Arabidopsis Research Roundup: March 6th.

Tags: No Tags
Comments: No Comments
Published on: March 6, 2017

This weeks Arabidopsis Research Roundup includes four papers that focus on different aspects of plant cell biology. Firstly Ian Henderson’s research group in Cambridge defines the role of a critical component that determines crossover frequency in plants and other eukaryotes. Secondly Karl Oparka (Edinburgh) leads a broad collaboration that defines the mechanism of unloading of solutes and macromolecules from the root phloem. Thirdly Keith Lindsey (Durham) has developed a model that describes how auxin patterns the Arabidopsis root. Finally Mike Blatt (Glasgow) is part of a group that uses Arabidopsis as a framework for the study of ABA-signaling during stomatal movement in ferns.


Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FC, Martienssen RA, Henderson IR (2017) Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev

http:/​/​dx.​doi.​org/10.1101/gad.295501.116

Open Access

GARNet committee member Ian Henderson (University of Cambridge) leads this work that features collaborators from the UK, US and Poland. They use an experimental technique that allows facile analysis of recombination rates alongside a study of Arabidopsis natural variation to isolate a QTL that is critical for maintaining the correct number of crossovers during meiosis. This HEI10 gene codes for an E3 ligase (the targets of which are currently unknown) whose copy number is a key component in the control of recombination rate. Hei10 mutants have less crossovers whilst plants with extra copies of HEI10 have an increased number, especially in sub-telomeric regions of the genome. HEI10 is a highly conserved protein, demonstrating its important role to ensure appropriate levels of recombination throughout the evolution of eukaryotes.

Ian kindly takes ten minutes to discuss this paper with GARNet on our YouTube Channel.


Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero-Perez S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. Elife.

http:/​/​dx.​doi.​org/10.7554/eLife.24125

Open Access

Karl Oparka (University of Edinburgh) is the corresponding author of this study that includes researchers from the UK, US and Denmark. Movement of solutes and macromolecules through the plant phloem is key for the correct distribution of nutrients allowing for optimal growth. In this paper they discover that unloading of molecules from the phloem occurs via a set of specialized funnel plasmodesmata that link the phloem to adjacent pericycle cells. Remarkably they find that whereas solutes are constantly unloaded, larger proteins are released through these plasmodesmata in discrete pulses, which they describe as ‘batch unloading’. Overall this study provides evidence of a major role for the phloem-pericycle cells in the process of moving essential nutrients from the phloem into surrounding tissues.


Moore S, Liu J, Zhang X, Lindsey K (2017) A recovery principle provides insight into auxin pattern control in the Arabidopsis root. Sci Rep. http:/​/​dx.​doi.​org/10.1038/srep43004

Open Access

The work comes from the lab of Keith Lindsey (University of Durham) and developes a data-driven model that predicts the role of auxin patterning in the recovery of an Arabidopsis root following a perturbation of polar auxin transport. They demonstrate three main principles that define the role of auxin influx and efflux carriers in this process and also provide experimental validation for their predictions.


Cai S, Chen G, Wang Y, Huang Y, Marchant B, Wang Y, Yang Q, Dai F, Hills A, Franks PJ, Nevo E, Soltis D, Soltis P, Sessa E, Wolf PG, Xue D, Zhang G, Pogson BJ, Blatt MR, Chen ZH (2017)

Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns Plant Physiol

http:/​/​dx.​doi.​org/10.1104/pp.16.01848

Open Access

Mike Blatt (University of Glasgow) is a co-author on this global study that looks into the evolution of ABA-signaling in the control of stomatal closure. Although this study is focused on this process in ferns they build their findings on the analysis of transcriptional networks from Arabidopsis. Ultimately they find that the evolution of ABA-controlled guard cells movements are important in the adaptation of ferns to a terrestrial environment.

Arabidopsis Research Roundup: February 20th

Tags: No Tags
Comments: No Comments
Published on: February 19, 2017

This weeks Arabidopsis Research Roundup begins with two papers that look at endogenous and exogenous causes of cell proliferation. Firstly Mike Bevan (JIC) leads a team that looks into the role of controlled protein degradation in this process whilst secondly, Peter Etchells from Durham is a co-author on a study that investigates how nematode pathogens stimulate cell proliferation at the site of infection.

Thirdly is work featuring Cyril Zipfel and colleagues from TSL that looks at how autophosphorylation controls the activity of calcium dependent protein kinases. Fourthly is a broad collaboration led by Richard Mott (UCL) that uses genomic structural variation to identify novel loci. Next Simon Turner from the University of Manchester phylogenetically defines the RALK peptide lineages across plant species. Finally researchers at the University of York conduct a structural analysis of the Arabidopsis AtGSTF2 glutathione transferase.


Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y, Bevan MW (2017) Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis.

Genes Dev. http:/​/​dx.​doi.​org/10.1101/gad.292235.116

Open Access


Mike Bevan (John Innes Centre) is the corresponding author of this study that also includes researchers from labs in Belgium, Germany and China. They investigate a fundamental determinant of organ shape, the pattern of cell proliferation that leads to final cell size. They show that two RING E3 ligases activate the DA1 peptidase that in turn affects the stabilization and activity of a range of other proteins including the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22. Overall this results in continued cell proliferation and repression of endoreduplication, which ultimately serves to regulate the timing of the transition from cell proliferation to organ differentiation.

Mike discusses the science surrounding this paper on the GARNet YouTube channel.


Guo X,, Wang J, Gardner M, Fukuda H, Kondo Y, Etchells JP, Wang X, Mitchum MG. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathog. http:/​/​dx.​doi.​org/10.1371/journal.ppat.1006142

Open Access

Peter Etchells (University of Durham) is a co-author on this US-led study that looks at the effect of nematode-delivered CLE-like peptides on cell growth and how that impacts parasitism. This study has identified a new class of peptides from nematodes that are similar to the plant B-type CLE-like peptide TDIF (tracheary element differentiation inhibitory factor). They show that the nematodes alter the activity of the TDIF-TDR (TDIF receptor)-WOX4 signaling module during infection, whose endogenous function acts during procambial meristem cell proliferation. A variety of mutants involved in this process show reduced infection and leading to the hypothesis that WOX4 is a potential target for nematode CLEs. When exogenous nematode CLE peptides are added to Arabidopsis roots they cause massive cell proliferation. This demonstrates that this response is clearly important for the establishment of nematode infection, usually in cambial cell files.


Bender KW, Blackburn RK, Monaghan J, Derbyshire P, Menke FL, Zipfel C, Goshe MB, Zielinski RE, Huber SC (2017) Autophosphorylation-based calcium (Ca2+) sensitivity priming and Ca2+/Calmodulin inhibition of Arabidopsis thaliana Ca2+-dependent protein kinase 28 (CPK28) J Biol Chem.

http:/​/​dx.​doi.​org/10.1074/jbc.M116.763243

Cyril Zipfel (The Sainsbury Lab) features for a second consecutive week on the Arabidopsis research roundup, this time as a co-author in a study that investigates the role of autophosphorylation in the regulation of calcium (Ca2+) dependent protein kinases (CPKs). In addition they evaluated the role of Calmodulin (CaM) on the activity of CPKs, something that had been previously overlooked. Indeed they show that CPK28 is a CaM-binding protein and that autophosphorylation causes increased activity, especially in low Ca2+ concentrations. Therefore this research provides a mechanistic insight into how a cell might respond to low levels of Ca2+.


Imprialou M, Kahles A, Steffen JG, Osborne EJ, Gan X, Lempe J, Bhomra A, Belfield E, Visscher A, Greenhalgh R, Harberd NP, Goram R, Hein J, Robert-Seilaniantz A, Jones J, Stegle O, Kover P, Tsiantis M, Nordborg M, Rätsch G, Clark RM, Mott R Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits. Genetics. http:/​/​dx.​doi.​org/10.1534/genetics.116.192823

Open Access

Richard Mott (UCL) is corresponding author on this paper includes authors from throughout the UK, Europe and the US. They provide a new analysis of Arabidopsis populations that relies on the genome structural variation. They treat these structural variants as quantitative traits and subsequently map genetically in the same way as in a gene expression study. When a structural variant locus is linked to a genotype at a distant locus then it is designated as a site of transposition. Remarkably they show 25% of the structural variants can be assigned to the transposition events. This method of assessing structural variant loci is amendable to sequencing at low-coverage and this study identified loci that might be involved in germination and resistant to pathogens. Overall they find that genes within structural variants are more likely to be silenced and that this novel analysis technique is particularly useful when mapping transposition events.


Campbell L, Turner SR1(2017) A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Front Plant Sci. http:/​/​dx.​doi.​org/10.3389/fpls.2017.00037

Open Access

This study from the lab of Simon Turner (University of Manchester) analyse Rapid Alkalinization Factor (RALFs) cysteine-rich peptides from across 51 plant species. They infer that these plant RALFs originate from four major clades in which the majority of the variation exists in the mature peptide sequence, indicative of clade-specific activities. Clade IV accounts for a third of the total peptides yet these lack a number of sequence features thought to be important for RALF function, which leads the authors to speculate that this clade should be thought of as containing RALF-related peptides instead of regular RALFs. Further experimental work is needed in order to define the true nature of the functional relationship between Clades I-III and Clade IV.


Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G (2016) Structural evidence for Arabidopsis glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands. FEBS Open Bio. http:/​/​dx.​doi.​org/10.1002/2211-5463.12168

Open Access

This paper links plant science and structural biology in a study that was undertaken at the University of York. Plant Glutathione transferases (GSTs) have multiple roles including in the detoxification of xenobiotics as well as in various non-catalytic roles. In this work the structure of the Arabidopsis AtGSTF2 is revealed in tandem with a variety of non-catalytic partners including indole-3-aldehyde, camalexin, the flavonoid quercetrin and its non-rhamnosylated analogue quercetin. These are thought to bind to AtGSTF2 by hydrophobic interactions at either one or two symmetrical binding sites. The authors speculate that this non-catalytic binding might have a possible role in ligand transport.

Arabidopsis Research Roundup: January 11th

The first Arabidopsis Research Roundup of 2017 includes a wide range of studies that use our favourite model organism.

Firstly Kerry Franklin (University of Bristol) is the corresponding author on a paper that describes the complex interaction between the responses to sunlight and heat. Secondly Paul Dupree (University of Cambridge) leads a study that defines the important structural relationship between xylan and cellulose. Thirdly members of Gos Micklem’s group in Cambridge are part of the Araport team that present their ThaleMine tool.

Richard Napier (University of Warwick) is a co-author on the fourth paper that introduces a new chemical tool for study of the auxin response. The penultimate paper includes Matthew Terry (University of Southampton) on a paper that investigates the role of a Fe-S-containing protein cluster in chlorophyll biosynthesis and finally there is a methods paper from Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre that describes the use of FISH to detect single molecules of RNA.


Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA (2016) UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Current Biology http:/​/​dx.​doi.​org/10.1016/j.cub.2016.11.004

Open Access

This collaboration between the research groups of Kerry Franklin (University of Bristol) and Gareth Jenkins (University of Glasgow) looks at how the perception of UV-B light inhibits the morphological changes that occur in response to increased temperatures (thermomorphogenesis). This response includes induced hypocotyl elongation, which is mediated via PIF4 and various players in the auxin response. Interestingly the authors show that UV-B light perceived by UVR8 attenautes this response by preventing PIF4 abundance and by stabilising the the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1) protein. These results suggest that there exists a precise mechanism for fine-tuning the growth responses that occur in sunlight that would usually include both increased temperature and UV-B irradiation.
UVB_pic


Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, deAzevedo ER, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun.

http:/​/​dx.​doi.​org/10.1038/ncomms13902 Open Access
In this paper Paul Dupree (University Cambridge) collaborates both with colleagues in Spain and with his father Ray, who is a physicist at the University of Warwick. They use NMR to perform a structural analysis of xylan, which is the most prevalent non-cellulosic polysaccharide in the cell wall matrix and binds to cellulose microfibrils. Whereas in solution xylan forms a threefold helical screw, it flattens into a twofold helical screw ribbon to closely bind to cellulose when in the cell wall. They used the cellulose-deficient Arabidopsis irx3 mutant to show that the xylan two-fold screw confirmation breaks down when it cannot bind cellulose. The authors state that this finding has important implications in our understanding of the formation of the cell wall and perhaps more importantly how it might be broken down during attempts to maximise economic usages of plant biomass.

A local Cambridge newspaper reported that this finding could ‘pave the way for wooden skyscrapers’
XylanPic


Krishnakumar V, Contrino S, Cheng CY, Belyaeva I, Ferlanti ES, Miller JR, Vaughn MW, Micklem G, Town CD, Chan AP (2016) ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery. Plant Cell Physiol http:/​/​dx.​doi.​org/10.1093/pcp/pcw200 Open Access

This paper is presented by the Araport team, which is based in the USA but includes representatives from Gos Micklem’s lab in University of Cambridge. They outline the functionality of the ThaleMine data warehouse which is an important component of the tools included on Araport (https://www.araport.org/). ThaleMine collects a wide variety of data from public datasets and presents it in a easy-to-interrogate form, facilitating the experiments of both lab-based researchers or bioinformaticians. This tool is build upon the InterMine software framework, which has been widely adopted across other model organisms.

Chris Town and Sergio Contrino provided a hands-on workshop describing the tools on Araport in last year GARNet2016 meeting and their workshop materials can be downloaded here.


Steenackers WJ, Klíma P, Quareshy M, Cesarino I, Kumpf RP, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack MK, Ljung K, Friml J, Blakeslee JJ, Novák O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) cis-cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol. http:/​/​dx.​doi.​org/pp.00943.2016 Open Access
cCApic
This pan-european collaboration includes members of Richard Napier’s lab at the University of Warwick. They outline the activity of a novel inhibitor of auxin efflux transport called cis-cinnamic acid (c-CA). When c-CA is applied to growth media plants appears to exhibit an auxin-response phenotype yet these experiments show that c-CA is neither an auxin or anti-auxin and in fact blocks local auxin efflux, thus causing buildup of cellular auxin. This effect does not occur with t-CA showing specificity for c-CA and it does not affect long distance auxin transport, which occurs through the phloem. Therefore this paper presents a new pharamolgical tool for the study of in planta auxin transport and homeostasis.


Hu X, Page MT, Sumida A, Tanaka A, Terry MJ, Tanaka R (2016) The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling. Plant J.

http:/​/​dx.​doi.​org/10.1111/tpj.13455

Matthew Terry and Mike Page (University of Southampton) are co-authors on this Japanese-led study that investigates the function of the SUFB subunit of the SUFBCD iron-sulfur cluster. These Fe-S protein clusters play roles in many metabolic processes and the SUFB mutant hmc1 exhibits a defect in chlorophyll biosynthesis due to an accumulation of Mg-containing biosynthetic intermediates. In addition both SUFC- and SUFD-deficient RNAi lines accumulated the same Mg intermediate indicating that the SUFBCD cluster is responsible for this step necessary for chlorophyll production.


Duncan S, Olsson TS, Hartley M, Dean C, Rosa S (2016) A method for detecting single mRNA molecules in Arabidopsis thaliana. Plant Methods. http:/​/​dx.​doi.​org/10.1186/s13007-016-0114-x

Open Access
This paper from is lead by Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre describes a novel method for imaging single molecules of RNA by smFISH. They analyse the localisation of both nascent and mature mRNAs, allowing for analysis of the location of RNA processing and translation.<
RosaPic

Arabidopsis Research Roundup: August 19th

This weeks Arabidopsis Research Roundup includes broad representation from Norwich Research Park with Caroline Dean, Enrico Coen and Cyril Zipfel each leading studies that focus respectively on the regulation of transcriptional state, auxin patterning that defines leaf shape or the molecular basis of the PAMP response.

Elsewhere Liam Dolan (Oxford) leads, and Malcolm Bennett (CPIB) is the principal UK contributor on studies that look into different aspects of the key molecular signals in either root hair or lateral root development.

Finally Richard Napier is a co-author on a study that better characterises the molecular basis of the well-used plant growth inhibitor MDCA.

Yang H, Howard M, Dean C (2016) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC PNAS http://dx.doi.org/10.1073/pnas.1605733113

Dame Caroline Dean and Martin Howard (JIC) lead this follow-on work from a paper highlighted in an ARR from the start of 2016. Here they use the FLOWERING LOCUS C (FLC) locus as a model to study the trans factors that control methylation state. They find a physical interaction between the H3K36 methyltransferase SDG8 (which promotes the active H3K36me3 mark) and the H3K27me3 demethylase ELF6 (which removes the silencing H3K27me3 mark). SDG8 also associated with RNA polymerase II and the PAF1 transcriptional regulatory complex. Therefore the authors suggest that the addition of active histone marks coincides with transcription at the locus whilst SDG8 and ELF6 exhibit co-dependent localisation to FLC chromatin. Therefore this interaction links activation and derepression and coordinates active transcription whilst preventing ectopic silencing.

Abley K, Sauret-Güeto S, Marée AF, Coen E (2016) Formation of polarity convergences underlying shoot outgrowths. Elife. http://dx.doi.org/10.7554/eLife.18165.

Open Access
elife-18165-fig7-v1
Enrico Coen (JIC) is the corresponding author on this investigation that had generated models that predict locations of leaf outgrowth linked to auxin biosynthesis and transport. They use live imaging in wildtype and kanadi1kanadi2 mutants to show that the cellular polarity of the PIN1 auxin transporter is orientated so as to move auxin away from regions with high levels of biosynthesis. In turn, this moves auxin toward regions with high expression of AUX/LAX auxin importers. This data allows the generation of detailed models that describe the processes that control auxin-mediated tissue-patterning (and are impossible to describe in a single paragraph).

Couto D, Niebergall R, Liang X, Bücherl CA, Sklenar J, Macho AP, Ntoukakis V, Derbyshire P, Altenbach D, Maclean D, Robatzek S, Uhrig J, Menke F, Zhou JM, Zipfel C (2016) The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1 PLoS Pathog. http://dx.doi.org/10.1371/journal.ppat.1005811

Open Access

Cyril Zipfel is the lead investigator on this study that links researchers at TSL with colleagues in China and Germany. The focus of this work is the cytoplasmic kinase BIK1, which is a target of several pattern recognition receptors (PRRs) that are involved in the defence response, and the novel protein phosphatase PP2C38, which acts as a negative regulator of BIK1. Under non-inductive conditions PP2C38 prevents BIK1 activity but following pathogen-associated molecular patterns (PAMP) perception, it is phosphorylated and dissociates from BIK1, allowing full activity. This study provides another layer of detail into the complex central immune response that allows plants to response to a vast array of pathogenic microorganisms.

Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M, Mimura T, Weijers D, Fukaki H, Laplaze L, Bennett MJ, Guyomarc’h S (2016) Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor Development. http://dx.doi.org/10.1242/dev.135319

Open Access

Malcolm Bennett and Darren Wells (CPIB) are authors on this international collaboration that links UK, Japanese, French and Dutch researchers. The essential role of the central organizer center (the quiescent center, QC) is well known in primary root meristem development but its role during lateral root (LR) formation remained unclear. LR formation is characterised by biphasic growth that involves early morphogenesis from the central stele and subsequent LR meristem formation. This study uses 3D imaging to demonstrate that LR QC cells originate from outer cell layers of early primordial, in a SCARECROW (SCR) dependent manner. Perturbing SCR function causes incorrect formation of the LR QC and prevents wildtype LR patterning. The manuscript also contains some excellent videos of growing LRs that are very informative.
AUX1-YFPKim CM, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon PLoS Genet.

http://dx.doi.org/10.1371/journal.pgen.1006211 Open Access

This study comes from Liam Dolan’s lab at the University of Oxford and moves their research focus on root hair development from Arabidopsis into the grass Brachypodium distachyon. ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix genes are expressed in cells that develop root hair fate in Arabidopsis and this study indentifies 3 RSl1 genes in Brachypodium which, when ecoptically expressed, are sufficient for the development of root hairs in all cell files. The function of these RSL proteins is conserved as the Brachypodium versions are able to restore a wildtype phenotype to root hair-less Arabidopsis mutants. Even though root hair patterning is significantly different in Brachypodium and Arabidopsis, this study shows the role of the RSL genes is conserved.
RootHairPic
Steenackers WJ, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novak O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology http://dx.doi.org/10.1104/pp.15.01972

Open Access

Richard Napier (Warwick) is the UK PI on this pan-European study that investigates the molecular basis behind the physiological role of the compound phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA), which inhibits the phenylpropanoid pathway, important in lignin formation. MDCA causes inhibition of primary root growth and increase proliferation of lateral roots, not through lignin perturbation but due to a disruption in auxin homeostasis. MS analysis demonstrates that MDCA causes overall changes in auxin biosynthesis, conjugation and catabolism, similar to changes observed in mutants involved in the phenylpropanoid pathways. These result link auxin and phenylpropanoid biosynthesis pathways and provide a new explanation for the well demonstrated phytotoxic properties of MDCA.

Arabidopsis Research Roundup: August 8th

This weeks Arabidopsis Roundup contains a wide breadth of UK research. Firstly the lab of Jurriaan Ton undertakes a global analysis into the role of methylation in the immune response. Jurriaan kindly provides a short audio description of this work. Secondly Dame Caroline Dean’s lab further add to our understanding of the vernalisation response in Arabidopsis. Thirdly is work from Rothamstead that evaluates the fatty acid composition of the seed aleurone while fourthly is a study from Durham and Oxford Brookes that introduces a novel regulator of autophagy. Finally is a study that adds clarity to the phenotypic effects resulting from ascorbic acid deficiency.

López Sánchez A, H M Stassen J, Furci L, Smith LM, Ton J (2016) The role of DNA (de)methylation in immune responsiveness of Arabidopsis Plant Journal http://dx.doi.org/10.1111/tpj.13252 Open Access

Jurriaan Ton is the corresponding for study from the University of Sheffield that looks into the role of reversible methylation on the Arabidopsis immune response. Methylation is a well known regulator of gene expression and in this research the authors attempt to interrogate its effect on the immune response. Hypo-methylated mutants are more resistant, whilst hyper-methylated mutants are more suspectible to the biotrophic pathogen Hyaloperonospora arabidopsidis (Hpa). Downstream gene expression changes in these methylation mutants focus at the level of cell-wall modification and salicylic acid (SA)-responses. Oppositely the hypo-methylated mutant nrpe1 is more suspective to the necrotrophic pathogen Plectosphaerella cucumerina whilst the hyper-methylated ros1 mutant is resistant to this organism. The Ton-lab has been involved in the discovery of the exciting phenomon of transgenerational acquired resistance, and both nrpe1 and ros1 fail to develop this response against Hpa. Global gene expression shows that either NRPE1 or ROS1 influence about 50% of the gene expression changes that occur following Hpa infection. Finally since less than 15% of genes with altered gene expression reside close to NRPE1 or ROS1, the authors are able to propose that much of this regulation is due to methylation effects that act in trans- throughout the genome.

Jurriaan kindly provides a comprehensive description of this work:


Qüesta JI, Song J, Geraldo N, An H, Dean C (2016) Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization Science. 353(6298):485-8 http://dx.doi.org/10.1126/science.aaf7354

VAL_pic
From http://science.sciencemag.org/content/353/6298/485

Dame Caroline Dean (John Innes Centre) is the lead author of this manuscript that builds upon the portfolio of work from her lab aimed at characterising the vernalization response. This work again uses the FLOWERING LOCUS C (FLC) gene as a model to study the factors that allow gene-silencing mediated by Polycomb silencing complexes. The authors find that a single intragenic point mutation prevents nucleation of the homeodomain-Polycomb repressive complex 2 (PHD-PRC2) to this region, a process that involves the transcriptional repressor VAL1. In the wildtype FLC locus the localisation of VAL1 promotes transcriptional silencing through histone deacylation through interaction with the conserved apoptosis- and splicing-associated protein (ASAP) complex. This study adds an additional layer of molecular complexity to the process of regulating the FLC locus and provides insight into the important role for primary sequence-specific targeting during gene silencing.

Bryant F, Munoz-Azcarate O, Kelly AA, Beaudoin F, Kurup S, Eastmond PJ (2016) Acyl carrier protein DESATURASE 2 and 3 are responsible for making omega-7 fatty acids in the aleurone Plant Physiology http://dx.doi.org/10.1104/pp.16.00836 Open Access

Peter Eastmond (Rothamstead) leads this work that investigates the components that determine seed fatty acid content. Specifically Omega-7 monounsaturated fatty acids (ω-7s) are enriched in the aleurone of Arabidopsis seeds so this study used a Multiparent Advanced Generation Inter-Cross population to identify a QTL linked to ω-7 content that includes the ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 genes. AAD family members possess both stearoyl- and palmitoyl-ACP Δ9 desaturase activity and aad3 mutants show a significant reduction in ω-7 content, which is common with mutants in other AAD family members. In addition the authors show that the FATTY ACID ELONGASE1 protein is required for accumulation of long-chain ω-7s in the aleurone. Overall this research provides new insight into the pathway that produces ω-7s in the aleurone, indicating that these genes might represent a target for future strategies to alter seed fatty acid content.

Wang P, Richardson C, Hawes C, Hussey PJ.(2016) Arabidopsis NAP1 Regulates the Formation of Autophagosomes Current Biology http://dx.doi.org/10.1016/j.cub.2016.06.008

NAP1_pic
From http://www.sciencedirect.com/science/article/pii/S0960982216306200

This is collaborative effort between the labs of Patrick Hussey (Durham) and Chris Hawes (Oxford Brookes) investigates the role of the NAP1 protein, which is a member of the SCAR/WAVE complex, on the formation of autophagosomes. These organelles are induced by certain stress conditions and fewer are produced in nap1 mutants after starvation stress. This also corresponds to wildtype NAP1 localisation. Concomitantly nap1 mutants, as well as mutants of other members of SCAR/WAVE complex, are more suspectible to nitrogen starvation and is less tolerant to salt stress. The best characterised role of the SCAR/WAVE complex is during ARP2/3-mediated actin nucleation yet this study demonstrates an addition function as a regulatory of autophagy.

Lim B, Smirnoff N, Cobbett CS, Golz JF (2016) Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth Front Plant Sci. 7:1025

http://dx.doi.org/10.3389/fpls.2016.01025 Open Access

Nick Smirnoff (Exeter) is a co-author on the Australian-led research into Arabidopsis vtc mutants, which have a significant reduction in ascorbate-acid levels. Ascorbate is synthesized via the L-galactose pathway, the first enzyme of which is encoded by the paralogs VITAMIN C2 (VTC2) and VTC5. This study characterises the growth of a vtc2 T-DNA mutant that has a 30% reduction in ascorbate levels. Surprisingly this does not result in any signficant phenotypic and they suggest that a previously characterised growth reduction in other vtc2 mutant alleles is likely due to unknown genetic lesions.

Arabidopsis Research Roundup: July 19th

There are six papers in this weeks Arabidopsis Research Roundup. Two of these include research on the stomatal patterning gene TMM. Firstly a White Rose consortium investigates the ancestral basis of stomatal patterning, whilst a Glasgow-based study investigates the relationship between patterning and the dynamics of guard cell opening. The GARNet committee is represented by work from Cardiff that looks at the relationship between seed size and shoot branching and also from Cambridge in research that studies meiotic recombination in genomic regions important for pathogen defense. Finally are two studies that look into aspects of root and shoot patterning and include co-authors from CPIB in Nottingham or the John Innes Centre.

Caine R, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ (2016) An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens Development

http://dx.doi.org/10.1242/dev.135038 Open Access

This study is a collaboration between labs in Sheffield and Leeds, led by Andrew Fleming (Sheffield). They investigate the role that the signalling module comprised of Epidermal Patterning Factors (EPFs), ERECTA and TMM play during the evolution of stomatal patterning. This module is known to play an important role in Arabidopsis and in this study the authors show that the moss Physcomitrella patens contains homologs of each of the genes and that they perform the same function. When P.paten versions of these genes are transferred to equivalent Arabidopsis mutants they show conserved function demonstrating that this module is an example of an ancestral patterning system.

Andrew Fleming provides a brief audio description of this manuscript:

Papanatsiou M, Amtmann A, Blatt MR (2016) Stomatal spacing facilitates guard cell ion transport independent of the epidermal solute reservoir. Plant Physiol. http://dx.doi.org/10.1104/pp.16.00850 Open Access

Mike Blatt and Anna Amtmann (University of Glasgow) are the co-supervisors for this study into the relationshop between ion transport in stomatal guard cells and their physical positioning within a leaf. They used a genetic approach to assess the effect of stomatal clustering, showing that too many mouths (tmm) mutant plants have reduced stomatal movements associated with alterations in K+ channel gating and coincident with a surprising reduction in the level of K+ ions in guard cells. These results underline the importance of stomatal spacing in this process but do not provide a full explanation into the alteration in K+ ion dynamics.

Sornay E, Dewitte W, Murray JAH (2016) Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture Plant Signaling and Behaviour e1192741

http://dx.doi.org/10.1080/15592324.2016.1192741 Open Access

From http://dx.doi.org/10.1080/15592324.2016.1192741
From http://dx.doi.org/10.1080/15592324.2016.1192741

This research comes from the lab of GARNet PI Jim Murray (Cardiff) and investigates cell proliferation and growth within a developing seed. They previously have shown that targeting of D-type cyclin CYCD7;1 to the central cell and early endosperm can trigger nuclear divisions and ovule abortion, which leads to a smaller number of larger seed. In this study they show that development of larger seed in transgenic plants is influenced by the architecture of the mother, as plants with increased side branches, caused by pruning of the main stem, do not generate this phenotype. This is indicative of a close relationship between the amount of resources allocated to different parts of the plant and that a transgenic effect was altered by a different plant morphology. This should provide an important insight into future work that aims to define the effect of any particular transgenic alteration.

Choi K, Reinhard C, Serra H, Ziolkowski PA,, Underwood CJ,, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP,, Henderson IR (2016) Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet. 12(7):e1006179.

http://dx.doi.org/10.1371/journal.pgen.1006179 Open Access

GARNet advisory board member Ian Henderson (Cambridge) is the corresponding author of this study that involves contributions from the UK, US, Poland and France. They investigate genomic regions that show increased meiotic recombination, which is predicted to occur coincident with genes involved in pathogen defence given their requirement to adapt to new external challenges. This study focuses on NBS-LRR domain proteins that tend to physically cluster in the Arabidopsis genome. Interesting they discovered both hot and coldspots for meiotic recombination that associate with NBS-LRR clusters, the later often correlating with structural heterozygosity. In a more detailed dissection of 1000 crossovers in the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R hotspot, they discovered higher recombination frequencies associating with known sequence motifs important for the pathogen response, which were influenced by ecotype-specific factors. Ultimately the authors note that there is a complex relationship between regions of meiotic recombination, structural heterozygosity and the evolutionary pressures that occurs with host-pathogen relationships.

Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development http://dx.doi.org/10.1242/dev.136465 Open Access

From http://dx.doi.org/10.1242/dev.136465
From http://dx.doi.org/10.1242/dev.136465

 Malcolm Bennett (CPIB) is the sole UK-based co-author on this study led by Belgian collaborators and investigates the role of reactive oxygen species (ROS) in auxin-regulated lateral root (LR) formation. They show that ROS can reactivate LR primordia and pre-branch sites, resulting in increased LR numbers. This occurs in both wildtype and in auxin mutants that have reduced numbers due to changes in auxin-mediated cell wall remodeling. ROS is deposited in the apoplast of emerging LR cells in a pattern that is coincident with the expression of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH) genes. Concomitantly the altered expression of RBOH was shown to affect the development and emergence of LRs. This adds a further level of complexity to the current understanding of the signaling factors that converge to facilitate LR growth.

 

Shi B,, Zhang C, Tian C, Wang J,, Wang Q,, Xu T,, Xu Y, Ohno C, Sablowski R, Heisler MG, Theres K, Wang Y, Jiao Y (2016) Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genet. http://dx.doi.org/10.1371/journal.pgen.1006168 Open Access

This Chinese-led study includes Robert Sablowski (JIC) as a co-author and studies the factors that influence the development of axillary meristems. They use innovative live imaging to show that SHOOT MERISTEMLESS (STM) is continuously expressed and that this dependent on a leaf axil auxin minimum. Once STM expression is lost then the axil is unable to form a meristem even if STM is switched back later in development, indicating that cells undergo an irreversible developmental commitment. The expression domain of STM is under cell-type specific control of REVOLUTA (REV) DNA binding. Overall this study demonstrates that meristematic competence and initiation is dependent on differing levels of the key regulator STM.

From http://dx.doi.org/10.1371/journal.pgen.1006168
From http://dx.doi.org/10.1371/journal.pgen.1006168

Arabidopsis Research Roundup: April 14th

This week Arabidopsis Research Roundup contains two studies that originate at the University of Birmingham. Firstly George Bassel kindly provides an audio description of a study that looks at the processes regulating seed germination. Secondly Juliet Coates leads an investigation into the function of evolutionarily conserved ARABIDILLO proteins. Elsewhere is a University of Edinburgh study into the tissue-specificity of PhyA responses and lastly an investigation of the phytotoxic effects of Cerium nanoparticles.

Nieuwland J, Stamm P, Wen B, Randall RS, Murray JA, Bassel GW (2016) Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6. Sci Rep. http://dx.doi.org/10.1038/srep23586 Open AccessRootTip

George Bassel (Birmingham), GARNet PI Jim Murray (Cardiff) and Jeroen Nieuwland (South Wales) are the leaders of this study that investigates the activation of the root meristem during germination, a process that requires de novo GA synthesis. Using hormone applications and genetic analysis the authors show that root meristem can begin elongation independent of germination, which is defined as occurring following both testa rupture and radicle protrusion. KRP6 is a cell cycle regulator and partially represses activation of the cell cycle by GA so krp6 mutants germinate more rapidly. Overall this study concludes that the cell cycle can uncouple the interactions of GA and ABA that act to conclude germination and promote root meristem elongation.

George Bassel kindly provides a short audio description of this paper.

Moody LA, Saidi Y, Gibbs DJ, Choudhary A, Holloway D, Vesty EF, Bansal KK, Bradshaw SJ, Coates JC (2016) An ancient and conserved function for Armadillo-related proteins in the control of spore and seed germination by abscisic acid. New Phytol. http://dx.doi.org/10.1111/nph.13938 Open Access

This study comes exclusively from the University of Birmingham and is led by Juliet Coates. This group investigates the role of Armadillo-related ARABIDILLO proteins on branching processes across plant species. In the moss Physcomitrella patens these proteins are linked to the action of the hormone ABA on spore germination, which converges with a role for the proteins in Arabidopsis seed germination. Importantly both P.patens and Selaginella moellendorffii ARABIDILLO proteins are able to substitute for native proteins in Arabidopsis, demonstrating their conserved function. The authors conclude that these proteins were co-opted into the regulation of both sporophytic and gametophytic processes early in plant evolution.

Kirchenbauer D, Viczián A, Ádám É, Hegedűs Z, Klose C, Leppert M, Hiltbrunner A, Kircher S, Schäfer E, Nagy F (2016) Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-A expressed in different tissues. New Phytologist . http://dx.doi.org/10.1111/nph.13941 Open Access

Ferenc Nagy (Edinburgh) is the corresponding author of this Hungaro-German study that focuses on how phytochrome responses are mediated in a tissue-specific manner. Considering that phyA is expressed throughout plant tissues it remained a mystery as to how the PhyA responses are able to control plant development. This study used tissue-specific promotors to drive PHYA production in a variety of tissues and discovered that expression in a limited number of tissues is able to regulate flowering time and root growth. In addition they find evidence for the intercellular movement of PhyA. The authors conclude that the PhyA response is partly controlled by a mix of tissue-specific expression and the regulation of key downstream factors in a tissue-autonomous cell activity.

Yang X, Pan H, Wang P, Zhao FJ (2016) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana J Hazard Mater. http://dx.doi.org/10.1016/j.jhazmat.2016.03.054

GraphThis Sino-UK-Australian study is led by Fang-Jie Zhao at Rothamstead Research. They investigate the uptake and phytotoxicity of commonly used (in consumer products) cerium oxide nanoparticles (CeO2-NPs) into Arabidopsis. At high concentrations the NP component, but not the Ce ions, were shown to have toxic effects on plant growth. These CeO2-NPs were taken up and translocated to the shoot where they aggregate in needle-like particles. This movement was independent of the type or concentation of Ce. The authors suggest this represents important information for the environmental considerations linked to the use and disposal of this type of NPs.

Arabidopsis Research Roundup: April 1st.

This weeks Arabidopsis Research Roundup contains an eclectic mix of investigations. Firstly is a study from Peter Unwin that investigates the molecular factors that control interactions between plants and nematode parasites. Secondly is a study led by John Christie that investigates the factors that control hypocotyl curvature. Thirdly is a fascinating proof-of-concept synbio-style study from Rothamstead Research where an algal gene is transferred into Arabidopsis in the hope of developing a phytomediation-based solution to heavy metal contamination. Fourthly is a study from David Bass that catalogues protist species that feed on leaf-microorganisms whilst finally John Carr heads a study that compares RNA-dependent RNA polymerases from Arabidopsis and Potato.

Eves-van den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE (2016) Functional C-terminally encoded plant peptide (CEP) hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol Plant Pathol. http://dx.doi.org/10.1111/mpp.12402).CEP1

This study is a collaboration between researchers at the Universities of Dundee and Leeds, led by Peter Unwin. The focus of the paper is the interaction of Plant-Parasitic Nematodes (PPNs) with their plant hosts. PPNs stimulate redifferentiation of vascular tissues to form ‘feeding structures’ that benefit the parasite. This process is mediated by a diverse family of effector proteins termed C-terminally Encoded Peptide plant hormone mimics (CEPs). This study investigates the CEPs from the nematode Rotylenchulus reniformis and suggests that these peptides evolved de novo in this organism. They show that the activity of a synthetic peptide corresponding to RrCEPs causes a reduction in primary root elongation whilst upregulating a set of genes including the nitrate transporter AtNRT2.1. The authors propose that CEPs evolved in R. reniformis to allow sustained biotrophy by upregulating a specific set of feeding-responsive genes and by limiting the size of the feeding site produced. This study represents an exciting introduction to a currently under-researched area within plant-pathogen interactions.

Sullivan S, Hart JE, Rasch P, Walker CH, Christie JM (2016) Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis. Front Plant Sci. 7:290 http://dx.doi.org/10.3389/fpls.2016.00290 Open AccessFrontiersPHOT1

John Christie (Glasgow) is the corresponding author on this investigation into the role of the blue-light receptor phototropin 1 (phot1) during hypocotyl phototropism. Curvature of this organ is enhanced by treatment by red-light mediated by the phytochromeA receptor. However this study shows that pre-treatment with blue-light can also enhance this hypocotyl curvature although this did not occur at higher light intensities. In addition phototropic enhancement was also lacking when PHOT1 is expressed only in the hypocotyl epidermis. Therefore the study shows that the phyA impact on phot1 signaling is restricted to low light intensities and in tissues other than the epidermis.

Zhong Tang, Yanling Lv, Fei Chen, Wenwen Zhang, Barry P. Rosen, and Fang-Jie Zhao (2016) Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity J. Agric. Food Chem. http://dx.doi.org/10.1021/acs.jafc.6b00462 Open Access ArsM

This synthetic biology-focused study is led by Fang-Jie Zhao at Rothamstead Research. The authors take an algal gene (arsM) that allows the transformation of inorganic arsenic to a more volatile methylated version. The biological activity of this enzyme was successfully transferred to two different Arabidopsis ecotypes. However interestingly these transgenic plants became more sensitive to arsenic in growth media suggesting that the new methylated arsenic intermediate is more phytotoxic than inorganic arsenic. Therefore this study demonstrates a negative consequence of this project that attempted to engineer arsenic tolerance in plants. Once again this demonstrates that nature rarely acts predictably and any great ideas usually need to be tested in vivo.

Ploch S, Rose L, Bass D, Bonkowski M (2016) High Diversity Revealed in Leaf Associated Protists (Rhizaria: Cercozoa) of Brassicaceae J Eukaryot Microbiol. http://dx.doi.org/10.1111/jeu.12314

After a fantastic opening line in the abstract, ‘The largest biological surface on earth is formed by plant leaves’, this study includes the work of David Bass from the Natural History Museum in London. They investigate the abundance of protists that associate with leaf-inhabiting microorganisms, the “phyllosphere microbiome“. Their findings demonstrate that protists should be considered an important part of the diversity of plant-interacting microbial organisms.

Hunter LJ, Brockington SF, Murphy AM, Pate AE, Gruden K, MacFarlane SA, Palukaitis P, Carr JP (2016) RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases Sci Rep. 6:23082 http://dx.doi.org/10.1038/srep23082 Open Access

John Carr (Cambridge) is the UK-lead on this collaboration with Slovenian and Korean researchers. They primarily investigate the role of the RDR1 RNA-dependent RNA polymerase (RDRs) in potato. In Arabidopsis the RDR1 gene contributes to basal viral resistance but potato plants deficient in StRDR1 do not show altered susceptibility to three different plant viruses. In addition they perform a phylogenetic analysis on the RDR genes and identify a novel RDR7 gene that is only found in Rosids (but not Arabidopsis.

«page 1 of 3

Follow Me
TwitterRSS
GARNetweets
May 2017
M T W T F S S
« Apr    
1234567
891011121314
15161718192021
22232425262728
293031  

Welcome , today is Monday, May 29, 2017