GARNet Research Roundup: April 29th 2019

This edition of the GARNet research roundup features fundamental plant science research conducted in a range of experimental organisms. Firstly Liam Dolan’s lab in Oxford looks at the function of bHLHs proteins in cell differentiation across land plant evolution. Secondly Anthony Hall’s group at the Earlham Institute have identified a novel RecQ helicase involved in work exclusively conducted in wheat. Thirdly researchers from Nottingham work with Arabidopsis to characterise an EXPANSIN protein essential for lateral root development.

The fourth paper is the first of two that look at germination and uses a new model, Aethionema arabicum, to study the role of light in seed dormancy. This work includes research from Royal Holloway. The second ‘dormancy’ paper is from Peter Eastmond’s lab at Rothamsted and further characterises the DOG1 gene in Arabidopsis. The penultimate paper includes co-authors from Warwick and Leeds and introduces a novel chemical inhibitor of auxin transport. The final paper from researchers in Birmingham introduces the 3DCellAtlas Meristem, a powerful tool for cellular annotation of the shoot apical meristem.

Bonnot C, Hetherington AJ, Champion C, Breuninger H, Kelly S, Dolan L (2019) Neofunctionalisation of basic helix loop helix proteins occurred when embryophytes colonised the land. New Phytol. doi: 10.1111/nph.15829

Clemence Bonnot is lead author on this study from Liam Dolan’s lab at the University of Oxford in which the authors assess the role of ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes during evolution of plant development. They look at the function of a member of this bHLH transcription factor family called CbbHLHVIII identified in the charophyceaen alga Chara braunii. This gene is expressed at specific morphologically important regions in the algae and cannot rescue the function of related RSL genes in Marchantia or Arabidopsis. This suggests that the function of RSL proteins in cell differentiation has evolved by neofunctionalisation through land plant lineages.

Gardiner LJ, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, Higgins JD, Hall N, Griffiths S, Clavijo BJ, Hall A (2019) Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol. 20(1):69. doi: 10.1186/s13059-019-1675-6

Open Access

Laura Gardiner and Anthony Hall lead this work that was conducted at the Earlham Institute and uses a bespoke set of bioinformatic tools that allow fundamental questions to be asked in hexaploid wheat. They looked at crossover and gene conversion frequencies in 13 recombinant inbred mapping populations and were able to identity an important QTL and confirm functionality for a novel RecQ helicase gene. This gene does not exist in Arabidopsis and therefore this discovery-motivated research needed to be conducted in wheat. They hope that this identification will provide future opportunities to tackle the challenge of linkage drag when attempting to develop new crops varieties.

Ramakrishna P, Ruiz Duarte P, Rance GA, Schubert M, Vordermaier V, Vu LD, Murphy E, Vilches Barro A, Swarup K, Moirangthem K, Jørgensen B, van de Cotte B, Goh T, Lin Z, Voβ U, Beeckman T, Bennett MJ, Gevaert K, Maizel A, De Smet I (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci U S A. 2019 Apr 3. pii: 201820882. doi: 10.1073/pnas.1820882116

Open Access

This pan-European study is led by Priya Ramakrishna at the University of Nottingham and includes co-authors from the UK, Belgium, Germany and Denmark. The authors look at the lateral root development and characterise the function of the EXPANSIN A1 protein. This protein influences the physical changes in the cell wall that are needed to enable the asymmetry cell divisions that define the location of a new lateral root. Plants lacking EXPA1 function do not properly form lateral roots and are unable to correctly respond to an inductive auxin signal. This clearly demonstrates an important requirement for the activity of genes that transmit cell signals into the physical relationships that exist between cells.

Mérai Z, Graeber K, Wilhelmsson P, Ullrich KK, Arshad W, Grosche C, Tarkowská D, Turečková V, Strnad M, Rensing SA, Leubner-Metzger G, Scheid OM (2019) Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. pii: erz146. doi: 10.1093/jxb/erz146

Open Access

This paper includes authors from the UK, Germany, Austria and the Czech Republic including Kai Graeber and Gerhard Leubner-Metzger at Royal Holloway. They introduce the Brassica Aethionema arabicum as a new model to investigate the mechanism of germination inhibition by light as they have identified accessions that are either light-sensitive or light-neutral. In contrast germination in Arabidopsis is stimulated by light. Transcriptome analysis of Aethionema arabicum accessions reveal expression changes in key hormone-regulated genes. Overall they show that largely the same module of molecular components are involved in control of of seed dormancy irrespective of the effect of light on germination. Therefore any phenotypic changes likely result from changes in the activity organisms-specific of these genes.

Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ (2019) Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR 67 transactivates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell. pii: tpc.00892.2018. doi: 10.1105/tpc.18.00892

Open Access

Fiona Bryant is lead author on this research from Rothamsted Research that investigates the factors that control expression of the DOG1 gene, which is a key regulator of seed dormancy. They show that LEUCINE ZIPPER TRANSCRIPTION FACTOR67 (bZIP67) regulates DOG1 expression and have uncovered a mechanism that describes the temperature-dependent regulation of DOG1 expression. Finally they identity a molecular change that explains known allelic difference in DOG1 function, which informs different levels of dormancy in different accessions.

Oochi A, Hajny J, Fukui K, Nakao Y, Gallei M, Quareshy M, Takahashi K, Kinoshita T, Harborough SR, Kepinski S, Kasahara H, Napier RM, Friml J, Hayashi KI (2019) Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiol. 2019 Apr 1. pii: pp.00201.2019. doi: 10.1104/pp.19.00201

Open Access

This Japanese-led study includes co-authors from the Universities of Warwick and Leeds and describes the identification of a novel positive chemical modulator of auxin cellular efflux. This aptly named PInStatic Acid (PISA) prevents PIN protein internalization yet does not impact the SCFTIR1/AFB signaling cascade. Therefore the authors hope that PISA will be a useful tool for unpicking the cellular mechanisms that control auxin transport.

Montenegro-Johnson T, Strauss S, Jackson MDB, Walker L, Smith RS, Bassel GW. (2019) 3D Cell Atlas Meristem: a tool for the global cellular annotation of shoot apical meristems. Plant Methods. 15:33. doi: 10.1186/s13007-019-0413-0

Open Access

Thomas Montenegro-Johnson, Soeren Strauss, Matthew Jackson and Liam Walker lead this methods paper that was prepared following research that took place at the University of Birmingham and the Max Planck Institute for Plant Breeding Research in Cologne. They describe the 3DCellAtlas Meristem, a tool allows the complete cellular annotation of cells within a shoot apical meristem (SAM), which they have successfully tested in both Arabidopsis and tomato. The authors state that ‘this provides a rapid and robust means to perform comprehensive cellular annotation of SAMs and digital single cell analyses, including cell geometry and gene expression’.

GARNet Research Roundup: April 11th 2019

This edition of the GARNet Research Roundup is led by two papers from John Christie’s lab at the University of Glasgow. First is a study that looks at the function of the NPH3 protein during phototropism whilst the second paper is a collaboration with Mike Blatt’s group and has used an synthetic biology approach to increase plant biomass by altering stomatal conductance.

Third is a paper from the University Dundee and James Hutton Institute that looks at the extent of alternative splicing of long non-coding RNAs in response to cold stress.

The fourth paper is from Royal Holloway and defines the role of a MAP kinase module during meristem development. The fifth paper is led by Charles Spillane in Galway and includes Mary O’Connell at the University of Nottingham as a co-author and investigates the selective pressures that are applied to parentally imprinted genes.

The penultimate paper is from Aberystwyth and uses microCT imaging to determine grain parameters in wheat and barley whilst the final paper is from Queens Mary University of London looks at nonphotochemical quenching in Berteroa incana.

Sullivan S, Kharshiing E, Laird J, Sakai T, Christie J (2019) De-etiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL 3 Phosphorylation Status. Plant Physiol. doi: 10.1104/pp.19.00206

Open Access

Stuart Sullivan is first author on this work from John Christie’s lab at the University of Glasgow in which they investigate the functional significance of dephosphorylation of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) protein that occurs following activation of Phototropin receptor kinases. They show that plant greening (de-etiolation) enhances phototropic responses that are coincident with reduced NPH3 dephosphorylation and increased plasma membrane retention of the protein. They further investigate other genetic and environmental factors that impact NPH3 dephosphorylation, which allows young seedlings to maximise their establishment under changing light conditions.

Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR (2019) Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science. doi: 10.1126/science.aaw0046

Maria Papanatsiou is lead author on this work from the University of Glasgow that occured in the labs of Mike Blatt and John Christie. They aimed to address a phenomonen that occurs during changing environmental conditions in which stomatal dynamics lag behind biochemical photosynthetic changes. This prevents plants from maximising their outputs due to inefficiencies in gas and water exchange. In this work they express a synthetic blue light-gated K+ channel BLINK1 in guard cells. This introduced a K+ conductance to these cells resulting in accelerated stomatal opening under light exposure and closing after irradiation. Ultimately they show that this significantly increases biomass without incurring a water use cost. This approach has clear potential for improving plant productivity under changing environmental conditions.

Calixto CPG, Tzioutziou NA, James AB, Hornyik C, Guo W, Zhang R, Nimmo HG, Brown JWS (2019) Cold-Dependent Expression and Alternative Splicing of Arabidopsis Long Non-coding RNAs. Front Plant Sci. doi: 10.3389/fpls.2019.00235

Open Access

Cristiane Calixto and John Brown from the University of Dundee and the James Hutton Institute lead this study into alternative splicing of lncRNAs in response to cold. This is a follow-up to their large scale scale study on the extent of alternative splicing in Arabidopsis.  The authors identified 135 lncRNA genes with cold-dependent differential expression (DE) and/or differential alternative splicing (DAS), some of which were highly sensitive to small temperature changes. This system identified a set of lncRNAs that could be targets for future research aimed at understanding how plants respond to cold and freezing stresses.

Dóczi R, Hatzimasoura E, Farahi Bilooei S, Ahmad Z, Ditengou FA, López-Juez E, Palme K, Bögre L (2019) The MKK7-MPK6 MAP Kinase Module Is a Regulator of Meristem Quiescence or Active Growth in Arabidopsis. Front Plant Sci. doi: 10.3389/fpls.2019.00202

Open Access

Robert Doczi is the first author on this UK, Hungarian and German collaboration that is led from Royal Holloway University of London. They use genetic approaches to show that the MKK7-MPK6 MAP kinase module is a suppressor of meristem activity. They use mkk7 and mpk6 mutants as well as overexpression lines to demonstrate that perturbation of the MAPK signaling pathway alters both shoot and root meristem development and plays important roles in the control of plant developmental plasticity.

Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O’Connell MJ, Spillane C (2019) Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana. Mol Biol Evol. doi: 10.1093/molbev/msz063

Open Access

Reetu Tuteja from the National University of Ireland at Galway is first author on this paper that includes Mary O’Connell from the University of Nottingham. The authors used Arabidopsis to look at 140 endosperm-expressed genes that are regulated by genomic imprinting and found that they were evolving more rapidly than expected. This investigation was extended across 34 other plant species and they found that paternally, but not maternally imprinted genes were under positive selection, indicating that imprinted genes of different parental origin were subject to different selective pressures. This data supports a model wherein positive selection effects paternally-expressed genes that are under continued conflict with maternal sporophyte tissues.

Hughes N, Oliveira HR, Fradgley N, Corke FMK, Cockram J, Doonan JH, Nibau C (2019) μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. Plant J doi: 10.1111/tpj.14312

Open Access

Nathan Hughes and Candida Nibau at the Aberystwyth University lead this work that uses microCT imaging alongside novel image analysis techniques and mathematical modeling to assess grain size and shape across accessions of wheat and barley. They find that grain depth is a major driver of shape change and that it is also an excellent predictor of ploidy levels. In addition they have developed a model that enables the prediction of the origin of a grain sample from measurements of its length, width and depth.

Wilson S, Ruban AV (2019) Enhanced NPQ affects long-term acclimation in the spring ephemeral Berteroa incana. Biochim Biophys Acta Bioenerg. doi: 10.1016/j.bbabio.2019.03.005

This study is led by Sam Wilson and Alexander Ruban at QMUL and investigates nonphotochemical quenching in the Arabidopsis-relative Berteroa incana. They show that light tolerance and ability to recover from light stress is greatly enhanced in Berteroa compared to Arabidopsis. This is due to faster synthesis of zeaxanthin and a larger xanthophyll cycle (XC) pool available for deepoxidation. This result gives B.incana a greater capacity for protective NPQ allowing enhanced light-harvesting capability when acclimated to a range of light conditions. The authors suggest this short-term protection prevents the need for the metabolic toll of making long-term acclimations.

GARNet Research Roundup: March 21st 2019

This edition of the GARNet research roundup begins with a study from the John Innes Centre that investigates the role of auxin in the control of fruit development in Capsella.

Auxin is also a central focus of the next paper that is from SLCU, in which the authors characterise the role of different types of auxin transport during shoot development. The third paper, also from Cambridge, identifies a new function for members of the DUF579 enzyme family. The final paper from Cambridge reports on an outstanding citizen science project that looks at how different temperature and light conditions influence the growth of spring onions.

The next paper is from the University of Glasgow and investigates the role of the SNARE protein complex during vesicle transport in Arabidopsis.

The final two papers include authors from the University of Nottingham. Firstly Anthony Bishopp leads research that defines determinants of vascular patterning across plant species. Finally Don Grierson is a co-author on work that has identified novel signaling components involved in the response to hypoxia in Persimmon and Arabidopsis.

Dong Y, Jantzen F, Stacey N, Łangowski Ł, Moubayidin L, Šimura J, Ljung K, Østergaard L (2019) Regulatory Diversification of INDEHISCENT in the Capsella Genus Directs Variation in Fruit Morphology. Curr Biol. doi: 10.1016/j.cub.2019.01.057

Open Access

This research from Lars Ostergaard’s lab in the John Innes Centre is led by Yang Dong. The work is primarily conducted in Capsella and investigates the role of the INDEHISCENT (IND) protein in this plant, which has fruits that are morphologically distinct from those in Arabidopsis. Expression of CrIND controls fruit shape by influencing auxin biosynthesis leading to auxin accumulation in specific maxima that are localised to the fruit valves.

doi: 10.1016/j.cub.2019.01.057

van Rongen M, Bennett T, Ticchiarelli F, Leyser O (2019) Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genet. doi: 10.1371/journal.pgen.1008023

Open Access

Martin Van Rongen is the lead author on this research performed under the supervision of Ottoline Leyser at the Sainsbury Lab, Cambridge University. They investigate the hormonal signals that underpin the remarkable plasticity of shoot patterning, focusing on a genetic analysis of connective auxin transport (CAT), which moves the hormone across the stem (in contrast to up-down polar transport). Using multiple pin mutant plants, they show CAT is important in the regulation of strigolactone-mediated shoot branching. However shoot branching controlled by the BRANCHED1 transcription factor is reliant on the ABCB19 auxin export protein and is not significantly influenced by the activity of PIN proteins. Martin van Rongen discusses this paper on the GARNet YouTube channel.

Temple, H, Mortimer, JC, Tryfona, T, et al (2019) Two members of the DUF579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct.

Open Access

Henry Temple works with Paul Dupree at the University of Cambridge and leads this study that identifies a novel activity of two DUF579 enzymes in the methylation of glucuronic acid within highly glycosylated arabinogalactan proteins (AGPs). This differs from all other previously characterized DUF579 members that have been previously shown to methylate glucuronic acid within the cell wall component xylan.

Brestovitsky, A, Ezer, D (2019) A mass participatory experiment provides a rich temporal profile of temperature response in spring onions. Plant Direct. 2019; 3: 1– 11.

Open Access

This citizen science project led by Anna Brestovitsky and Daphne Ezer was performed in collaboration with the BBC Terrific Scientific program. In this study primary school students from across the UK recorded the growth of spring onions over a two-week period, which was then cross-referenced with detailed hourly meteorological data. This allowed the authors to discern the effect of minute temperature and light changes on plant growth and perhaps more importantly demonstrated that even the youngest researchers, when involved a well-designed citizen science project, can yield very useful data.

Zhang B, Karnik RA, Alvim JC, Donald NA, Blatt MR (2019) Dual Sites for SEC11 on the SNARE SYP121 Implicate a Binding Exchange during Secretory Traffic. Plant Physiol. doi: 10.1104/pp.18.01315

Open Access

Ben Zhang and Rucha Karnik are first authors on this paper that continues Mike Blatt‘s lab’s study of SNARE proteins, which are involved in vesicle trafficking. This study defines a new amino acid motif within SNARE SYP121 that is needed for the binding of the SEC11 protein but is not involved in binding plasma membrane K+ channels. This motif is essential for assembly of the entire SNARE complex yet does not influence the interaction of SYP121 with the uptake of K+ ions.

Mellor N, Vaughan-Hirsch J, Kümpers BMC, Help-Rinta-Rahko H, Miyashima S, Mähönen AP, Campilho A, King JR, Bishopp A (2019) A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species. Development. doi: 10.1242/dev.172411

Open Access

Nathan Mellor is first author on this work led by the lab of Anthony Bishopp at the University of Nottingham. The primary accomplishment of this work is in the development of a mathematical model that is able to predict the role of auxin in the specification of vascular patterning during embryonic development. This model has been tested through experimental interrogation of both transgenic Arabidopsis plants and in a range of other species with different vascular development patterns. Importantly they show that a heterologous auxin input might not be as critical in vascular development when compared to growth patterns that arise from spatial constraints. The authors show that this model has broad relevance to define early vascular patterning across plant species.

Zhu QG, Gong Z, Huang J, Grierson D, Chen KS, Yin XR (2019) High-CO2/hypoxia-responsive transcription factors DkERF24 and DkWRKY1 interact and activate DkPDC2 promoter. Plant Physiol. doi: 10.1104/pp.18.01552

Open Access

Don Greirson is a co-author on this Chinese-led study that identifies a set of transcription factors from Persimmon ((Diospyros kaki). These TFs are involved in responses to high CO2 and the authors show that their Arabidopsis orthologs play a similar role. The authors introduce a new response module that may be important during this key environmental response.

GARNet Research Roundup: March 7th 2019

This edition of the GARNet research roundup begins with a study into the genetic basis of fertility in barley led by Sarah McKim from Dundee. Second is a study from Oxford and Leicester that characterizes the proteolytic control of chloroplast import. The third paper from Levi Yant’s group at JIC and Nottingham that attempts to discover the influence of polyploidism on population genomic effects whilst the fourth paper from Juliet Coates’ lab in Birmingham uses the growth of Arabidopsis to assess the potential of algal biomass as a biofertiliser. The next two papers include co-authors from Oxford and Warwick respectively and investigate different factors that control seed viability in Arabidopsis and Brassica oleracea. The final paper includes Seth Davies from York as a co-author on a study that looks at control of the circadian clock in field-grown Arabidopsis.

Zwirek M, Waugh R, McKim SM (2019) Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytol. doi: 10.1111/nph.15548

Open Access

Current GARNet committee members Sarah McKim is the leader of this study in which first author is Monica Zwirek. They investigate the mechanism through which the barley VRS genes contribute to spikelet fertility. They undercover the epistatic relationship between five VRS genes that explains how they contribute to controlling fertility of lateral spikelets. Importantly they demonstrate that various vrs mutant combinations improve fertility in a variety of ways, information that will be useful during the generation of new varieties of barley.

Ling Q, Broad W, Trösch R, Töpel M, Demiral Sert T, Lymperopoulos P, Baldwin A, Jarvis RP (2019) Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science. doi: 10.1126/science.aav4467

Qihua Ling and William Broad are the first authors on this study from the Universities of Oxford and Leicester. They investigate the role of proteolysis in the functional control of chloroplast-envelope translocases, which are required for the transport of proteins from nucleus-encoded genes into the chloroplast. They identify two newly characterised proteins that function in the same pathway as the known ubiquitin E3 ligase SP1. These novel proteins, SP2 and CDC48, are both required for the movement of ubiquitinated proteins from the chloroplast outer envelope membrane (OEM) into the cytosol, where they are degraded by the proteolytic machinery. This process of chloroplast-associated protein degradation (CHLORAD) maintains tight control of the activity of OEM proteins and is essential for organelle function.

Monnahan P, Kolář F, Baduel P, Sailer C, Koch J, Horvath R, Laenen B, Schmickl R, Paajanen P, Šrámková G, Bohutínská M, Arnold B, Weisman CM, Marhold K, Slotte T, Bomblies K, Yant L (2019) Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol. doi: 10.1038/s41559-019-0807-4.

Patrick Monnahan at the John Innes Centre is first author on this study from the Yant lab that has recently moved to the University of Nottingham. In this collaboration with colleagues in the US, Austria, Sweden, the Czech Republic and Slovakia, they have performed large scale sequencing on 39 populations of Arabidopsis arenosa. These plants have differing levels of ploidy and they are attempting to understand how ploidy effects population genomics. They demonstrate that the ploidy effects are subtle but significant and that masking of deleterious mutations, faster substitution rates and interploidy introgression will likely impact the evolution of populations where polyploidy is common.

Ghaderiardakani F, Collas E, Damiano DK, Tagg K, Graham NS, Coates J (2019) Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci Rep. doi: 10.1038/s41598-018-38093-2

Open Access

This work from the Coates lab at the University of Birmingham is led by Fatemeh Ghaderiardakani and looked into the potential of algal extracts as biofertiliser. They showed that at >0.1%, extracts taken from the common green seaweed Ulva intestinalis inhibit Arabidopsis seed germination and root elongation. At lower concentrations primary root elongation was promoted albeit with a complete loss of lateral root formation. Elemental analysis allows the authors to suggest that this effect was mediated via a novel mechanism involving aluminium. Overall the authors caution against the use of algal biofertilisers due to potential unforeseen negative effects on plant growth.

Viñegra de la Torre N, Kaschani F, Kaiser M, van der Hoorn RAL, Soppe WJJ, Misas Villamil JC (2019) Dynamic hydrolase labelling as a marker for seed quality in Arabidopsis seeds. Biochem J. doi: 10.1042/BCJ20180911.

GARNet Committee member Renier van der Hoorn is a co-author on this German-led study that investigates how the activity of seed-localised proteases can affect Arabidopsis seed germination. This study has clear real-world application regarding the storage of economically important seed stocks. They show that vacuolar processing enzymes (VPEs) become more active during aging whilst the activity of serine hydrolases declines alongside seed quality. This information has allowed the authors to develop protease-activity-based markers that will provide information about seed quality.

Schausberger C, Roach T, Stöggl WM, Arc E, Finch-Savage WE, Kranner I (2019) Abscisic acid-determined seed vigour differences do not influence redox regulation during ageing. Biochem J. doi: 10.1042/BCJ20180903

William Finch-Savage from the University of Warwick is a co-author on this Austrian-led study that looks at the effect of aging on the quality of Brassica oleracea seeds stored at two oxygen concentrations. Higher O2 causes a more rapid decrease in seed quality through aging yet in contrast aging did not alter the impact of the hormone ABA on seed viability. This study enables the authors to uncover two mechanisms that control seed quality that appear to act through different mechanisms.

Rubin MJ, Brock MT, Davis SJ, Weinig C (2019) QTL Underlying Circadian Clock Parameters Under Seasonally Variable Field Settings in Arabidopsis thaliana G3 (Bethesda). doi: 10.1534/g3.118.200770

Open Access

Seth Davies from the University of York is a co-author on this study led by Matthew Rubin from the University of Wyoming. They looked at the growth of Arabidopsis thaliana recombinant inbred lines grown in field conditions and found an extremely nuanced relationship regarding how QTLs that influence the circadian clock respond to environmental conditions. For example the authors showed that plant growth in June, July and September is controlled by different QTL architecture, demonstrating the complex regulation of the circadian clock in these field growth plants.

GARNet Research Roundup: February 14th 2019

This GARNet research Roundup includes a broad range of topics and contributing institutions. First is a study from TSL that investigates the molecular basis of Arabidopsis and Brassica responses to white rust disease. Second is work from Warwick that uses Arabidopsis as a tool to test genes involved in the evolution of Flax domestication.

The third paper is work from Cambridge that models the response of the circadian oscillator to nicotinamide whilst the fourth paper is a study from the University of Dundee that compares differential gene expression software in the analysis of RNAseq data from a complex organism. The penultimate paper includes a co-author from the University of Oxford and has generated an extended phylogeny of the Brassicaceae family. The final paper compares the growth and metabolite profiles of Arabidopsis and Eutrema salsugineum following drought stress.

Cevik V, Boutrot F, Apel W, Robert-Seilaniantz A, Furzer OJ, Redkar A, Castel B, Kover PX, Prince DC, Holub EB, Jones JDG (2019) Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida). Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1812911116

Open Access

Volkan Cevik is the lead author on this international collaboration that is led by Jonathan Jones at the Sainsbury Lab, Norwich. They have taken advantage of Arabidopsis resistance to white rust (Albugo candida) and used the Multiparent Advanced Generation InterCross (MAGIC) lines to identity the genes responsible for this resistance. This is important as related crop species Brassica juncea and Brassica oleracea are sensitive to this economically important pathogen. They identified a range of nucleotide-binding, leucine-rich repeat (NLR)-encoding genes that were involved in resistance to the pathogen.

Gutaker RM, Zaidem M, Fu YB, Diederichsen A, Smith O, Ware R, Allaby RG (2019) Flax latitudinal adaptation at LuTFL1 altered architecture and promoted fiber production. Sci Rep. doi: 10.1038/s41598-018-37086-5

Open Access

Rafal Gutaker is the lead author on this collaborative study between the University of Warwick and colleagues in Germany, Canada and Denmark, which investigated the route of domestication of the cultivated crop Flax. At northern european latitudes flax evolved to become a fibre crop rather than an oil crop by stem expansion and reduction of seed size. The authors investigated the role in this adaptation of PEBP family genes in the flax genome, LuTFL1 and LuTFL2. LuTFL1 was heterologously expressed in Arabidopsis, demonstrating that it is able to perform roles in flowering time and plant architecture. This research highlights the importance of Arabidopsis as a tool for testing the function of genes from less-easily transformed organisms.

Mombaerts L, Carignano A, Robertson FR, Hearn TJ, Junyang J, Hayden D, Rutterford Z, Hotta CT, Hubbard KE, Maria MRC, Yuan Y, Hannah MA, Goncalves J, Webb AAR (2019) Dynamical differential expression (DyDE) reveals the period control mechanisms of the Arabidopsis circadian oscillator. PLoS Comput Biol. doi: 10.1371/journal.pcbi.1006674

Open Access

Laurents Mombarts is the first author in this collaboration between the departments of Plant science and Engineering at the University of Cambridge that looked at the mechanistic effect on nicotinamide on the timing of the circadian oscillation. They developed a systematic and practical modeling framework for the gene regulatory circuits that respond to nicotinamide. They initially developed a mathematical model and then experimentally confirmed their predictions to uncover a role for blue light signalling in this response. Overall their approach could be adapted to predict mechanisms of drug action in other complex biological systems.

Froussios K, Schurch NJ, Mackinnon K, Gierlinski M, Duc C, Simpson GG, Barton GJ (2019) How well do RNA-Seq differential gene expression tools perform in a complex eukaryote? A case study in A. thaliana. Bioinformatics. doi: 10.1093/bioinformatics/btz089

Open Access

Gordon Simpson and colleagues at the University of Dundee collaborate with researchers in Clermont-Ferrand with Kimon Froussios as first author. They use Arabidopsis as a model to test a set of Differential Gene Expression (DGE) tools for the effective analysis of RNAseq data generated with three or fewer biological replicates. They tested nine widely used DGE tools and ultimately recommend the use of tools that are based on the negative binomial distribution.

Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M (2019) Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. doi: 10.1111/nph.15732.

This German, US and UK collaboration is led by Lachezar Nikolov and includes Dmitry Filatov from the University of Oxford as a co-author. They generated a phylogeny of the Brassicaceae, the family that contains Arabidopsis and a number of economically important crops. They used a mixture of fresh tissue and herbarium samples to perform the analysis on almost 80 species; enabling the resolution of new relationships between family members. This work represents an important tool for phylogenetic and comparative studies to maximise future outputs.

Pinheiro C, Dickinson E, Marriott A, Ribeiro IC, Pintó-Marijuan M, António C, Zarrouk O, Chaves MM, Dodd IC, Munné-Bosch S, Thomas-Oates J, Wilson J (2019) Distinctive phytohormonal and metabolic profiles of Arabidopsis thaliana and Eutrema salsugineum under similar soil drying. Planta. doi: 10.1007/s00425-019-03095-5

This collaboration between the UK and Portugal is led by Carla Pinheiro and the corresponding author is Julie Wilson from the University of York. Eutrema salsugineum is a stress-tolerance relative of Arabidopsis and in this study the authors have compared the response of these plants following growth on drying soils. Whereas stomatal sensitivity was similar in both species there were significant differences in metabolite profiles and water usage following drought stress. This analysis allowed the authors to conclude that Arabidopsis is indeed a good model for analysis of responses to commonly encountered levels of drought stress.


Categories: Global, Uncategorized
Tags: No Tags
Comments: No Comments
Published on: February 5, 2019

The North American Arabidopsis Steering Committee (NAASC) is committed to promoting a global plant sciences community that reflects the true diversity of all its members. To further this mission, the NAASC Diversity and Inclusion Task Force has created the DiversifyPlantSci online resource, a list of plant biologists from under-represented
groups to reference for speakers, reviewers, and participants for career or mentorship opportunities.

We hope to increase diversity and inclusion by making it easy to expand invitations past one’s personal networks.

To add yourself or others to the list:

To access the list:

Please forward this invitation to your networks to spread as widely as possible!


Elizabeth Haswell, Washington University in St. Louis,

Joanna Friesner, Executive Director: North American Arabidopsis Steering Committee, UC Davis,

GARNet Research Roundup: January 31st 2019

Tags: No Tags
Comments: No Comments
Published on: January 31, 2019

This edition of the GARNet research roundup has an initial focus on the shoot apical meristem. Firstly a study from the University of Birmingham performs network analysis to define the connections that control the global organisation of this tissue.

Second is the first of a group of papers involving authors from the Sainsbury Lab, Cambridge University and the University of Cambridge. Henrik Jönsson and Henrik Ahl contribute to a study that refines our understanding about the role of auxin in leaf dorsoventral patterning. Next from SLCU are two papers published in collaboration with the University of Helsinki that identify a set of novel regulators of cambial development.

The final SLCU paper from James Locke’s group attempts to tackle the challenging topic of ‘noise’ in biological systems. The final paper from the University of Cambridge investigate factors involved in karrikin signaling.

The penultimate paper characterises the LINC complex in monocots and includes authors from Oxford Brookes University whilst the final paper is from the University of York and performs a structural analysis of a key enzyme involved in the potential phytoremediation of TNT.

Jackson MDB, Duran-Nebreda S, Kierzkowski D, Strauss S, Xu H, Landrein B, Hamant O, Smith RS, Johnston IG, Bassel GW (2019) Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem. Cell Syst. doi: 10.1016/j.cels.2018.12.009

Open Access

George Bassel is corresponding author of this paper led by Matthew Jackson at the University of Birmingham. They use live 3D imaging and computational analysis to identify a network of cellular connections in the shoot apical meristem. They show that locally generated cell division rules lead to emergence of global tissue organisation, which facilitates cellular communication. In addition they show that global cellular organization requires the activity of the KATANIN protein.

Bhatia N, Åhl H, Jönsson H, Heisler MG (2019) Quantitative analysis of auxin sensing in leaf primordia argues against proposed role in regulating leaf dorsoventrality. Elife. doi: 10.7554/eLife.39298

Open Access

Henrik Jönsson and Henrik Ahl at SLCU are co-authors on this study led by Neha Bhatia at the University of Sydney. They use data gained from analysis of the R2D2 auxin sensor to argue against the current hypothesis stating that asymmetric auxin distribution is necessary to define the dorso-ventral polarity of the Arabidopsis leaf. They repeat previous experiments using the DII auxin sensor and through additional analysis using an auxin insensitive version of the sensor (mDII), provide results that contrast to previously published data.

Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO, Mellor N, Help-Rinta-Rahko H, Otero S, Smet W, Boekschoten M, Hooiveld G, Hashimoto K, Smetana O, Siligato R, Wallner ES, Mähönen AP, Kondo Y, Melnyk CW, Greb T, Nakajima K, Sozzani R, Bishopp A, De Rybel B, Helariutta Y (2019). Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature doi: 10.1038/s41586-018-0839-y

Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, Wu MF, Solé-Gil A, Leal Gavarrón M, Siligato R, Miyashima S, Roszak P, Blomster T, Reed JW, Broholm S, Mähönen AP (2019). High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature. doi: 10.1038/s41586-018-0837-0

These back-to-back manuscripts include Pawel Roszak from the SLCU as an author in both papers. The corresponding author for the first paper, which is a true global collaboration, is Yrjo Helariutta who holds research positions at both SLCU and the University of Helsinki. These papers introduce a new signalling module of transcriptional factors that control radial growth initiated in procambial cells. In root protophloem cells cytokinin induces the expression of a newly characterised set of PEAR transcription factors, which form a short-range concentration gradient and initiate radial growth. To maintain tight developmental control of this program PEAR protein activity is antagonised by HD-ZIP III proteins, whose expression domain is controlled by the activity of auxin and a set of mobile miRNAs. The identification of this signalling module increases our understanding about the factors that control the growth of woody tissues and therefore has enormous translational significance.

Cortijo S, Aydin Z, Ahnert S, Locke JC (2019) Widespread inter-individual gene expression variability in Arabidopsis thaliana Mol Syst Biol. doi: 10.15252/msb.20188591

Open Access

Sandra Cortijo is the lead author of this paper and works with James Locke at SLCU. They have attempted to address the fundamental question of noise within biological outputs through analysis of gene expression from a set of identical Arabidopsis plants grown in identical conditions. They identify hundreds of genes that show variable expression between these plants, with different gene sets changing throughout the diurnal cycle. They further define this variability by identifying gene length, the number of transcription factors regulating the genes and the chromatin environment as contributory factors to explain why this variation occurs.

Swarbreck SM, Guerringue Y, Matthus E, Jamieson FJC, Davies JM (2019) Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. Plant J. doi: 10.1111/tpj.14233

Stéphanie Swarbreck is the first author of this work from Julia Davies’ lab at the University of Cambridge. They show that perception of karrikins (smoke-derived butenolides) through the interaction of the KAI2 hydrolase and MAX2 F-box protein occurs independent of strigolactone-sensing mechanism of the MAX2-D14 hydrolase interaction. Karrikins cause a root skewing phenotype so the authors use this output to identify that previously characterised SMAX1 (SUPPRESSOR OF MAX2-1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2-1-LIKE) proteins are targets of degradation by the KAI2/MAX2 complex. Overall they show that KAI2/MAX2 limits root skewing but is not involved in the role KAI2 plays in gravi- or mechano-sensing. These results are indicative of a set of KAI2 specific ligands that control root skewing yet candidate proteins for these roles remain to be identified.

Gumber HK, McKenna JF, Estrada AL, Tolmie AF, Graumann K, Bass HW (2019) Identification and characterization of genes encoding the nuclear envelope LINC complex in the monocot species Zea mays. J Cell Sci. doi: 10.1242/jcs.221390

This paper is led by Hank Bass and Hardeep Gumber from Florida State University and includes Joe McKenna, Andrea Tolmie and Katja Graumann at Oxford Brookes as co-authors. They use phylogenetic and microscopic analysis to identify and characterise components of the nuclear-envelope spanning LINC (Linker of Nucleoskeleton to Cytoskeleton) complex in Zea mays. They identify a set of monocot-specific members of the LINC complex, which will allow an increased understanding about the functional linkages between the cytoplasm, nuclear envelope, nucleoplasm and chromatin.

Hank Bass discusses this paper on the GARNet YouTube channel. Hank and Katja are members of the EU COST action entitled ‘Impact of Nuclear Domains On Gene Expression and Plant Traits (INDEPTH).

Tzafestas K, Ahmad L, Dani MP, Grogan G, Rylott EL, Bruce NC (2018) Structure-Guided Mechanisms Behind the Metabolism of 2,4,6-Trinitrotoluene by Glutathione Transferases U25 and U24 That Lead to Alternate Product Distribution Front Plant Sci. doi: 10.3389/fpls.2018.01846

Open Access

Kyriakos Tzafestas is the first author on this paper from the University of York led by Neil Bruce. They perform a structural analysis of the Arabidopsis tau class glutathione transferase, GSTU25, which is involved in the phytoremediation of 2,4,6-trinitrotoluene (TNT). This analysis identified of a key set of amino acids involved in a precise part of its enzymatic activity, which can in turn be transferred to the related, but enzymatically-inert GSTU24. These findings will aid in the development of increasingly efficient strategies for plant-based remediation of environmental TNT.

Hank Bass talks to GARNet

Categories: Global, INDEPTH, Uncategorized
Tags: No Tags
Comments: No Comments
Published on: January 23, 2019

Hank describes a recent paper published in the Journal of Cell Science entitled ‘Identification and characterization of genes encoding the nuclear envelope LINC complex in the monocot species Zea mays’. This paper also includes fellow INDEPTH member Katja Graumann from Oxford Brookes University.

«page 1 of 15

Follow Me
May 2019
« Apr    

Welcome , today is Friday, May 24, 2019