GARNet Research Roundup: September 24th 2019

Due to a significant delay this GARNet Research Roundup is a bumper overview of recent(ish) publications across discovery-led plant science, which have at least one contributor from a UK institution.

These can be (very) loosely separated into the following categories:

Circadian Clock: Greenwood et al, PloS Biology. Belbin et al, Nature Communications.

Environmental responses: Rodríguez-Celma et al, PNAS. Walker and Bennett, Nature Plants. Conn et al, PLoS Comput Biology. de Jong et al,PLoS Genetics. Molina-Contreras et al,The Plant Cell.

Defence signaling: Van de Weyer et al, Cell.Hurst et al, Scientific Reports. Xiao et al, Nature. Wong et al, PNAS.

Cell Biology: Miller et al, The Plant Cell. Coudert et al, Current Biology. Burgess et al,The Plant Cell. Harrington et al, BMC Plant Biology.

Metabolism: Jia et al, J Biol Chem. Perdomo et al, Biochem J. Gurrieri et al, Frontiers in Plant Science. Mucha et al, The Plant Cell. Atkinson et al, JXBot.

Cell Wall Composition: Wightman et al, Micron. Milhinhos et al, PNAS.

Signaling: Hartman et al, Nature Communications. Dittrich et al, Nature Plants. Villaécija-Aguilar et al, PLoS Genetics


Greenwood M, Domijan M, Gould PD, Hall AJW, Locke JCW (2019) Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biol. 17(8):e3000407. doi: 10.1371/journal.pbio.300040 Open Access

Lead author is Mark Greenwood. UK contribution from The Sainsbury lab University of Cambridge, University of Liverpool and Earlham Institute. Using a mixture of experimental and modeling this paper shows that individual organs have circadian clocks that runs at different speeds.


Belbin FE, Hall GJ, Jackson AB, Schanschieff FE, Archibald G, Formstone C, Dodd AN (2019) Plant circadian rhythms regulate the effectiveness of a glyphosate-based herbicide. Nat Commun. 2019 Aug 16;10(1):3704. doi: 10.1038/s41467-019-11709-5 Open Access

Lead author is Fiona Belbin. UK contribution from University of Bristol and Syngenta Jealott’s Hill. Activity of the circadian clock determines that the plant response to the herbicide glyphosate is lessened at dusk, promoting the idea of agricultural chronotherapy. Fiona discusses this paper on the GARNet Community Podcast.


Rodríguez-Celma J, Connorton JM, Kruse I, Green RT, Franceschetti M, Chen YT, Cui Y, Ling HQ, Yeh KC, Balk J (2019) Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907971116 Open Access

Lead author is Jorge Rodríguez-Celma. UK contribution from John Innes Centre, University of East Anglia.The Arabidopsis E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2 target the FIT transcription factor for degradation, altering the plant response to harmful level of iron.


Walker CH, Bennett T (2019) A distributive ‘50% rule’ determines floral initiation rates in the Brassicaceae. Nat Plants. doi: 10.1038/s41477-019-0503-z
Lead author Catriona Walker. UK contribution from the University of Leeds. The authors introduce the 50%-rule that defines the relationshop between the total number of flowers the number of secondary inflorescences


Conn A, Chandrasekhar A, Rongen MV, Leyser O, Chory J, Navlakha S (2019) Network trade-offs and homeostasis in Arabidopsis shoot architectures. PLoS Comput Biol. doi: 10.1371/journal.pcbi.100732 Open Access

Lead author is Adam Conn. UK contribution from Sainsbury Laboratory, University of Cambridge. This study performed 3D scanning of 152 Arabidopsis shoot architectures to investigate how plants make trade-offs between competing objectives.


de Jong M, Tavares H, Pasam RK, Butler R, Ward S, George G, Melnyk CW, Challis R, Kover PX, Leyser O (2019) Natural variation in Arabidopsis shoot branching plasticity in response to nitrate supply affects fitness. PLoS Genet. doi: 10.1371/journal.pgen.1008366 Open Access

Lead author is Maaike de Jong. UK contribution from the Sainsbury Laboratory, University of Cambridge, the University of York and the University of Bath. This study looks at phenotypic plasticity of shoot branching in Arabidopsis diversity panels grown until different nitrate concentrations.


Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, Morelli L, Roig-Villanova I, Jenkins H, Hallab A, Gan X, Gómez-Cadenas A, Tsiantis M, Rodriguez-Concepcion M, Martinez-Garcia JF (2019) Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell. doi: 10.1105/tpc.19.00275 Open Access

Lead author is Maria Jose Molina-Contreras. UK contribution from the University of Oxford. The authors looks at the response to different light conditions and how they contribute to phenotypic determination in Cardamine and Arabidopsis seedlings.


Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F (2019) A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell. doi: 10.1016/j.cell.2019.07.038 Open Access

Lead author is Anna-Lena Van de Weyer. UK contribution from The Sainsbury Laboratory, Norwich. Using sequence enrichment and long-read sequencing the authors present the pan-NLRome constructed from 40 Arabidopsis accessions.


Hurst CH, Wright KM, Turnbull D, Leslie K, Jones S, Hemsley PA (2019) Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does not necessarily impact upon function. Sci Rep. doi: 10.1038/s41598-019-49302-x Open Access

Lead author is Charlotte Hurst. UK contribution from the James Hutton Institute and the University of Dundee. They look at the functional role of post-translational modification S-acylation with a focus on the plant pathogen perceiving receptor-like kinase FLS2.


Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai J (2019) Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature. doi: 10.1038/s41586-019-1409-7
Lead author is Yu Xiao. UK contribution from The Sainsbury Laboratory, Norwich. This study investigates how RAPID ALKALINIZATION FACTOR (RALF) peptides induce receptor complex formation to regulate immune signaling.


Wong JEMM, Nadzieja M, Madsen LH, Bücherl CA, Dam S, Sandal NN, Couto D, Derbyshire P, Uldum-Berentsen M, Schroeder S, Schwämmle V, Nogueira FCS, Asmussen MH, Thirup S, Radutoiu S, Blaise M, Andersen KR, Menke FLH, Zipfel C, Stougaard J (2019). A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1815425116
Open Access

Lead author is Jaslyn Wong. UK contribution from The Sainsbury Laboratory, University of East Anglia. This work was conducted in the legume Lotus and after a proteomic screen, the authors identified NFR5-interacting cytoplasmic kinase 4 that is involved in control of Nod factor perception.


Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan MW (2019) Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size and crop yield in Brassica napus. Plant Cell. doi: 10.1105/tpc.18.00577
Open Access

Lead author in Charlotte Miller. UK contribution from the John Innes Centre. Activity of the Brassica napus HECT E3 ligase gene BnaUPL3 controls seed weight per pod through degradation of LEC2, a master transcriptional regulator of seed maturation and reveals a potential target for crop improvement


Coudert Y, Novák O, Harrison CJ (2019) A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants. Curr Biol. 2019 Aug 19;29(16):2743-2750.e5. doi: 10.1016/j.cub.2019.06.083

Lead author is Yoan Coudert. UK contribution from the University of Cambridge and University of Bristol. Class I KNOX gene activity is shown to be necessary for axis extension from an intercalary region of determinate moss shoots, in part through promotion of cytokinin biosynthesis.


Burgess SJ, Reyna-Llorens I, Stevenson SR, Singh P, Jaeger K, Hibberd JM (2019) Genome-wide transcription factor binding in leaves from C3 and C4 grasses Plant Cell.  doi: 10.1105/tpc.19.00078 Open Access

Lead author is Steven Burgess. UK contribution from University of Cambridge, The Sainsbury lab University of Cambridge, University of Leeds The authors use DNaseI-SEQ to assess the similarities and differences in transcription factor binding sites in the leaves across a set of four C3 and C4 grasses.


Harrington SA, Overend LE, Cobo N, Borrill P, Uauy C (2019) Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biol. doi: 10.1186/s12870-019-2022-
Lead author is Sophie Harrington. UK contributions from the John Innes Centre and University of Birmingham. The authors used a wheat TILLING resource to investigate mutrant allele with the NAC domain of the NAM-A1 transcription factor and their contribution to phenotypes in lab and field.


Jia Y, Burbidge CA, Sweetman C, Schutz E, Soole K, Jenkins C, Hancock RD, Bruning JB, Ford CM (2019) An aldo-keto reductase with 2-keto- L-gulonate reductase activity functions in L-tartaric acid biosynthesis from vitamin C in Vitis vinifera. J Biol Chem. doi: 10.1074/jbc.RA119.010196 Open Access

Lead author Yong Jia. UK contribution from the James Hutton Institute. This work conducted in grape reveals the mechanism by which an aldo-keto reductase functions in tartaric acid biosynthesis.


Perdomo JA, Degen GE, Worrall D, Carmo-Silva E (2019) Rubisco activation by wheat Rubisco activase isoform 2β is insensitive to inhibition by ADP. Biochem J. doi: 10.1042/BCJ2019011 Open Access

Lead author is Juan Alejandro Perdomo. UK contribution from Lancaster University. They show through analysis of site-directed mutations across three isoforms of wheat Rubisco activase that these isoforms have different sensitivities to ADP.


Gurrieri L, Distefano L, Pirone C, Horrer D, Seung D, Zaffagnini M, Rouhier N, Trost P, Santelia D, Sparla F (2019) The Thioredoxin-Regulated α-Amylase 3 of Arabidopsis thaliana Is a Target of S-Glutathionylation. Front Plant Sci. doi: 10.3389/fpls.2019.00993 Open Access

Lead author is Libero Gurrieri. UK contribution from John Innes Centre. The chloroplastic α-Amylases, AtAMY3 is post-translationally modified by S-glutathionylation in response to oxidative stress.


Mucha S, Heinzlmeir S, Kriechbaumer V, Strickland B, Kirchhelle C, Choudhary M, Kowalski N, Eichmann R, Hueckelhoven R, Grill E, Kuster B, Glawischnig E (2019) The formation of a camalexin-biosynthetic metabolon. Plant Cell. doi: 10.1105/tpc.19.00403 Open Access

Lead author is Stefanie Mucha. UK contribution from Oxford Brookes University and University of Warwick. The authors performed two independent untargeted co-immunoprecipitations to identify components involved in biosynthesis of the antifungal phytoalexin camalexin.


Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ (2019) The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. J Exp Bot. doi: 10.1093/jxb/erz275
Open Access

Lead author is Nicky Atkinson. UK contribution from the University of Edinburgh. This study uses Arabidopsis-Chlamydomonas to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1).


Wightman R, Busse-Wicher M, Dupree P (2019) Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron. doi: 10.1016/j.micron.2019.102733
Lead author Raymond Wightman. UK contribution from the Sainsbury Laboratory, University of Cambridge and the University of Cambridge. This study uses applies a novelmethod of correlative FLIM-confocal-Raman imaging to analyse lignin composition in Arabidopsis stems.


Milhinhos A, Vera-Sirera F, Blanco-Touriñán N, Mari-Carmona C, Carrió-Seguí À, Forment J, Champion C, Thamm A, Urbez C, Prescott H, Agustí J (2019) SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1807863116
Lead author is Ana Milhinho. UK contribution from the University of Oxford. The authors used GWAS in Arabidopsis to identify the SOBIR1/EVR as an important regulator of the control of secondary growth in xylem fibers.


Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW, Visser EJW, Bailey-Serres J, Theodoulou FL, Hebelstrup KH, Gibbs DJ, Holdsworth MJ, Sasidharan R, Voesenek LACJ (2019) Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun. doi: 10.1038/s41467-019-12045-4 Open Access

Lead author is Sjon Hartman. UK contribution from the University of Nottingham, Rothamsted Research and the University of Birmingham. This multinational collaboration looks into the relationship of how ethylene mediated nitric-oxide signaling responds to environmental signals.


Dittrich M, Mueller HM, Bauer H, Peirats-Llobet M, Rodriguez PL, Geilfus CM, Carpentier SC, Al Rasheid KAS, Kollist H, Merilo E, Herrmann J, Müller T, Ache P, Hetherington AM, Hedrich R (2019) The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants. doi: 10.1038/s41477-019-0490-0
Lead author Marcus Dittrich. UK contribution from the University of Bristol. This work looks at the role of ABA signaling in stomatal responses and that the multiple ABA receptors can be modulated differentially in a stimulus-specific manner.


Villaécija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmid C, Dawid C, Bennett T, Gutjahr C (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet. doi: 10.1371/journal.pgen.1008327 Open Access

Lead author Jose Antonio Villaécija-Aguilar. UK contribution from the University of Leeds and The Sainsbury lab, University of Cambridge. This demonstrates that KAI2 signalling through SMAX1/SMXL2 , is an important new regulator of root hair and root development in Arabidopsis.

GARNet Research Roundup: August 16th 2019

This holiday-time edition of the GARNet research roundup begins with two papers that include the late Ian Moore from the University of Oxford as a co-author. The first looks at the role of RAB-A5c in the control of cellular growth anisotropy whilst the second characterises the Transport Protein Particle II (TRAPPII) complex.

The third paper is a UK-wide collaboration that assesses the role of UVA signaling on stomatal development. Next is a paper from Cambridge and the JIC that has identified the TAF4b protein as a novel regulator of meiotic crossovers.

The fifth paper is from the University of York and characterizes a role for cis-12-oxo-phytodienoic acid (OPDA) during seed germination.

The next three papers feature scientists from the University of Leeds in research that investigates 1, a peroxisomal ABC transporter; 2, the role of LRR-RLKs in plasmodesmata development and 3, the cell wall characteristics of banana and mango fruit.

The ninth paper is from the University of Edinburgh and investigates the role of S-nitrosylation in the control of SUMO conjugation.

The next two papers include Steve Penfield at the JIC as a corresponding author; the first looks at the role of endosperm-expressed transcriptional factors during seed dormancy and the second, in collaboration with researchers at the University of Warwick, identifies novel QTLs involved in seed dormancy.

The penultimate study is from Lancaster and presents a surprising outcome resulting from the overexpression of the wheat CA1Pase gene. The final paper includes Alison Tidy and Zoe Wilson from University of Nottingham as co-authors on a study that looks at male fertility in Arabidopsis.


Kirchhelle C, Garcia-Gonzalez D, Irani NG, Jérusalem A, Moore I (2019) Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. Elife. pii: e47988. doi: 10.7554/eLife.47988

Open Access

Charlotte Kirchhelle leads this work that was conducted in the lab of the late Ian Moore at the University of Oxford. She investigates the role of the plant-specific small GTPase RAB-A5c during growth anisotropy in lateral roots, which involves coordinated orientations of cellulose microfibrils (CMFs) and by cortical microtubules (CMTs). They identify RAB-A5c dependent and independent mechanisms to control cellular growth anisotropy in this growing tissue.

From https://elifesciences.org/articles/47988

Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF (2019) Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. Plant J. doi: 10.1111/tpj.14442

This German-led study includes Monika Kalde from the University of Oxford as first author as well Ian Moore as co-author. They characterize the components and function of the Transport Protein Particle II (TRAPPII) complex. TRAPPII plays multiple roles in intra-cellular transport and this study identified 13 subunits, including several that were previously uncharacterised.


Isner JC, Olteanu VA, Hetherington AJ, Coupel-Ledru A, Sun P, Pridgeon AJ, Jones GS, Oates M, Williams TA, Maathuis FJM, Kift R, Webb AR, Gough J, Franklin KA, Hetherington AM (2019). Short- and Long-Term Effects of UVA on Arabidopsis Are Mediated by a Novel cGMP Phosphodiesterase. Curr Biol.29(15):2580-2585.e4. doi: 10.1016/j.cub.2019.06.071

Open Access

Jean-Charles Isner is the first author on this collaboration between labs in Bristol, York, Oxford and Cambridge. They show that UVA radiation (which represents 95% of the UV radiation reaching earth) inhibits stomatal opening through a process that involves a reduction in the cytosolic level of cGMP. The AtCN-PDE1 gene (a cGMP-activated phosphodiesterase) is needed to decrease cGMP levels in Arabidopsis. This response is present across the tree of life except in metazoans. They show AtCN-PDE1 is needed for the UVA response and that prolonged UVA exposure causes increased growth yet reduced water use efficiency.


Lawrence EJ, Gao H, Tock AJ, Lambing C, Blackwell AR, Feng X, Henderson IR (2019) Natural Variation in TBP-ASSOCIATED FACTOR 4b Controls Meiotic Crossover and Germline Transcription in Arabidopsis. Curr Biol. pii: S0960-9822(19)30844-9. doi: 10.1016/j.cub.2019.06.084

Open Access

This work from Ian Henderson’s lab in Cambridge and Xiaoqi Feng’s lab at the JIC is led by Emma Lawrence and isolates a novel modifier of meiotic crossover frequency, TBP-ASSOCIATED FACTOR 4b (TAF4b), which encodes a subunit of the RNA polymerase II general transcription factor TFIID. They show TAF4b expression is enriched in meiocytes, compared to the more general expression of its paralog TAF4. Ultimately they reveal TAF4b drives a novel mode of meiotic recombination control through its activity as a general transcription factor.


Barros-Galvão T, Dave A, Cole A, Harvey D, Langer S, Larson TR, Vaistij FE, Graham IA (2019) cis-12-oxo-phytodienoic acid represses Arabidopsis thaliana seed germination in shade light conditions. J Exp Bot. pii: erz337. doi: 10.1093/jxb/erz337

Open Access

Thiago Barros-Galvão is first author on this study from Ian Graham’s lab at the University of York. They investigate how the jasmonic acid pre-cursor cis-12-oxo-phytodienoic acid (OPDA) contributes to control of seed germination, particularly under shade conditions. OPDA acts through the activity of the transcription factor MOTHER-OF-FT-AND-TFL1 (MFT).

From https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz337/5536641

Carrier DJ, van Roermund CWT, Schaedler TA, Rong HL, IJlst L, Wanders RJA, Baldwin SA, Waterham HR, Theodoulou FL, Baker A (2019) Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose. Sci Rep. 9(1):10502. doi: 10.1038/s41598-019-46685-9

Open Access

Alison Baker at the University of Leeds is the corresponding author of this UK, Dutch collaboration that includes David Carrier as first author. They characterise the peroxisomal ABC transporter, Comatose (CTS) through mutagenesis of key residues responsible for the proteins intrinsic acyl-CoA thioesterase (ACOT) activity. Ultimately they show that ACOT activity depends of endogenous ATPase activity but that these activities could be functional separated by mutagenesis of key residues.


Grison M, Kirk P, Brault M, Wu XN, Schulze WX, Benitez-Alfonso Y, Immel F, Bayer EMF (2019). Plasma membrane-associated receptor like kinases relocalize to plasmodesmata in response to osmotic stress. Plant Physiol. pii: pp.00473.2019. doi: 10.1104/pp.19.00473

Open Access

GARNet advisory committee member Yoselin Benitez-Alfonso and members of her research group are co-authors on the next two studies. This work is led by Magali Grison in Emmanuelle Bayer’s lab in Bordeaux. They show that the PM-localised Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs), QSK1 and IMK2 relocate and cluster to the plasmodesmata under osmotic stress conditions. Through a variety of assays that focuses on QSK1 the authors show that reorganisation of RLKs can be important for the regulation of callose deposition at plasmodesmata and under osmotic stress this can have a functional effect on lateral root development.


Rongkaumpan G, Amsbury S, Andablo-Reyes E, Linford H, Connell S, Knox JP, Sarkar A, Benitez-Alfonso Y, Orfila C (2019) Cell Wall Polymer Composition and Spatial Distribution in Ripe Banana and Mango Fruit: Implications for Cell Adhesion and Texture Perception. Front Plant Sci. 10:858. doi: 10.3389/fpls.2019.00858

Open Access

Ganittha Rongkaumpan is first author on this interdisciplinary collaborative research from multiple departments at the University of Leeds. They characterise the composition of the cell wall in two fruits, banana and mango, which soften during ripening. The authors compared structural information, obtained using Atomic Force Microscopy and biochemical analysis, with data from rheology and tribology assays to understand why these fruits feel different in the mouth during ingestion.


Skelly MJ, Malik SI, Le Bihan T, Bo Y, Jiang J, Spoel SH, Loake GJ (2019) A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity Proc Natl Acad Sci U S A. pii: 201900052. doi: 10.1073/pnas.1900052116

Michael Skelly from the University of Edinburgh is the lead author of this study from the labs of Gary Loake and GARNet chairman Steven Spoel. They investigate the mechanism through which nitric oxide signaling after pathogen recognition stimulates inhibitory S-nitrosylation of the Arabidopsis SUMO E2 enzyme, SCE1. S-nitrosylation occurs on the evolutionary conserved Cys139 of SCE1 and they investigate the wider significant of this residue in the control of immune responses across eukaryotes.


MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, Lopez-Molina L, Penfield S (2019) ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. Plant J. 98(2):277-290. doi: 10.1111/tpj.14211

Open Access

Dana MacGregor (now at Rothamsted Research) leads this work from the lab of Steve Penfield at the JIC that investigates the extent of control on depth of primary dormancy that is mediated by the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1). These effects are additive and independent of their role in endosperm development since the dormancy defect in ice1 and zou mutants can be ameliorated without altering seed morphology. They show that ICE1 acts primarily through control of ABA INSENSITIVE 3 (ABI3).


Footitt S, Walley PG, Lynn JR, Hambidge AJ, Penfield S, Finch-Savage WE (2019) Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. doi: 10.1111/nph.16081

This research is a collaboration between the John Innes Centre and the Universities Liverpool and Warwick, from which Steven Footitt is first author. They used two Arabidopsis ecotypes that have differences in the timing of seedling emergence to identify new QTLs involved in depth of seed dormancy and Seedling Emergence Timing (SET). They revealed that DOG1 is important for determining depth of dormancy. In addition they identified three new SET QTLs, which are each physically close to DOG1, that play a role in the control of SET in the field.


Lobo AKM, Orr D, Gutierrez MO, Andralojc J, Sparks C, Parry MAJ, Carmo-Silva E (2019) Overexpression of ca1pase decreases Rubisco abundance and grain yield in wheat. Plant Physiol. pii: pp.00693.2019. doi: 10.1104/pp.19.00693

Open Access

This research from Lancaster Environmental Centre and their Brazilian collaborators is led by Ana Karla Lobo and demonstrates that overexpression of 2-carboxy-D-arabinitol-1-phosphate phosphatase (CA1Pase) in wheat causes a reduction in above ground biomass and compromises wheat grain yields. As CA1Pase is involved in removing inhibitors of Rubisco activity this result is contrary to the anticipated outcome. This suggests that Rubisco inhibitors might actually protect enzyme activity, thus maintaining the number of active sites that the enzyme is able to support.


Zhao SQ, Li WC, Zhang Y, Tidy AC, Wilson ZA (2019) Knockdown of Arabidopsis ROOT UVB SENSITIVE4 Disrupts Anther Dehiscence by Suppressing Secondary Thickening in the Endothecium. Plant Cell Physiol. doi: 10.1093/pcp/pcz127

Shu-Qing Zhao is the lead author on this China-UK collaboration that includes Alison Tidy and Zoe Wilson from the University of Nottingham. They show that using an artificial microRNA to reduce levels of the RUS4 gene in Arabidopsis causes a decline in male fertility. They perform a detailed analysis of the RUS4 expression module and how it impacts fertility.

GARNet Research Roundup: December 7th 2018

The first four papers in this GARNet Research Roundup includes research from Norwich Research Park. Firstly members of Jonathan Jones’ lab have identified a new Avr gene from Hyaloperonospora arabidopsidis. Secondly Anne Osbourn’s lab characterises two novel arabinosyltransferases that are involved in the plant defence response. Thirdly Cathie Martin’s group is involved in a study that investigates the biosynthesis of the metabolite ubiquinone. Finally in research from NRP is from Silke Robatzek’s lab, where they use a novel quantitative imaging system to characterise stomatal mutants.

The next two papers arise from work at SLCU, firstly looking at the possible role of a novel transposon family during gene-shuffling and secondly a paper that investigates the structure of an important component of the strigolactone signaling pathway.

The seventh paper from Peter Eastmond’s lab at Rothamsted Research identifies a novel gene involved in seed oil composition. The penultimate paper is from Peter Unwin at the University of Leeds and assesses the cell wall composition of ‘giant’ root cells induced by nematode Meloidogyne spp. Finally is a methods paper that describes how microCT imaging can be used to measure different leaf parameters.


Asai S, Furzer O, Cavik V, Kim DS, Ishaque N, Goritschnig S, Staskawicz B, Shirasu K, Jones JDG (2018) A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nature Communications doi: 10.1038/s41467-018-07469-3

https://www.nature.com/articles/s41467-018-07469-3

Open Access

Shuta Asai from Jonathan Jones’ lab at The Sainsbury Lab, Norwich is the lead-author on this study that looks at co-evolution of host and pathogen resistance genes. The relationship between Hyaloperonospora arabidopsidis (Hpa) and Arabidopsis is defined by the gene-for-gene model of host Resistance (R) genes and pathogen Avirulence (AVR) genes. In this study the authors identify the HaRxL103Emoy2 AVR gene that is recognised by the R gene RPP4 and how this resistance is broken by altered expression or cellular localization.


Louveau T, Orme A, Pfalzgraf H, Stephenson M, Melton RE, Saalbach G, Hemmings  AM, Leveau A, Rejzek M, Vickerstaff RJ, Langdon T, Field R, Osbourn AE (2018) Analysis of two new arabinosyltransferases belonging to the carbohydrate-active enzyme (CAZY) glycosyl transferase family 1 provides insights into disease resistance and sugar donor specificity. Plant Cell. doi: 10.1105/tpc.18.00641

Open Access

This research from the John Innes Centre, East Maling and Aberystwyth University is led by Thomas Louveau and Anne Osbourn and characterises two new arabinosyltransferases from oat and soybean. These enzymes are involved in the production of saponins that are involved in defence responses. These enzymes normally transfer arabinose to their substrates but through targeted mutations the authors modified one of them to instead transfer glucose. This study provides insights into the specifics of ‘sugar-donation’ and has identified potential novel targets for manipulating defence responses in two crop species.


Soubeyrand E, Johnson TS, Latimer S, Block A, Kim J, Colquhoun TA, Butelli E,  Martin C, Wilson MA, Basset G (2018) The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants. Plant Cell. 2018 Nov 14. pii: tpc.00688.2018. doi: 10.1105/tpc.18.00688

Open Access

This US-led study includes members of Cathie Martin’s lab at the John Innes Centre as co-authors in which they investigate the flavonoid-biosynthesis pathway, in particular the land-plant-specific synthesis of ubiquinone. They used Arabidopsis and tomato mutants to dissect the ubiquinone biosynthesis pathway, revealing that the B-ring of the specalised metabolite kaempferol is incorporated into the primary metabolite ubiquinone.


Bourdais G, McLachlan DH, Rickett LM, Zhou J, Siwoszek A, Häweker H, Hartley M, Kuhn H, Morris RJ, MacLean D, Robatzek S (2018) The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure. Traffic. doi: 10.1111/tra.12625

This work from both Norwich Research Park and the University of Bristol is led by Gildas Bourdais and describes a high-throughput quantitative imaging, reverse genetic screen to characterize known stomatal mutants on the basis of their effect on the endomembrane system. This screen allowed them to precisely define the point in the signaling pathway at which each mutant was affected, providing a genetic framework for the control of stomatal closure. This image-based tool should be a valuable addition to future studies that aim to use quantitative image analysis.


https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky1196/5198529

Catoni M, Jonesman T, Cerruti E, Paszkowski J (2018) Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling (2018) Nucleic Acids Res. doi: 10.1093/nar/gky1196

Open Access

This work was performed at SLCU in Jerzy Paszkowski’s lab by current University of Birmingham lecturer Marco Catoni and analyses the genomic impact of the mobilisation of Pack-TYPE transposons. They track the movement of these transposons over multiple generations, showing that they can insert into genic regions and that their subsequent incomplete excisions can cause deleterious effect on gene function. Over evolutionary time the action of this type of mobile element might therefore importantly influence gene shuffling.


Shabek N, Ticchiarelli F, Mao H, Hinds TR, Leyser O, Zheng N (2018) Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling. Nature. doi: 10.1038/s41586-018-0743-5

Nitzan Shabek is the lead author on his US-led paper that includes Fabrizio Ticchiarelli and Ottoline Leyser from SLCU as co-authors. This paper reveals the structure of the interaction between the Arabidopsis α/β hydrolase D14 and the D3 F-box protein, which is important for multiple aspects of strigolactone signaling. They show that structural plasticity of the D3 C-terminal α-helix, which can switch between two different forms, enables the interaction between D14 and the D53 repressor protein. Providing insight into these specific interactions is key to increasing understanding of how the D14-D3 complex influences strigolactone signaling.


Menard GN, Bryant FM, Kelly AA, Craddock CP, Lavagi I, Hassani-Pak K, Kurup S, Eastmond PJ (2018) Natural variation in acyl editing is a determinant of seed storage oil composition. Sci Rep. doi: 10.1038/s41598-018-35136-6

Open Access

This work is led from Rothamsted Research with Guillaume Menard as first author and uses the Arabidopsis MAGIC population to identify novel genetic loci involved in seed oil composition. They identified multiple QTLs associated with the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), showing that the enzyme LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE 2 (LPCAT2), which is involved in the acyl-editing pathway, was the primary QTL. Subsequently they show LPCAT2 expression was key for varying seed 20:1 content and that natural variation in the capacity for acyl editing is an important determinant of oil content.


Bozbuga R, Lilley CJ, Knox JP, Urwin PE (2018) Host-specific signatures of the cell  wall changes induced by the plant parasitic nematode, Meloidogyne incognita (2018). Sci  Rep. doi: 10.1038/s41598-018-35529-7

https://www.nature.com/articles/s41598-018-35529-7

Open Access

Refik Bozbuga at the University of Leeds is first author on this study that investigates the cell wall composition of nutrient-supplying ‘giant cells’ that are induced in roots following infection with Meloidogyne spp nematodes. They analysed the cell walls of giant cells from three species (Arabidopsis, maize and aduki bean) as well as using a set of Arabidopsis mutants to characterise the possible cell wall components that might influence infection rates.


Mathers AW, Hepworth C, Baillie AL, Sloan J, Jones H, Lundgren M, Fleming AJ,  Mooney SJ, Sturrock CJ (2018) Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography. Plant Methods. doi:  10.1186/s13007-018-0367-7

Open Access
This paper from the Universities of Nottingham, Sheffield and Lancaster provides a methodology that uses a microCT image pipeline to measure leaf intercellular airspace and to provide quantitative data on descriptors of leaf cellular architecture. They measured 6 different plant species, showing that this 3D method generates an improved dataset when compared to traditional 2D methods of measurement.

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-018-0367-7

GARNet Research Roundup: November 22nd 2018

This GARNet Research Roundup begins with two studies from the University of Sheffield. First is research from Jurriaan Ton’s lab that looks at the interaction between CO2 concentration, the soil microbiome and plant growth. The second paper from Matt Davey and Peter Quick looks at the effect of cold acclimation on freezing tolerance in Arabidpsis lyrata.

The third study includes authors from Dundee and Durham and also looks at an impact of altered CO2 concentrations, in this case on nitrogen assimilation.

The next paper looks at the role of a GA signaling module on endosperm expansion during seed germination and includes authors from Nottingham and Birmingham.

The fifth paper includes Richard Morris at the JIC as a co-author and looks at the relationship between calcium signaling and changes in cellular pH. The penultimate study features co-authors from Warwick and Exeter in work that looks at the role of 3′-O-β-D-ribofuranosyladenosine during plant immunity. Finally is a paper that includes Steve Long from Lancaster and characterises the rubisco-chaperone BSD2.


Williams A, Pétriacq P, Beerling DJ, Cotton TEA, Ton J (2018) Impacts of Atmospheric CO(2) and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. Front Plant Sci. doi: 10.3389/fpls.2018.01493

https://www.frontiersin.org/articles/10.3389/fpls.2018.01493/full

Open Access

Alex Williams is the lead author of this paper and works with Jurriaan Ton at the University of Sheffield. The impact of the soil rhizosphere on plant growth is emerging as an important growth determinant. In this paper the authors assess the role of altered [CO2] and soil carbon (C) and nitrogen (N) concentration in the colonisation of Arabidopsis roots by two different bacteria. Firstly they showed that altered [CO2] did not change the growth dynamics of the saprophytic bacteria Pseudomonas putida KT2440 and was independent of soil C or N. In contrast growth of the rhizobacterial strain Pseudomonas simiae WCS417 was sensitive to both changing [CO2] and soil composition. These results show the importance of the interaction between atmospheric CO2 and soil nutritional status during plant interactions with soil bacteria.


Davey MP, Palmer BG, Armitage E, Vergeer P, Kunin WE, Woodward FI, Quick WP (2018) Natural variation in tolerance to sub-zero temperatures among populations of Arabidopsis lyrata ssp. petraea. BMC Plant Biol. doi: 10.1186/s12870-018-1513-0

Open Access

Matthew Davey, now working in Cambridge, collaborated with Peter Quick at the University of Sheffield on this research that looks at the tolerance of Arabidopsis lyrata to freezing. They showed that populations from locations with colder winter climates were better able to survive subzero temperatures, particular when they have been acclimated at near zero for longer periods. This demonstrates that the adaptation of plants to cold temperatures allows them to better survive freezing, although surprisingly this effect is lessened when this acclimation period does not occur.


Andrews M, Condron LM, Kemp PD, Topping JF, Lindsey K, Hodge S, Raven JA (2018) Effects of elevated atmospheric [CO2] on nitrogen (N) assimilation and growth of C3 vascular plants will be similar regardless of N-form assimilated. J Exp Bot. doi: 10.1093/jxb/ery371

This UK-New Zealand collaboration is led by Mitchell Andrews and looks at the effect of elevated [CO2] on the nitrogen (N) assimilation when the plant is exposed to a variety of different N-sources. They show that in C3 plants the overall N assimilated will be the same whether the plant is under ammonium (NH4+) nutrition or under nitrate (NO3-) nutrition. These results are contrary to previous results that suggest elevated [CO2] reduces plant growth under NO3- nutrition.


Sánchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gómez L, Holdsworth MJ, Bassel G, Oñate-Sánchez L (2018) A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Mol Plant. doi: 10.1016/j.molp.2018.10.009 

https://www.sciencedirect.com/science/article/pii/S1674205218303356

Open Access

This Spanish-led project includes authors from the Universites of Nottingham and Birmingham. They look at the influence of a GA signalling module on endosperm cell separation, which is essential for Arabidopsis seed germination. They show the NAC transcription factors NAC25 and NAC1L control expression of the EXPANSION2 gene and that the GA signalling component RGL2 has a controlling influence by repressing this activity.


Behera S, Xu Z, Luoni L, Bonza C, Doccula FG, DeMichelis MI, Morris RJ, Schwarzländer M, Costa A (2018) Cellular Ca2+ signals generate defined pH signatures in plants. Plant Cell. doi: 10.1105/tpc.18.00655

Open Access

Richard Morris (John Innes Centre) is a co-author on this Italian-led study that investigates the role of Calcium ions in cell signalling. They use a set of genetically-encoded fluorescent sensors to visualise a link between Ca2+ signaling and changes in pH. If this link is maintained across all cell types it might represent an extra layer of complexity and control of cellular signal transduction.


Drenichev MS, Bennett M, Novikov RA, Mansfield J, Smirnoff N, Grant M, Mikhailov S (2018) A role for 3′-O-β-D-ribofuranosyladenosine in altering plant immunity. Phytochemistry. doi: 10.1016/j.phytochem.2018.10.016

https://www.sciencedirect.com/science/article/pii/S0031942218301997?via%3Dihub

This Russian-led study includes UK-based researchers Mark Bennett, Murray Grant, Nick Smirnoff and John Mansfield as co-authors. They show that the natural disaccharide nucleoside, 3′-O-β-D-ribofuranosyladenosine accumulated in plants infected with the bacterial pathogen P. syringae. Perhaps surprisingly the application of this nucleoside to the plant doesn’t effect bacterial multiplication, indicating that adds a significant metabolic burden to plants already battling new infections.


Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM (2018) BSD2 is a Rubisco specific assembly chaperone, forms intermediary hetero-oligomeric complexes and is non-limiting to growth in tobacco. Plant Cell Environ. doi: 10.1111/pce.13473

Steve Long is a Professor at Lancaster Environment Centre and is a co-author on this Australia-led study that characterizes the role of the Rubisco chaperone BSD2 during Rubisco biogenesis. These results suggest this is the sole role of BSD2 and its activity is non-limiting to tobacco growth.

GARNet Research Roundup: October 19th 2018

This edition of the GARNet research roundup includes six papers that look at different areas of plant biology. Firstly is a Belgian-led study with co-authors from Nottingham that introduces adaptive Xerobranching, a cereal-root response that can be mimicked in Arabidopsis by modulating ABA signaling. Second is study from Juriaan Ton’s lab in Sheffield that investigates the extent of DNA methylation during transgenerational acquired disease resistance. Third is paper from the John Innes Centre that places the DET1/COP1-PIF4 signaling module as a key determinant of the plants decision to allocate resources toward growth or defence.

The fourth paper is from Siobhan Braybrook’s (now ex-) lab at SLCU and provides an extensive dataset of the shape of leaf pavement cells across plant lineages. The penultimate paper is from a group at the University of Birmingham investigating the role of TOPII in the removal of damaging chromosome interlocks that occur during meiosis. The final paper returns to the ABA signalling with a study from Rothamsted Research that looks at the impact of the N-end rule on the different growth responses that occur during seed germination.


https://www.cell.com/current-biology/pdfExtended/S0960-9822(18)31004-2

Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A, Ligeza A, Klein S, Sturrock C, Xuan W, Novák O, Ljung K, Fernandez MA, Rodriguez PL, Dodd IC, De Smet I, Chaumont F, Batoko H, Périlleux C, Lynch JP, Bennett MJ, Beeckman T, Draye X (2018) The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water. Current Biology. doi: 10.1016/j.cub.2018.07.074

Open Access

Emily Morris and Beata Orman-Ligeza are co-authors on this Belgian-led study that includes authors from the Universities of Nottingham and Lancaster. They introduce a new adaptive response termed xerobranching that defines the repression of root branching when a root tip is not in contact with wet soil. This response occurs in cereal roots but can be mimicked in Arabidopsis by treatment with ABA as the authors show that the response is dependent on the PYR/PYL/RCAR-dependent signaling pathway. This response allows roots to respond to the realistically varied microclimate encountered through the soil and offers another excellent example of how using both cereals and Arabidopsis can provide answers that would not be possible from a single experimental system.


Stassen JHM, López A, Jain R, Pascual-Pardo D, Luna E, Smith LM, Ton J (2018) The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis. Sci Rep. doi: 10.1038/s41598-018-32448-5

https://www.nature.com/articles/s41598-018-32448-5

Open Access

Joost Stassen and Ana Lopez are the lead authors of this study from Juriaan Ton’s lab in Sheffield that continues their work on mechanisms that explain transgenerational acquired resistance (TAR). TAR occurs in the progeny of heavily diseased plants and in this study they investigate the extent of DNA methylation in generations following exposure to pathogens. They find that the extent of TAR-induced methylation was in direct proportion to the number of previous generations that had been exposed to disease. The majority of this methylation was in the CG context in gene bodies and clearly shows that methylation is an important component of molecular changes that occur during TAR.


Gangappa SN, Kumar SV (2018) DET1 and COP1 Modulate the Coordination of Growth and Immunity in Response to Key Seasonal Signals in Arabidopsis. Cell Rep. doi: 10.1016/j.celrep.2018.08.096

https://www.cell.com/cell-reports/fulltext/S2211-1247(18)31415-3

Open Access

Sreeramaiah Gangappa performed this work with Vinod Kumar at the John Innes Centre in which they investigate the molecular pathways that regulate the environmental signals that feed into the balance decision between growth and defense responses. They show that De-Etiolated 1 (DET1) and Constitutive Photomorphogenic 1 (COP1) negatively regulate immunity during favourable growth conditions and that this response is coordinated through the PIF4 transcription factor. These findings lead the authors to conclude that the DET1/COP1-PIF4 module is a key determinant of the different growth requirements that are necessary to response to either environment and disease.


Vőfély RV, Gallagher J, Pisano GD, Bartlett M, Braybrook SA (2018) Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape. New Phytol. doi: 10.1111/nph.15461

Open Access

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15461

Work from Siobhan Braybrook’s lab features in the Research Roundup for the second consecutive edition, this time led by Roza Vofely at the Sainsbury Lab Cambridge University (SLCU). In this study they have investigated the shape of leaf epidermal pavement cells from a remarkable 278 plant taxa in order to ascertain whether certain lineages are characterized by different cell shapes and whether the presence of an undulating cell wall is common, as in both maize and Arabidopsis. Interestingly they found that these primary examples were the exception as strongly undulating cell walls were unusual. They found that different lineages were characterised by similar levels of undulation and the authors conclude that this study sets a quantitative benchmark on which future experiments can be based that aim to understand the underlying factors that control pavement cell shape.


Martinez-Garcia M, Schubert V, Osman K, Darbyshire A, Sanchez-Moran E, Franklin FCH (2018) TOPII and chromosome movement help remove interlocks between entangled chromosomes during meiosis. J Cell Biol. doi: 10.1083/jcb.201803019

Open Access
Marina Martinez‐Garcia is the lead author on this work conducted during her time working with Eugenio Sanchez-Moran and Chris Franklin at the University of Birmingham. Normal meiosis requires a lack of structural interlocks between entangled chromosomes that can result from inevitable collisions in an area so packed with nucleic acid. In this paper the authors confirm a previously developed hypothesis that topoisomerase II (TOPII) is needed to remove interlocks. However it is not the only determinant of the number of interlocks as in Arabidopsis mutants in which chromosome movement is reduced, interlocks occur irrespective of the presence of TOPII.


Zhang H, Gannon L, Jones PD, Rundle CA, Hassall KL, Gibbs DJ, Holdsworth MJ, Theodoulou FL (2018) Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment. Sci Rep. doi: 10.1038/s41598-018-33630-5

https://www.nature.com/articles/s41598-018-33630-5

Open Access

Hongtao Zhang is the lead author of this work from the lab of Freddie Theodoulou at Rothamsted Research that investigates the role of the PROTEOLYSIS6 (PRT6) N-recognin E3 ligase in the ABA response. PRT6 regulated degradation of Group VII of the Ethylene Response Factor superfamily (ERFVIIs) controls both sugar sensitivity and oil body breakdown in germinating Arabidopsis seedlings. They found that the former but not the latter response was enhanced by ABA signaling components when the ERFVIIs were stabilised. The authors conclude that during seed germination the N-end rule controls multiple layers of regulation, both in an ABA dependent and independent manner

Arabidopsis Research Roundup: October 5th

After a brief hiatus the UK Arabidopsis Research Roundup returns with eight papers that focus on different aspects of Arabidopsis cell biology.

Firstly GARNet PI Jim Murray leads a study that performs a genome-wide analysis of sub-nucleosomal particles whilst Phil Wigge’s lab at SLCU conducts a more focused study on G-box regulatory sequences.

Thirdly Veronica Grieneisen (JIC) and co-workers have modelled the process of boron transport in the root, revealing exciting insights into how traffic jams might form.

Fourthly is a large scale biology paper led by Miriam Gifford (University of Warwick) that looks at the temporal and spatial expression patterns that control lateral root development.

Next Alexander Ruban (QMUL) investigates how low-light acclimated plants respond to high light.

The sixth and seventh studies are led by Alison Baker (Leeds) or Bill Davies (Lancaster) and look at phosphate or hormone signaling respectively.

Finally Gareth Jenkins (University of Glasgow) compares the UV-B signaling module in lower plants with that in Arabidopsis.


Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH (2017) Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet. doi: 10.1371/journal.pgen.1006988

Open Access

GARNet PI Jim Murray is the corresponding author on this study that performs a whole-genome scan of sub-nucleosomal particles (subNSPs) that have been identified using differential micrococcal nuclease (MNase) digestion. They link the position of subNSPs with RNAseq data taken from plants grown in different light conditions. They show that this new technique is able to discriminate regulatory regions that have been obscured by previous experimental procedures and therefore represents a very useful experimental method.


Ezer D, Shepherd SJ, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger K, Wigge PA (2017) The G-box transcriptional regulatory code in Arabidopsis. Plant Physiol. 10.1104/pp.17.01086

Open Access

Phil Wigge (SLCU) is the corresponding author of this study that investigates the sequence elements that are linked to the conserved G-box regulatory motifs. They identify a set of bZIP and bHLH transcription factors that predict the expression of genes downstream of perfect G-boxes. In addition they have developed a website that provide visualisations of the G-box regulatory network (araboxcis.org).


Sotta N, Duncan S, Tanaka M, Takafumi S, Marée AF, Fujiwara T, Grieneisen VA (2017) Rapid transporter regulation prevents substrate flow traffic jams in boron transport. Elife. doi: 10.7554/eLife.27038

Open Access

Veronica Grieneisen (JIC) is the lead author on this detailed analysis of the regulatory circuits that are established during boron uptake in Arabidopsis roots. They used mathematical modelling to show that during boron uptake, swift regulation of transport activity is needed to prevent toxic accumulation of the metal. This system has analogy to the way in which traffic jams of nutrient flow might form and has relevance for regulatory systems outside of plant science. https://www.sciencedaily.com/releases/2017/09/170905104358.htm


Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A, Samavedam S, Bomono G, Hersh DS, Coruzzi GM, Burroughs NJ, Gifford ML (2017) Root architecture shaping by the environment is orchestrated by dynamic gene expression in space and time. Plant Cell. doi: 10.1105/tpc.16.00961

Open Access

Miriam Gifford (University of Warwick) leads this broad consortium that has taken a systems biology approach to better define the environmental factors that control dynamic root architecture. They track transcriptional responses during lateral root development in remarkable detail, looking at individual transcripts. They confirm the idea that the activity of a gene is not simply a function of its amino acid sequence but rather the temporal and spatial regulation of its expression.


Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV (2017) Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. J Exp Bot. doi: 10.1093/jxb/erx213. Open Access

Alexander Ruban (QMUL) is the corresponding author on this collaboration with Chinese colleagues that examined the effect of high-light stress on low-light acclimated Arabidopsis plants. Initially these plants showed significant photo-inhibition but that they recovered rapidly and after 2 weeks of treatment there was no change in photosynthetic yield. In addition high light acclimated plants showed accelerated reproductive phase change that coincided with higher seed yield.


Qi W, Manfield IW, Muench SP, Baker A (2017) AtSPX1 affects the AtPHR1 -DNA binding equilibrium by binding monomeric AtPHR1 in solution. Biochem J. doi: 10.1042/BCJ20170522 Open Access

Alison Baker (University of Leeds) leads this research that focusses on the binding of the Phosphate Starvation Response 1 (PHR1) transcription factor to regulatory P1BS DNA sequences. They show a tandem P1BS sequence is bound more strongly than a single P1BS site. Ultimately they demonstrate tight regulation of phosphate signaling both by the concentration of phosphate as well as the activity of the interacting SPX protein.


Li X, Chen L, Forde BG, Davies WJ (2017) The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. Front Plant Sci. doi: 10.3389/fpls.2017.01493 Open Access

Bill Davies and Brian Forde (Lancaster University) lead this work that investigates the effect on ethylene and auxin on the biphasic response to ABA during root elongation. They used a range of hormone signalling mutants to show that the response to high ABA is via both ethylene and auzin signalling. In contrast the response to low ABA does not require ethylene signalling.


Soriano G, Cloix C, Heilmann M, Núñez-Olivera E, Martínez-Abaigar J, Jenkins GI (2017) Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. New Phytol. doi: 10.1111/nph.14767

Gareth Jenkins (University of Glasgow) is the corresponding author of this work that looks at the role of the UVR8 UV-B receptor in lower plants. They expressed the versions of UVR8 from a moss or a liverwort in Arabidopsis and showed that although there appears to be differences in the regulation of this protein, the mechanism of UV-B signaling is evolutionarily conserved

Arabidopsis Research Roundup: March 31st.

This bumper edition of the Arabidopsis Research Roundup includes a wide range of research topics. Firstly Mike Roberts leads a study that adds another layer of complexity to our understanding of the factors that control seed dormancy. Secondly a paper from Ottoline Leyser’s lab at SLCU provides more details regarding the role of BRC1 during shoot branching. Next is a paper that continues David Salt’s collaborative work that aims to understand how the root endodermal barrier influences nutrient uptake. Fourthly is work from Bristol that looks at the interaction between viral infection, the structure of the leaf surface and the polarization of reflected light. The fifth paper features a wide collaboration from the Sainsbury lab in Norwich and aims to more fully understand the factors that lead to non-host infection by Phytophthora infestans. The penultimate paper looks at the interaction of aldolase enzymes with the plant actin cytoskeleton and the final paper brings us full circle back to seed dormancy where researchers from University of Warwick investigate the link between this complex growth response and the circadian clock.

Singh P, Dave A, Vaistij FE, Worrall D, Holroyd GH, Wells JG, Kaminski F, Graham IA, Roberts MR (2017) Jasmonic acid-dependent regulation of seed dormancy following maternal herbivory in Arabidopsis. New Phytol http:/​/​dx.​doi.​org/10.1111/nph.14525

Taken from: http://www.snakesandspiders.com/wp-content/uploads/2013/05/red-spider-mite-control.jpg

Open Access

Mike Roberts (University of Lancaster) kindly provides an audio description of this paper on the GARNet YouTube channel, explaining that, in collaboration with Ian Graham at the University of York, they have identified a new control mechanism that links jasmonic acid, herbivory and seed dormancy. ABA and GA are known to be important hormones in the control of seed dormancy but this study adds complexity to this story by showing that following herbivory (or leaf wounding), the level of JA increases within Arabidopsis seeds. Perhaps counter-intuitively, in the following generation this leads to a reduction in dormancy, causing seed to germinate sooner than those from non-predated parents. The authors show that this is due to an increase in JA within seeds that importantly also alters sensitivity to ABA. Unlike transgenerational defence priming that acts through a epigenetic mechanism and persists for multiple generations , this study shows that the JA effect on seeds is a more direct response. Ultimately the mechanism in which parents prepare their offspring for subsequent generations is a complex trade off between multiple sources of predation and pathogenesis, environmental factors as well as through the effect of interacting hormone signaling pathways.


Seale M, Bennett T, Leyser O (2017) BRC1 expression regulates bud activation potential, but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development http:/​/​dx.​doi.​org/10.1242/dev.145649 Open Access

This is the latest contribution from Ottoline Leyser’s lab that looks into the hormonal control of shoot branching. A key determinant of this process is the transcription factor, BRANCHED1 (BRC1) yet this study shows that under certain conditions, in this case with varied amount of strigolactone, the controlling effect of BRC1 expression levels can be mitigated. The authors provide evidence for a mechanism for branching control that involves the coordinated activity of BRC1 and an auxin-transport mechanism, both of which are influenced by a separate strigolactone-mediated signaling pathway.


Li B, Kamiya T, Kalmbach L, Yamagami M, Yamaguchi K, Shigenobu S, Sawa S, Danku JM, Salt DE, Geldner N, Fujiwara T (2017) Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers. Current Biology

http:/​/​dx.​doi.​org/10.1016/j.cub.2017.01.030

Former GARNet chairman David Salt is a co-author on this paper that is lead by Japanese and Swiss colleagues and continues his work on the development of the casparian strip. These rings of lignin polymers are deposited within root endodermal cells and play a key role in the movement of water and nutrients into the vascular tissue. Suberin lamellae have a similar function and surround endodermal cells, likely acting as a barrier to apoplastic movement. This paper documents the identification of the Tolkienesquely-named LOTR1, which is essential for casparian strip formation. Lotr1 mutants show disrupted casparian strips, ectopic suberization and reduced calcium accumulation in the shoot. Further analysis demonstrates that it is this suberized layer substitutes for the CS in regions of lateral root emergence. Utliamtely they show that the relationship between suberization of the endodermal layer is a key determinant of calcium movement into the root and then around the rest of the plant.


Maxwell DJ, Partridge JC, Roberts NW, Boonham N, Foster GD (2017) The effects of surface structure mutations in Arabidopsis thaliana on the polarization of reflections from virus-infected leaves. PLoS One

http:/​/​dx.​doi.​org/10.1371/journal.pone.0174014.g003 Open Access

Gary Foster (University of Bristol) leads this study that continues his labs work on the effect that viral infection has on light polarization when reflected off leaves. This attribute is important to attract insect predators, which in turn increase the possibility of successful viral transmission. Light polarization is affected by structures on the leaf surface such as trichomes or the makeup of the waxy cuticle. Here the authors show that the cer5 wax synthesis mutant alters the polarization of light following infection with Turnip vein clearing virus (TVCV) but not following infection with Cucumber mosaic virus (CMV). The paper provides no mechanism for this difference but the authors do show that leaf viral titre is equivalent in these mutants and therefore speculate that these changes might influence transmission of each virus by a different insect carrier that in turn responses to different patterns of polarized light.


Prince DC, Rallapalli G, Xu D, Schoonbeek HJ, Çevik V,, Asai S,, Kemen E,, Cruz-Mireles N, Kemen A,, Belhaj K, Schornack S,, Kamoun S, Holub EB, Halkier BA, Jones JD (2017) Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biol. 

http:/​/​dx.​doi.​org/10.1186/s12915-017-0360-z  Open Access

This paper is a wide collaboration that features many colleagues from the Sainsbury lab in Norwich. Wildtype Arabidopsis plants are suspectible to Phytophthora infestans only after earlier infection with Albugo laibachii yet the molecular explanation of this complex interaction between plant and microbes remained opaque. This study demonstrates that Albugo infection alters the levels of a set of tryptophan-derived antimicrobial compounds, which were then found to be relevant for infection with P.infestans. This shows that these antimicrobial compounds might be key for the general maintenance of non-host resistance and might provide important information to aid future strategies to improve food security by reducing biomass loss due to plant pathogens.


Garagounis C, Kostaki KI, Hawkins TJ, Cummins I, Fricker MD, Hussey PJ, Hetherington AM2, Sweetlove LJ (2017) Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis. J Exp Bot.

http:/​/​dx.​doi.​org/10.1093/jxb/erx015

This collaboration between the Universities of Oxford, Bristol and Durham looks into the functional role that molecular microcompartments play in the workings of a cell. Animal models have shown that certain aldolase enzymes are able to function as actin-bundling proteins and so this study focuses on a major plant cytosolic aldolase, FBA8, which is predicted to have two actin binding sites. Although the authors could not detect co-localisation of FBA8-RFP with the actin cytoskeleton they provide in vitro evidence that FBA8 can functionally interact with F-actin. In addition in fba8 mutants there is altered arrangement of actin filaments in guard cells that concomitantly results in a reduced rate of stomatal closure. Therefore these findings leads the authors to propose that FBA8 is able to subtly interact with actin in vivo, evidenced by some FRET-FLIM experiments, and that this may modulate actin dependent cell responses.


Footitt S, Ölcer-Footitt H, Hambidge AJ, Finch-Savage WE (2017) A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant Cell Environ http:/​/​dx.​doi.​org/10.1111/pce.12940

William Savage-Finch (University of Warwick) is the corresponding author on this paper that investigates mechanisms that control seed dormancy, which has been built from the analysis of a variety of genetic and environmental factors. They test their predictions by testing a range of mutants in both known dormancy related genes and in the function of the circadian clock. This provides a link between the circadian cycle and the daily variation in the level of seed dormancy in Arabidopsis.

Arabidopsis Research Roundup: August 21st.

There are a wide array of topics included in this weeks Arabidopsis Research Roundup, ranging from studies on stomatal density, thylakoid transport, metabolic flux analysis, mutant detection and root development. We feature unlinked studies from three researchers from the University of Oxford Plant Science (Paul Jarvis, Lee Sweetlove and Nick Harberd), whilst the papers from Julie Gray and Brian Forde share the broad theme that investigates different mechanisms that might be used to improve nitrogen uptake, either by modifying the expression of a single gene involved in root development or by altering stomatal density.

Hepworth C, Doheny-Adams T, Hunt L, Cameron DD, Gray JE (2015) Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake New Phytol. http://dx.doi.org/10.1111/nph.13598

Julie Gray (University of Sheffield) is an expert on both stomatal biology and on the potential for manipulating stomatal density to improve crop production. In this study drought tolerance and soil water retention were measured in four Arabidopsis mutants with defects in epidermal patterning and stomatal density. Nutrient uptake was measured by mass flow of 15N. Plants with less stomata had reduced transpiration and were drought-tolerant yet interestingly showed little reduction in shoot N concentrations, especially when water availability is restricted. In contrast, plants with extra stomata could take up more N except when access to water was reduced. Therefore the authors show that by altering stomatal density they can generate plants that are drought resistance yet maintain nutrient uptake or generate plants with enhancing nutrient uptake is conditions with plentiful water.

Trösch R, Töpel M, Flores-Pérez Ú, Jarvis P (2015) Genetic and Physical Interaction Studies Reveal Functional Similarities between ALB3 and ALB4 in Arabidopsis. Plant Physiol. http://dx.doi.org/10.1104/pp.15.00376

This German, Swedish and UK collaboration is led by Paul Jarvis at the University of Oxford and broadly investigates thylakoid protein targeting. The ALB3 complex has previously been shown to target light harvesting complex proteins (LHCP) to the thylakoid. A related Arabidopsis protein, ALB4, had been proposed to interact not the LHCPs but rather with the ATP synthase complex. However this study shows that ALB3 and ALB4 have some overlapping roles in addition to their specific functions and that they can engage with a similar set of interactor proteins to bring their substrates to the thylakoid membrane.

Cheung CY, Ratcliffe RG, Sweetlove LJ (2015) A method of accounting for enzyme costs in flux balance analysis reveals alternative pathways and metabolite stores in an illuminated Arabidopsis leaf Plant Physiol. http://dx.doi.org/10.1104/pp.15.00880

Lee Sweetlove (Oxford University) leads this study that looks at the Flux Balance Analysis (FBA) of plant metabolism across several metabolic pathways by attaching ‘flux weighting factors’ to allow for the variable intrinsic cost of supporting each flux. This model has been applied to the Arabidopsis leaf exposed to different light regimes to explore the flexibility of the network in meeting its metabolic requirements. The authors discover interesting trade-offs between use of different carbon storage forms and in the variable consumption of ATP and NADPH by different metabolic pathways.

Belfield EJ, Brown C, Gan X, Jiang C, Baban D, Mithani A, Mott R, Ragoussis J, Harberd NP (2014) Microarray-based optimization to detect genomic deletion mutations Genom Data Dec;2:53-54 http://dx.doi.org/10.1016/j.gdata.2014.04.005

GARNet Advisory Board member Nick Harberd (Oxford University) leads this short communication that highlights the development of a tool for detection of genomic deletion mutants in Arabidopsis. Using a NimbleGen whole genome custom tiling array they successfully identify five mutants with deletion ranging from 4bp to 5kb and therefore introduce a powerful tool for analysing this type of genetic lesion in Arabidopsis and other plant species with well-constructed genomes.

Yu C, Liu Y, Zhang A, Su S, Yan A, Huang L, Ali I, Liu Y, Forde BG, Gan Y (2015) MADS-box Transcription Factor OsMADS25 Regulates Root Development through Affection of Nitrate Accumulation in Rice PLoS One http://dx.doi.org/10.1371/journal.pone.0135196

Brian Forde (Lancaster University) is the UK lead on this Chinese collaboration that focuses on nitrate accumulation and how it regulates root development in rice. This occurs via a MADS-box transcription factor OsMADS25 that, when overexpressed in Arabidopsis, promotes primary and lateral root development. Altered expression of this gene also affects root development in transgenic rice and includes significant changes in nitrate accumulation. Therefore this gene might prove to be an important target for future attempts to improve plant growth in regions with altered nitrate concentrations.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
November 2019
M T W T F S S
« Oct    
 123
45678910
11121314151617
18192021222324
252627282930  

Welcome , today is Friday, November 15, 2019