Arabidopsis Research Roundup: January 11th

The first Arabidopsis Research Roundup of 2017 includes a wide range of studies that use our favourite model organism.

Firstly Kerry Franklin (University of Bristol) is the corresponding author on a paper that describes the complex interaction between the responses to sunlight and heat. Secondly Paul Dupree (University of Cambridge) leads a study that defines the important structural relationship between xylan and cellulose. Thirdly members of Gos Micklem’s group in Cambridge are part of the Araport team that present their ThaleMine tool.

Richard Napier (University of Warwick) is a co-author on the fourth paper that introduces a new chemical tool for study of the auxin response. The penultimate paper includes Matthew Terry (University of Southampton) on a paper that investigates the role of a Fe-S-containing protein cluster in chlorophyll biosynthesis and finally there is a methods paper from Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre that describes the use of FISH to detect single molecules of RNA.


Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA (2016) UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Current Biology http:/​/​dx.​doi.​org/10.1016/j.cub.2016.11.004

Open Access

This collaboration between the research groups of Kerry Franklin (University of Bristol) and Gareth Jenkins (University of Glasgow) looks at how the perception of UV-B light inhibits the morphological changes that occur in response to increased temperatures (thermomorphogenesis). This response includes induced hypocotyl elongation, which is mediated via PIF4 and various players in the auxin response. Interestingly the authors show that UV-B light perceived by UVR8 attenautes this response by preventing PIF4 abundance and by stabilising the the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1) protein. These results suggest that there exists a precise mechanism for fine-tuning the growth responses that occur in sunlight that would usually include both increased temperature and UV-B irradiation.
UVB_pic


Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, deAzevedo ER, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun.

http:/​/​dx.​doi.​org/10.1038/ncomms13902 Open Access
In this paper Paul Dupree (University Cambridge) collaborates both with colleagues in Spain and with his father Ray, who is a physicist at the University of Warwick. They use NMR to perform a structural analysis of xylan, which is the most prevalent non-cellulosic polysaccharide in the cell wall matrix and binds to cellulose microfibrils. Whereas in solution xylan forms a threefold helical screw, it flattens into a twofold helical screw ribbon to closely bind to cellulose when in the cell wall. They used the cellulose-deficient Arabidopsis irx3 mutant to show that the xylan two-fold screw confirmation breaks down when it cannot bind cellulose. The authors state that this finding has important implications in our understanding of the formation of the cell wall and perhaps more importantly how it might be broken down during attempts to maximise economic usages of plant biomass.

A local Cambridge newspaper reported that this finding could ‘pave the way for wooden skyscrapers’
XylanPic


Krishnakumar V, Contrino S, Cheng CY, Belyaeva I, Ferlanti ES, Miller JR, Vaughn MW, Micklem G, Town CD, Chan AP (2016) ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery. Plant Cell Physiol http:/​/​dx.​doi.​org/10.1093/pcp/pcw200 Open Access

This paper is presented by the Araport team, which is based in the USA but includes representatives from Gos Micklem’s lab in University of Cambridge. They outline the functionality of the ThaleMine data warehouse which is an important component of the tools included on Araport (https://www.araport.org/). ThaleMine collects a wide variety of data from public datasets and presents it in a easy-to-interrogate form, facilitating the experiments of both lab-based researchers or bioinformaticians. This tool is build upon the InterMine software framework, which has been widely adopted across other model organisms.

Chris Town and Sergio Contrino provided a hands-on workshop describing the tools on Araport in last year GARNet2016 meeting and their workshop materials can be downloaded here.


Steenackers WJ, Klíma P, Quareshy M, Cesarino I, Kumpf RP, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack MK, Ljung K, Friml J, Blakeslee JJ, Novák O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) cis-cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol. http:/​/​dx.​doi.​org/pp.00943.2016 Open Access
cCApic
This pan-european collaboration includes members of Richard Napier’s lab at the University of Warwick. They outline the activity of a novel inhibitor of auxin efflux transport called cis-cinnamic acid (c-CA). When c-CA is applied to growth media plants appears to exhibit an auxin-response phenotype yet these experiments show that c-CA is neither an auxin or anti-auxin and in fact blocks local auxin efflux, thus causing buildup of cellular auxin. This effect does not occur with t-CA showing specificity for c-CA and it does not affect long distance auxin transport, which occurs through the phloem. Therefore this paper presents a new pharamolgical tool for the study of in planta auxin transport and homeostasis.


Hu X, Page MT, Sumida A, Tanaka A, Terry MJ, Tanaka R (2016) The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling. Plant J.

http:/​/​dx.​doi.​org/10.1111/tpj.13455

Matthew Terry and Mike Page (University of Southampton) are co-authors on this Japanese-led study that investigates the function of the SUFB subunit of the SUFBCD iron-sulfur cluster. These Fe-S protein clusters play roles in many metabolic processes and the SUFB mutant hmc1 exhibits a defect in chlorophyll biosynthesis due to an accumulation of Mg-containing biosynthetic intermediates. In addition both SUFC- and SUFD-deficient RNAi lines accumulated the same Mg intermediate indicating that the SUFBCD cluster is responsible for this step necessary for chlorophyll production.


Duncan S, Olsson TS, Hartley M, Dean C, Rosa S (2016) A method for detecting single mRNA molecules in Arabidopsis thaliana. Plant Methods. http:/​/​dx.​doi.​org/10.1186/s13007-016-0114-x

Open Access
This paper from is lead by Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre describes a novel method for imaging single molecules of RNA by smFISH. They analyse the localisation of both nascent and mature mRNAs, allowing for analysis of the location of RNA processing and translation.<
RosaPic

Arabidopsis Research Roundup: August 26th

Tags: No Tags
Comments: No Comments
Published on: August 26, 2016

This weeks Arabidopsis Research Roundup includes three papers across a wide range of topics. Firstly is a widely-reported study, described here with an audio description by Nik Cunniffe and Sanjie Ziang, of the evolutionary relationship between viral infection, pollinator attraction, plant fertility and miRNA-regulated gene expression. Secondly, Gordon Simpson is a co-author on a paper that has elucidated the crystal structure of the FPA proteins and finally Gareth Jenkins leads an investigation into the relationship between UV light, the UVR8 protein and histone modifications.

Groen SC, Jiang S, Murphy AM, Cunniffe NJ, Westwood JH, Davey MP, Bruce TJ, Caulfield JC, Furzer OJ, Reed A, Robinson SI, Miller E, Davis CN, Pickett JA, Whitney HM, Glover BJ, Carr JP (2016) Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts? PLoS Pathog. 12(8):e1005790

http:/​/​dx.​doi.​org/10.1371/journal.ppat.1005790

Open Access
BumbleBee
This pan-UK collaboration is led by John Carr, Beverly Glover and Nik Cunniffe at the University of Cambridge and has received wide attention in the general press. Nik Cunniffe also kindly provides an audio description of this work that looked into the effect of viral infection on the attraction of pollinators. The authors used GC-MS to look at the volatiles produced in virally infected Arabidopsis and tomato plants, showing that infection can alter the foraging behavior of bumblebees. Mutational analysis of both cucumber mosaic virus (CMV) and Arabidopsis showed that the microRNA pathway is involved in regulating the emission of these pollinator-perceivable volatiles. When virus-infected tomato plants were not pollinated there was a clear reduction in seed yield, indicating that the plant requires the volatile production following viral infection to attract pollinators, leading to reproductive success. Importantly the authors model the possible trade-off between viral infection and reproductive success in the wild, which might oppose the strong selective pressure for the establishment of disease-resistance genes. The authors speculate that this is a co-beneficial relationship for both virus and plant.

Nick Cunniffe and Sanjie Jiang kindly provide an audio description of this work.


 

Zhang Y, Rataj K, Simpson GG, Tong L (2016) Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA PLoS One 11(8):e0160694

http:/​/​dx.​doi.​org/10.1371/journal.pone.0160694

Open Access

Gordon Simpson (University of Dundee) in a co-author on this US-led study that has elucidated the crystal structure of the SPOC domain of the FPA floral regulator protein. FPA contains a N-terminal RNA recognition motif and a C-terminal SPEN paralog and ortholog C-terminal (SPOC) domain. This SPOC domain is highly conserved throughout plant species and this crystal structure is an important development in our understanding of the regulation of RNA 3’-end formation and how much the plant SPOC domains compare with an equivalent from metazoans.

 

Velanis CN, Herzyk P, Jenkins GI (2016) Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification Plant Mol Biol.

http:/​/​dx.​doi.​org/10.1007/s11103-016-0522-3

Open Access

Gareth Jenkins (Glasgow) leads this study that continues his groups work on the Arabidopsis UVR8 photoreceptor. They show that UV-B exposure increases histone lysine acetylation on UVR8-regulated genes in a UVR8 dependent manner. In fact all of the histone enrichments throughout the genome following UV-B required UVR8 activity. However the authors could find no direct interaction between UVR8 and the known enzymes involved in light-mediated histone modification indicating that UVR8 either interacts with a novel set of proteins or the UVR8 effect is mediated via a currently unknown signaling intermediate.
UVRpic

Arabidopsis Research Roundup: July 19th

There are six papers in this weeks Arabidopsis Research Roundup. Two of these include research on the stomatal patterning gene TMM. Firstly a White Rose consortium investigates the ancestral basis of stomatal patterning, whilst a Glasgow-based study investigates the relationship between patterning and the dynamics of guard cell opening. The GARNet committee is represented by work from Cardiff that looks at the relationship between seed size and shoot branching and also from Cambridge in research that studies meiotic recombination in genomic regions important for pathogen defense. Finally are two studies that look into aspects of root and shoot patterning and include co-authors from CPIB in Nottingham or the John Innes Centre.

Caine R, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ (2016) An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens Development

http://dx.doi.org/10.1242/dev.135038 Open Access

This study is a collaboration between labs in Sheffield and Leeds, led by Andrew Fleming (Sheffield). They investigate the role that the signalling module comprised of Epidermal Patterning Factors (EPFs), ERECTA and TMM play during the evolution of stomatal patterning. This module is known to play an important role in Arabidopsis and in this study the authors show that the moss Physcomitrella patens contains homologs of each of the genes and that they perform the same function. When P.paten versions of these genes are transferred to equivalent Arabidopsis mutants they show conserved function demonstrating that this module is an example of an ancestral patterning system.

Andrew Fleming provides a brief audio description of this manuscript:

Papanatsiou M, Amtmann A, Blatt MR (2016) Stomatal spacing facilitates guard cell ion transport independent of the epidermal solute reservoir. Plant Physiol. http://dx.doi.org/10.1104/pp.16.00850 Open Access

Mike Blatt and Anna Amtmann (University of Glasgow) are the co-supervisors for this study into the relationshop between ion transport in stomatal guard cells and their physical positioning within a leaf. They used a genetic approach to assess the effect of stomatal clustering, showing that too many mouths (tmm) mutant plants have reduced stomatal movements associated with alterations in K+ channel gating and coincident with a surprising reduction in the level of K+ ions in guard cells. These results underline the importance of stomatal spacing in this process but do not provide a full explanation into the alteration in K+ ion dynamics.

Sornay E, Dewitte W, Murray JAH (2016) Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture Plant Signaling and Behaviour e1192741

http://dx.doi.org/10.1080/15592324.2016.1192741 Open Access

From http://dx.doi.org/10.1080/15592324.2016.1192741
From http://dx.doi.org/10.1080/15592324.2016.1192741

This research comes from the lab of GARNet PI Jim Murray (Cardiff) and investigates cell proliferation and growth within a developing seed. They previously have shown that targeting of D-type cyclin CYCD7;1 to the central cell and early endosperm can trigger nuclear divisions and ovule abortion, which leads to a smaller number of larger seed. In this study they show that development of larger seed in transgenic plants is influenced by the architecture of the mother, as plants with increased side branches, caused by pruning of the main stem, do not generate this phenotype. This is indicative of a close relationship between the amount of resources allocated to different parts of the plant and that a transgenic effect was altered by a different plant morphology. This should provide an important insight into future work that aims to define the effect of any particular transgenic alteration.

Choi K, Reinhard C, Serra H, Ziolkowski PA,, Underwood CJ,, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP,, Henderson IR (2016) Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet. 12(7):e1006179.

http://dx.doi.org/10.1371/journal.pgen.1006179 Open Access

GARNet advisory board member Ian Henderson (Cambridge) is the corresponding author of this study that involves contributions from the UK, US, Poland and France. They investigate genomic regions that show increased meiotic recombination, which is predicted to occur coincident with genes involved in pathogen defence given their requirement to adapt to new external challenges. This study focuses on NBS-LRR domain proteins that tend to physically cluster in the Arabidopsis genome. Interesting they discovered both hot and coldspots for meiotic recombination that associate with NBS-LRR clusters, the later often correlating with structural heterozygosity. In a more detailed dissection of 1000 crossovers in the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R hotspot, they discovered higher recombination frequencies associating with known sequence motifs important for the pathogen response, which were influenced by ecotype-specific factors. Ultimately the authors note that there is a complex relationship between regions of meiotic recombination, structural heterozygosity and the evolutionary pressures that occurs with host-pathogen relationships.

Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development http://dx.doi.org/10.1242/dev.136465 Open Access

From http://dx.doi.org/10.1242/dev.136465
From http://dx.doi.org/10.1242/dev.136465

 Malcolm Bennett (CPIB) is the sole UK-based co-author on this study led by Belgian collaborators and investigates the role of reactive oxygen species (ROS) in auxin-regulated lateral root (LR) formation. They show that ROS can reactivate LR primordia and pre-branch sites, resulting in increased LR numbers. This occurs in both wildtype and in auxin mutants that have reduced numbers due to changes in auxin-mediated cell wall remodeling. ROS is deposited in the apoplast of emerging LR cells in a pattern that is coincident with the expression of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH) genes. Concomitantly the altered expression of RBOH was shown to affect the development and emergence of LRs. This adds a further level of complexity to the current understanding of the signaling factors that converge to facilitate LR growth.

 

Shi B,, Zhang C, Tian C, Wang J,, Wang Q,, Xu T,, Xu Y, Ohno C, Sablowski R, Heisler MG, Theres K, Wang Y, Jiao Y (2016) Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genet. http://dx.doi.org/10.1371/journal.pgen.1006168 Open Access

This Chinese-led study includes Robert Sablowski (JIC) as a co-author and studies the factors that influence the development of axillary meristems. They use innovative live imaging to show that SHOOT MERISTEMLESS (STM) is continuously expressed and that this dependent on a leaf axil auxin minimum. Once STM expression is lost then the axil is unable to form a meristem even if STM is switched back later in development, indicating that cells undergo an irreversible developmental commitment. The expression domain of STM is under cell-type specific control of REVOLUTA (REV) DNA binding. Overall this study demonstrates that meristematic competence and initiation is dependent on differing levels of the key regulator STM.

From http://dx.doi.org/10.1371/journal.pgen.1006168
From http://dx.doi.org/10.1371/journal.pgen.1006168

Arabidopsis Research Roundup: March 24th

Tags: No Tags
Comments: No Comments
Published on: March 24, 2016

Just three papers this week in the UK Arabidopsis Research Roundup. Firstly Professor Anna Amtmann provides an audio description of her groups characterisation of the binding partners of the Histone Deacetylase Complex1 protein. Secondly Dr Carine De Marcos Lousa leads a study that investigates a set of plant-specific proteins involved in the cellular secretory pathway. Finally Dr Paul Devlin is a contributor to a study that characterises the role of a nucleoporin protein in the shade avoidance response.

Perrella G, Carr C, Asensi-Fabado MA, Donald NA, Páldi K, Hannah MA, Amtmann A (2016) The Histone Deacetylase Complex (HDC) 1 protein of Arabidopsis thaliana has the capacity to interact with multiple proteins including histone 3-binding proteins and histone 1 variants. Plant Physiol. http://dx.doi.org/10.1104/pp.15.01760 Open Access

Anna Amtmann (Glasgow) leads this European collaboration that investigates the binding capability of the Histone Deacetylase Complex (HDC) 1 protein, which has been previously shown to regulate multiple growth phenotypes due to its interaction with histone deacetylases. HDC1 proteins are ubiquitously present throughout plant tissues yet their secondary structure offers little clue to their specific binding interactions. Therefore this attempt to dissect the interaction spectrum of HDC1 and discovered that the protein interacts with different histone3 (H3) binding proteins but not H3 itself. Interestingly HDC1 could also interact with different variants of the H1 histone linker protein. The authors show that the ancestral core of HDC1 had a narrower range of interactions indicating that over evolutionary time the protein had developed more promiscuous binding. However even the conserved portion of the protein is able to interact with H3-associated proteins and H1, indicating that HDC1 played an important role in the establishment of interactions between histones and modifying enzymes.

Professor Amtmann kindly provides a short audio description of this paper. Apologies for the variation in sound quality and volume!

de Marcos Lousa C, Soubeyrand E, Bolognese P, Wattelet-Boyer V, Bouyssou G, Marais C, Boutté Y, Filippini F, Moreau P (2016) Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway J Exp Bot. http://dx.doi.org/0.1093/jxb/erw094 Open Access

Carine De Marcos Lousa (Leeds Beckett)  is the lead author in the UK-French-Italian study that investigates the activity of plant specific R-SNARE proteins, called longins. SNARE proteins are critical for the membrane fusion events that occur during intracellular transport. A new four-member family of longins called ‘phytolongins’ (Phyl) that lack a typical SNARE domain have recently been discovered. These ubiquituosly expressed proteins are distributed throughout the secretory pathway with different members localised at ER, Golgi apparatus or post-Golgi compartments. Furthermore the export of the Phyl1.1 protein from the ER is dependent on a Y48F49 motif as well as the activity of at least three accessory proteins. This manuscript is the first characterisation of Phyl subcellular localisation and adds to our knowledge of specific mechanisms involved in the plant secretory pathway.

Gallemí M, Galstyan A, Paulišić S, Then C, Ferrández-Ayela A, Lorenzo-Orts L, Roig-Villanova I, Wang X, Micol JL, Ponce MR, Devlin PF, Martínez-García JF (2016) DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development. http://dx.doi.org/10.1242/dev.130211

This Spanish-led study includes Dr Paul Devlin (RHUL) and introduces a new gene that is involved in the shade-avoidance-response in Arabidopsis. The DRACULA2 gene is a homolog of the metazoan nucleoporin NUP98, which is a component of the nuclear pore complex (NPC). The authors find that other members of the NPC are also involved in the control of hypocotyl elongation in response to proximity of other plants. This is likely due to nuclear transport-dependent processes. However the authors suggest that DRA2 also has a transport-independent role that is related to its physical association with the NPC. This demonstrates that nucleoporins play an important role in plant signaling, although assigning specificity to their activity remains difficult given their general role in nucleocytoplasmic transport.

Arabidopsis Research Roundup: February 17th

Tags: No Tags
Comments: No Comments
Published on: February 16, 2016

This weeks Arabidopsis Research Roundup features papers that build upon the history of research in each featured lab. Firstly Gareth Jenkins from Glasgow continues to investigate mechanisms of UV-B signaling whilst Laila Moubayidin, now at the JIC, is involved in work that investigates the multiple factors that control root meristem size. Finally we present a three protocol papers that are featured in a new colelction of articles that focus on protocols that can be used to assess different environmental responses.

Findlay KM, Jenkins GI (2016) Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant Cell Environment http://dx.doi.org/10.1111/pce.12724 Open Access
UVBmodel
The research group led by Gareth Jenkins (Glasgow) continues their work on the plant response to UV in this study that investigates the binding patterns of the UVR8 protein. UVR8 mediates the plant response to UV-B light and the protein either exists in a monomeric (active) or dimeric (inactive) form. This study shows that UVR8 maintains dimer/monomer photo-equilibrium through diurnal photoperiods and that the REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 proteins are necessary for maintaining this equilibrium. Interestingly they show that the UVR8 balance is tipped toward the monomeric form in lower temperatures. This shows that the protein does not act as a simple switch to signal for changes in UV-B as its effect is influenced by environmental parameters outside of the light source.

Moubayidin L, Salvi E, Giustini L, Terpstra I, Heidstra R, Costantino P, Sabatini S (2016) A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis Planta http://dx.doi.org/10.1007/s00425-016-2471-0 Open Access

Laila Moubayidin now works as a postdoc with Lars Ostergaard at the JIC but this work is the result of research conducted with Sabrina Sabatini in Rome. In this study they continue the labs investigation into the role of the SCARECROW (SCR) protein in the control of root meristem size. They show that SCR, from endodermal cells, sustains a gibberellic acid signal by regulating RGA REPRESSOR OF ga1-3 (RGA) protein stability. This in turn controls the activity of the cytokinin responsive transcription factor ARR1 at the root transition zone. This activity therefore maintains a balance of cell division and differentiation that maintains correct meristem size.

A new edition of ‘Methods in Molecular Biology’ focuses on ‘Environmental Responses in Plants and includes a number of papers featuring UK authors who work on Arabidopsis.

Hydrotropism: Analysis of the Root Response to a Moisture Gradient’ that features Malcolm Bennett from CPIB in Nottingham. http://dx.doi.org/10.1007/978-1-4939-3356-3_1

Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes’ from the group of John Brown at the James Hutton in Dundee http://dx.doi.org/10.1007/978-1-4939-3356-3_11

Assessing the Impact of Photosynthetic Sugars on the Arabidopsis Circadian Clock’ from the lab of Alex Webb in Cambridge. http://dx.doi.org/10.1007/978-1-4939-3356-3_12

Arabidopsis Research Roundup: December 9th.

This December 9th Arabidopsis Research Roundup includes four rather different studies. Firstly we include an excellent audio description from David Salt about a new type of GWAS analysis that his lab was involved in developing. This allowed identification of new genetic loci involved in molybdenum signalling. Secondly Isabelle Carre’s group from Warwick presents a study into the interactions that define the functioning of the circadian clock. Thirdly Mike Blatt leads a study that models stomatal opening and finally we include an investigation of the DOG1 gene, that includes a contribution from Fuquan Liu.

Forsberg SK, Andreatta ME, Huang XY, Danku J, Salt DE, Carlborg Ö (2015) The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance PLoS Genet. e1005648. http://dx.doi.org/10.1371/journal.pgen.1005648 Open Access.

Current GARNet Chairman David Salt (Aberdeen) is the UK lead on this collaboration with the lab of Orjan Carlborg from Uppsala in Sweden. The novelty of this paper is in the development of a new technique to measure Genome-Wide Association using the variance in SNP differences instead of using the mean. Professor Salt explained this vGWA technique in the attached audio-file, which is especially useful for people not so familiar with GWAS. Using this vGWA technique the authors were able to re-analyse an old dataset to gain additional understanding of how certain genetic loci are regulated to explain differences in the production of the essential nutrient molybdenum. Overall this paper introduces an analysis technique that can hopefully be used by other members of the community to analyse/re-analyse their data with increased rigour.

This is the 10minute audio file where David explains the paper:

Adams S, Manfield I, Stockley P, Carré IA (2015) Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions. PLoS One.10(12):e0143943. http://dx.doi.org/ 10.1371/journal.pone.0143943 Open Access

This collaboration between the Universities of Warwick and Leeds is led by Isabelle Carré and investigates the Arabidopsis circadian clock. They analysed the in vivo interactions of the LATE ELONGATED HYPOCOTYL (LHY) protein with promotors of other clock components. This uncovered a novel regulatory loop between LHY and the CIRCADIAN CLOCK ASSOCIATED-1 (CCA1) gene. Furthermore they show LHY acts as a repressor of all other clock components, clearly placing this protein as a key regulatory component of the Arabidopsis clock.

Minguet-Parramona C, Wang Y, Hills A, Vialet-Chabrand S, Griffiths H, Rogers S, Lawson T, Lew V, Blatt MR (2015) An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells. Plant Physiol. http://dx.doi.org/10.1104/pp.15.01607 Open Access

Mike Blatt is the corresponding author for this collaboration between Glasgow, Cambridge and Essex Universities. There are a good number of UK researchers who investigate the factors that regulate stomatal opening and this study looks at the role of calcium oscillations in this process. They have used the Arabidopsis OnGuard model that faithfully reproduces the optimum 10minute period of Ca2+ oscillation in guard cells. They used experimentally derived kinetics to describe the activity of ion transporters in the plasma membrane and tonoplast. Overall they discovered that the calcium oscillations are actually a by-product of the ion transport that determines stomatal aperature and not the overall controlling factor.

Cyrek M, Fedak H, Ciesielski A, Guo Y, Śliwa A, Brzeźniak L, Krzyczmonik K, Pietras Z, Liu F, Kaczanowski S, Swiezewski S (2015) Seed dormancy in Arabidopsis thaliana is controlled by alternative polyadenylation of DOG1 Plant Physiol. http://dx.doi.org/10.1104/pp.15.01483

Fuquan Liu (Queens, Belfast) is the UK contributor to this Polish-led study focused on the DOG1 gene, which is a key regulator of Arabidopsis seed dormancy. Previously it had been shown that the C-terminus of DOG1 is not conserved in many other plant species. The DOG1 transcript is alternatively polyadenylated and the authors show that Arabidopsis mutants that lack current 3’ RNA processing also show defects in seed dormancy. The shorter version of DOG1 is able to rescue the dog1 phenotype, which allows the authors to propose that DOG1 is a key regulator of seed dormancy and that the phenotypes of RNA processing mutants are linked to the incorrect processing of this specific mRNA species.

Arabidopsis Research Roundup: November 5th

Academics from the John Innes Centre lead two of the papers featured in this week Arabidopsis Research Roundup. Firstly Veronica Grieneisen leads a study that combines modeling and experimental work to assess the factors that establish the root auxin maximum and secondly the structural biologist David Lawson heads up an investigation into the plastid-localised enzyme, DPE1. Seemingly a common theme in UK-Arabidopsis research focuses on the factors that control the dynamics of stomatal opening and this week Mike Blatt from Glasgow heads a team that investigates the role of potassium and nitric oxide in this process. Finally we present a paper that investigates proteins that interact within the ER.

El-Showk S, Help-Rinta-Rahko H, Blomster T, Siligato R, Marée AF, Mähönen AP, Grieneisen VA (2015) Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out PLoS Comput Biol. e1004450Picture

http://dx.doi.org/10.1371/journal.pcbi.1004450 Open Access

Veronica Grieneisen (JIC) is the UK-based leader of this work that was performed with her Finnish collaborators. They work on the modeling the processes that define the auxin maximum in the root meristem. This patterning is defined by the activity of the PIN-formed auxin efflux transport proteins and the AHP6 protein, an inhibitor of cytokinin signaling. The authors implement a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. They initially find that variation in cytokinin signaling, mediated by diffusion of the hormone is insufficient for patterning but rather it is an auxin-dependent modification of the cytokinin signal that can define the auxin maximum. Although the role that the PIN proteins play in root vascular patterning is well established, the authors experimentally verify a role for the AUX/LAX auxin influx carrier family of proteins. They also show that polar PIN localisation generates a flux of auxin flow that ultimately causes its own accumulation in the pericycle cells that signal for lateral root initiation. Finally their model confirms the supposition that these pericycle cells compete for auxin accumulation, therefore ensuring that lateral roots develop in the correct localisation. The associated figure is from this paper.

O’Neill EC, Stevenson CE, Tantanarat K, Latousakis D, Donaldson MI, Rejzek M, Nepogodiev SA, Limpaseni T, Field RA, Lawson DM (2015) Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Enzyme DPE1. Journal of Biological Chemistry http://dx.doi.org/10.1074/jbc.M115.682245 Open Access

This is another paper led by JIC researchers, this time in collaboration with Thai partners. This focuses on determining the structure of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1) that acts to convert two maltotriose molecules to a molecule of maltopentaose and a molecule of glucose, which, for different reasons, are both more functional useful molecules for the plant. They have used ligand soaking techniques to trap the DPE1 in a different set of conformational states and have found that it exists as a homodimer with a variety of interesting features. This includes a dynamic ‘gate’ loop that may play a role in substrate capture, subtle changes in which could alter the efficacy of the active site. The structural insights provided by this study allow the authors to confidently delineate the complete AtDPE1 disproportionation cycle

Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, García-Mata C, Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt MR (2015) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis New Phytol.http://dx.doi.org/10.1111/nph.13714 Open Access

<a href="http://www.gla cialis vente en france.ac.uk/researchinstitutes/biology/staff/michaelblatt/” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘http://www.gla.ac.uk/researchinstitutes/biology/staff/michaelblatt/’, ‘Mike Blatt’]);” target=”_blank”>Mike Blatt (Glasgow) is the lead on this UK-Sino-Australino-Argentine collaboration that investigates the role of nitrate reductase enzyme in potassium flux in guard cells. This flux is necessary for a plants adaption to the environment and is controlled by the activity of ABA via the activity of H2O2 and Nitric Oxide (NO). The authors showed that multiple responses to ABA were impaired in nia1nia2 nitrate reductase mutants, which includes the K+ IN current in guard cells, required for stomatal closure. This response was rescued by exogenous NO and allowed the authors to demonstrate that there exists a complex interaction involving ABA, NO, potassium nutrition and nitrogen metabolism that is necessary to ensure correct stomatal responses.

Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C (2015) Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane Plant Physiol. 169(3):1933-45 http://dx.doi.org/10.1104/pp.15.01153

This proteomic analysis of endoplasmic reticulum components is a collaboration between the Central Laser Facility at Didcot, Warwick, Edinburgh and Oxford Brookes Universities, led by Professor Chris Hawes. Plant Reticulon proteins (RTNLB) specifically populate and tubulate the ER, mediated by their varied multi-meric interactions. In addition, certain RTNLB are also present in plasmodesmata (PD) and two of these proteins, RTNLB3 and RTNLB6 were GFP-tagged, Co-IPed and interacting proteins were analysed by MS. This identified a range of known PD-localised proteins, and these interactions were experimentally verified in tobacco cells using FRET-microscopy. The authors suggest that this data shows that RTNLB proteins may play important roles in linking the cortical ER to the plasma membrane. This paper is the ‘sister’ to another manuscript in Plant Physiology that was highlighted in a recent Arabidopsis Research Roundup.

Arabidopsis Research Roundup: Sept 29th

This weeks Arabidopsis Research Roundup includes papers, from Glasgow and Oxford, that look at a plants response to different abiotic stresses and uncover control mechanisms that might have potential as targets for future genetic modification or gene-editing strategies. In addition there is a study from Leeds that uncovers a novel molecular mechanism in the DNA repair pathway and finally an international group of researchers with a UK lead at Kings College use infrared microspectroscopy to investigate internal cellular structures

Ji H, Wang Y, Cloix C, Li K, Jenkins GI, Wang S, Shang Z, Shi Y, Yang S, Li X (2015) The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis PLoS Genetics 11(9):e1005471 http://dx.doi.org/10.1371/journal.pgen.1005471

Gareth Jenkins (Glasgow) is the UK lead representative on this Chinese-led study into the role of the ‘Tolerant to Chilling and Freezing 1’ (TCF1) protein. This protein is induced by the cold to move to the nucleus where it interacts with histones H3 and H4, specifically at the BLUE-COPPER-BINDING PROTEIN (BCB) locus, which is involved in lignin biosynthesis. Loss of TCF1 causes changes in the positive histone mark H3K4me2 as well as the negative mark H3K27me3, resulting in reduced lignin content and enhanced freezing tolerance. This growth phenotype was recapitulated in other mutants that have reduced level of lignin. Therefore the authors suggest that TCF controls a CBF-independent signaling pathway that reacts to cold conditions by causing cell wall remodeling. In tcf mutants this pathway does not function correctly and the plants are more tolerant to freezing conditions. This marks either TCF or the genes downstream of it as potential targets for genetic modification to develop cold-resistant plants. The associated figure is taken from PLoS Genetics.

ColdResponseFigPloS

Ling Q1, Jarvis P (2015) Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 Is Important for Stress Tolerance in Plants Current Biology. http://dx.doi.org/10.1016/j.cub.2015.08.015

Paul Jarvis (Oxford) is an expert on the mechanisms that control protein import into the chloroplast and this study looks at the interaction of the TOC translocon apparatus with ubiquitin-proteasome system. The chloroplast envelope-localised E3 ubiquitin-ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) was previously known to regulate levels of TOC and so control protein import and impact the composition of the chloroplast proteome. This study is expanded to show that SP1 plays an important role in the response to abiotic stress with sp1 mutants being hypersensitive to salt, osmotic, and oxidative stresses whereas the opposite is true in SP1 OX plants. They uncover the molecular mechanism to this response by showing SP1 facilitates the depletion of the TOC apparatus, subsequently reducing the import of photosynthetic apparatus components which attenuates photosynthesis and reduced the production of potentially damaging reactive compounds in the chloroplast. The authors show that chloroplast protein import is responsive to environmental cues and this modulation of this process might open up new avenues of research for improving stress tolerance in crops.

Waterworth WM, Drury GE, Blundell-Hunter G, West CE (2015) Arabidopsis TAF1 is an MRE11-interacting protein required for resistance to genotoxic stress and viability of the male gametophyte The Plant Journal http://dx.doi.org/10.1111/tpj.13020

Christopher West (Leeds) is the research lead on this investigation into the essential function of double strand breaks (DSBs) during recombination. These DSBs are repaired by the endonuclease MRE11 and this work demonstrates an interaction with the histone acetyltransferase TAF1, which is an essential gene in Arabidopsis. The remainder of the paper uses genetic and phenotypic analysis to show that TAF1 is important for gamete viability in an effect that is dosage dependent. Taf mutants are more sensitive to genotoxic stresses thus showing that the TAF1 protein has a specific role in the DNA damage response. This provides new insights into the molecular mechanisms of the DNA damage response in plants.

Warren FJ , Perston BB, Galindez-Najera SP, Edwards CH, Powell PO, Mandalari G, Campbell GM, Butterworth PJ, Ellis PR (2015) Infrared microspectroscopic imaging of plant tissues: spectral visualisation of wheat kernel and Arabidopsis leaf microstructure. Plant Journal http://dx.doi.org/10.1111/tpj.13031

This international study was led by <a href="http://www.kcl.ac.uk/lsm/research/divisions/dns/about/people/profiles/peterellis recherche cialis.aspx” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘http://www.kcl.ac.uk/lsm/research/divisions/dns/about/people/profiles/peterellis.aspx’, ‘Peter Ellis’]);” target=”_blank”>Peter Ellis (Kings College) and includes a variety of labs not usually connected with Arabidopsis work but rather are interested in the interaction between the plant cell wall and the human gut. They used Infrared microspectroscopy as a tool to investigate the microstructure of wheat kernels and Arabidopsis leaves. This technique was able to discern structures such as starch granules and protein bodies within cells. Stimulated digestion on the wheat tissues showed that digestion promotes a loss of starch as might be predicted. This article might be of interest to plant scientists who are interested in use of infrared spectroscopy.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
February 2017
M T W T F S S
« Jan    
 12345
6789101112
13141516171819
20212223242526
2728  

Welcome , today is Monday, February 20, 2017