Stefan takes some time to discuss this paper for the GARNet YouTube Channel.

Burrell T, Fozard S, Holroyd GH, French AP, Pound MP, Bigley CJ, James Taylor C, Forde BG (2017) The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology. Plant Methods Open Access

This methods paper is a collaboration between the Universities of Lancaster and Nottingham led by Brian Forde that describes the Microphenotron. This device has been developed to facilitate chemical biology screens on in vivo plant tissues. This allows for the automated screening of either dicot or monocot roots or aerial tissues that have been grown on media infused with whichever chemical is relevant for the intended expriments. In situ GUS screening is also possible allowing for researchers to integrate information about growth and gene expression. The use of ‘Phytostrips’ in a 96-well format allows for high-throughput screening that is aligned with AutoRoot automated image analysis software to provide a rapid and facile method for undertaking small scale phenotypic screens. The Microphenotron facility is housed at the Lancester University, who are extremely open to collaboration so please get in contact if you are interested in using the facility.

Tracy SR, Gómez JF, Sturrock CJ, Wilson ZA, Ferguson AC (2017) Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT) Plant Methods. Open Access

Alison Ferguson is the corresponding author on this methods paper that includes GARNet committee member Zoe Wilson and Saoirse Tracy from Dublin. They have developed a technique using X-ray µCT scanning to image developing flowers in Arabidopsis and barley plants, taking advantage of the excellent Hounsfield facility at the University of Nottingham. They show that the technique can be hugely beneficial for plant phenotyping by providing a non-destructive method of analyzing live floral development and how this can response to changes in the growth environment. Members of the Hounsfield facility are happy to discuss any potential collaborative work and future access to these type of facilities will hopefully be improved through the UKs involvement in the pan-european EMPHASIS project.

Henry S, Dievart A, Fanchon D, Pauluzzi G, Meynard D, Swarup R, Wu S, Lee CM, Gallagher K, Périn C (2017) SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Dev Biol.

Ranjan Swarup (CPIB) is a co-author on this study that includes French and US researchers. Previously they had shown that expression of rice SHORTROOT (OsSHR) genes could compliment the Arabidopsis shr mutant. In this study they show that overexpression of OsSHR and AtSHR in rice roots causes growth of wider, shorter roots that have an increased number of cortical cell layers. This demonstrates that the mechanisms that control the differentiation of cortical cell layers is conserved throughout land plants, with SHR being a key determinant in this process.

de Azevedo Souza C, Li S, Lin AZ, Boutrot F, Grossmann G, Zipfel C, Somerville S (2017) Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol.

Cyril Zipfel (The Sainsbury Lab) is a co-author on this study from the lab of Shauna Somerville in California that focuses on the concept of damage-associated molecular patterns (DAMPs). These can be defined as cell wall breakdown components and stimulate the same defence responses as more fully characterised pathogen- or microbe-associated molecular patterns (PAMPs). Intuitively this makes sense as during infection many pathogens will cause cell wall breakdown. The authors show that cellulose-derived oligomers trigger a signalling response similar to that caused by oligogalacturonides or chito-oligomers but that lacks an increase in ROS or in callose deposition. These results confirm that cellulose-derived signals feed into the plants mechanism for cell wall scanning and acts synergistically with other signals that result from pathogen attack.

Tian Y, Ungerer P, Zhang H, Ruban AV (2017) Direct impact of the sustained decline in the photosystem II efficiency upon plant productivity at different developmental stages. J Plant Physiol.

Image from

Alexander Ruban (QMUL) leads this Sino-UK collaboration that investigates how the photoinhibiton of photosystem II impacts overall plant growth. In this study they use lincomycin to block chloroplast protein synthesis, which prevents the plant from restoring PSII function after photoinhibitory damage. Treated plants accumulate less starch and showed reduced above-ground biomass. This leads to a decrease in seed yield. Perhaps unsurprisingly this research shows that restoring the full function of PSII after photoinhibition to key to maintaining normally functioning electron transport rate that leads into metabolic production and growth rate.

«page 1 of 2

Follow Me
May 2018
« Apr    

Welcome , today is Sunday, May 20, 2018