Arabidopsis Research Roundup: September 6th

This largest ever Arabidopsis Research Roundup (ARR) includes 6 papers from Norwich Research Park (NRP), including three featuring Cyril Zipfel (TSL) as a co-author on papers that investigate different aspects of plant immune signaling. Elsewhere on the NRP site Veronica Grieneisen (JIC) is a co-author on a study that defines the root auxin maximum whilst Dale Sanders and Saskia Hogenhout lead a paper that defines a method for the analysis of calcium signaling. Finally Robert Sablowski’s group at the JIC investigates the role of the DELLA proteins during meristem development.

Elsewhere investigators from Kew Gardens and Bangor University have used nanopore sequencing for the facile characterisation of field populations of Arabidopsis. Similarly Seth Davies (University of York) is part of a collaboration that looks how alterations in the circadian clock might affect plant fitness.

Verena Kriechbaumer (Oxford Brookes) leads a phylogenetic study into the conservation of auxin biosynthesis genes whilst Hilary Rodgers (Cardiff University) is a co-author on a Chinese-led study that looks into role of cadmium on the Arabidopsis cell cycle.

This ARR is full of examples of UK researchers involved in global collaborations. This includes Cambridge researchers involved in a proteomic analysis of microsomes, Justin Goodrich from the University of Edinburgh as part of a US-led study that defines the regulation of the PRC2 complex and Katherine Denby (University of York) as a member of a consortium that has performed a network analysis of jasmonic acid signaling.

Finally are two studies in which the research takes place within a single institution. Malcolm Hawksford (Rothamsted Research) looks at the effect of wheat transcription factors in the response to the heavy metal zinc whilst Emily Larson and Mike Blatt (University of Glasgow) investigate the role of clathrin on plant vesicular transport.


D’Ambrosio JM, Couto D, Fabro G, Scuffi D, Lamattina L, Munnik T, Andersson MX, Alvarez ME, Zipfel C, Laxalt AM (2017) PLC2 Regulates MAMP-Triggered Immunity by Modulating ROS Production in Arabidopsis. Plant Physiol 10.1104/pp.17.00173

This Argentinian-led study includes Cyril Zipfel (TSL) as a co-author on this work that uses miRNA-mediated gene silencing to assess the role of the phosphoinositide-specific phospholipase C (PI-PLC) in plant immune signaling.


Imkampe J, Halter T, Huang S, Schulze S, Mazzotta S, Schmidt N, Manstretta R, Postel S, Wierzba M, Yang Y, vanDongen WM, Stahl M, Zipfel C, Goshe MB, Clouse S, de Vries SC, Tax F, Wang X, Kemmerling B (2017) The Arabidopsis Leucine-rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1. Plant Cell. 10.1105/tpc.17.00376

Cyril Zipfel (TSL) is a co-author on this global collaboration that further defines the role of the BAK1 receptor in hormone and immune signaling through its interaction with two LRR-RK proteins (BIR2 and BIR3).


Singh V, Perraki A, Kim SY, Shrivastava S, Lee JH, Zhao Y, Schwessinger B, Oh MH, Marshall-Colon A, Zipfel C, Huber SC (2017) Tyrosine-610 in the Receptor Kinase BAK1 Does Not Play a Major Role in Brassinosteroid Signaling or Innate Immunity. Front Plant Sci. 10.3389/fpls.2017.01273

Cyril Zipfel (TSL) is a co-author on this US-led manuscript that again looks into the role of the BRI1-ASSOCIATED KINASE1 (BAK1) on plant immune signaling. Importantly they show that the phosphorylation of tyrosine-610 is actually not necessary for this proteins role in brassinosteroid or immune signaling


Di Mambro R, De Ruvo M,,, Pacifici E, Salvi E, Sozzani R, Benfey PN,, Busch W, Novak O, Ljung K, Di Paola L, Marée AFM, Costantino P, Grieneisen VA, Sabatini S (2017) Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci U S A 10.1073/pnas.1705833114

Veronica Grieneisen (JIC) is a co-corresponding author on this work with Sabrina Sabatini from the University of Rome. They define the auxin minimum, a newly characterised determinat of root patterning that delineates the separation of root division and the differentiation zones. This is defined by the interaction between cytokinin and auxin signaling cascades.

Veronica discusses this paper on the GARNet YouTube channel: https://www.youtube.com/watch?v=gYdL6eddOcA


Vincent TR, Canham J, Toyota M, Avramova M, Mugford ST, Gilroy S, Miller AJ, Hogenhout S, Sanders D (2017) Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor. J Vis Exp. 10.3791/56142

Dale Sanders and GARNet committee member Saskia Hogenhout (JIC) lead this study that describes an imaging technique that allows for the real time assessment of calcium dynamics using a fluorescently tagged sensor.


Serrano-Mislata A, Bencivenga S, Bush M, Schiessl K, Boden S, Sablowski R (2017) DELLA genes restrict inflorescence meristem function independently of plant height. Nature Plants. 10.1038/s41477-017-0003-y

Robert Sablowski (JIC) leads this paper that investigates the role of DELLA proteins in the control of cell cycle regulators and how this impacts meristem size in both barley and Arabidopsis. Read more about it on the John Innes Centre website.


Parker J, Helmstetter AJ, Devey D, Wilkinson T, Papadopulos AST (2017) Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci Rep. 10.1038/s41598-017-08461-5 Open Access

This investigation led by researchers at Kew Gardens and at the Bangor University use Real Time Nanopore Sequencing (RTnS) that allows for rapid species identification in the field and that combining RTnS and laboratory-based high-throughput sequencing leads to a significant improvement in genome assembly.


Rubin MJ, Brock MT, Davis AM, German ZM, Knapp M, Welch SM, Harmer SL, Maloof JN7, Davis SJ, Weinig C (2017) Circadian rhythms vary over the growing season and correlate with fitness components. Mol Ecol. 10.1111/mec.14287 Open Access

Seth Davies (University of York) is a co-author on this US-led work that conducts a study of field-growth Arabidopsis to evaluate the contribution of the circadian clock toward survival and fecundity. They show that variation in clock function correlates with growth performance in a natural environment.


Poulet A, Kriechbaumer V (2017) Bioinformatics Analysis of Phylogeny and Transcription of TAA/YUC Auxin Biosynthetic Genes. Int J Mol Sci. 10.3390/ijms18081791 Open Access

The paper from Oxford Brookes University provides a phylogenetic analysis of TAA/TAR (tryptophan aminotransferase related) and YUCCA proteins that are involved in auxin biosynthesis. In addition they provide tissue and cell-specific information about the function of these proteins and that their function is conserved in lower plant species.


Cui W, Wang H, Song J, Cao X, Rogers HJ, Francis D, Jia C, Sun L, Hou M, Yang Y, Tai P, Liu W (2017) Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips. Ecotoxicol Environ Saf. 10.1016/j.ecoenv.2017.07.074 Open Access

Hilary Rodgers (Cardiff University) is a co-author on this Chinese-led study that looks into the effect of cadmium treatment on the regulation of the cell cycle and DNA damage repair. They show that different cadmium concentrations effect different phases of the cell cycle.


Alqurashi M, Thomas L, Gehring C, Marondedze C (2017) A Microsomal Proteomics View of H₂O₂- and ABA-Dependent Responses. Proteomes. 10.3390/proteomes5030022 Open Access

This international collaboration includes members of the Cambridge Centre for Proteomics and conducts a quantitative analysis of the Arabidopsis microsomal proteome following treatment with hydrogen peroxide or ABA. Perhaps unsurprisingly a high number of proteins characterized as ‘responsing to stress’ were found upregulated following treatment with H2O2 or ABA.


Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, Song C, Zhuang M, Klasfeld S, He C, Santos AM, Helliwell C, Pruneda-Paz JL, Kay SA, Lin X, Cui S, Garcia MF, Clarenz O, Goodrich J, Zhang X, Austin RS,, Bonasio R, Wagner D (2017) Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nature Genet 10.1038/ng.3937

Justin Goodrich (University of Edinburgh) is a co-author on this US-led study that looks into the role of Polycomb response element (PREs) in directing the placement of the Polycomb repressive complex 2 (PRC2) via their interaction with a newly identified transcription factors. Justin has recently discussed a paper on a similar topic on the GARNet YouTube channel.


Hickman R, van Verk MC, Van Dijken AJH, Pereira Mendes M, Vroegop-Vos IA, Caarls L, Steenbergen M, Van Der Nagel I, Wesselink GJ, Jironkin A, Talbot A, Rhodes J, de Vries M, Schuurink RC, Denby K, Pieterse CMJ, Van Wees SCM (2017) Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. The Plant Cell 10.1105/tpc.16.00958 Open Access

GARNet committee member Katherine Denby (University of York) is a member of this large consortium of researchers who have performed a network analysis on the dynamics of jasmonic acid signaling


Evens NP, Buchner P, Williams LE, Hawkesford MJ (2017) The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum) Plant J. 10.1111/tpj.13655 Open Access

Malcolm Hawkesford (Rothamsted Research) leads this study that investigate a set of wheat bZIP transcription factors and ZIP transporters that are involved in the uptake and transport of zinc. As part of this work they use Arabidopsis to test the conserved function of these wheat proteins.


Larson ER, Van Zelm E, Roux C, Marion-Poll A, Blatt MR (2017) Clathrin Heavy Chain subunits coordinate endo- and exocytic traffic and affect stomatal movement. Plant Physiol. 10.1104/pp.17.00970 Open Access

Mike Blatt and Emily Larson (University of Glasgow) are the co-corresponding authors on this study that looks into the role of clathrin heavy chain on vesicular transport in Arabidopsis. They looked at clathrin mutants to show that the protein plays an unsurprisingly important role in both endo- and exocytosis.

Arabidopsis Research Roundup: August 23rd

There is a bumper crop of papers in this weeks UK Arabidopsis Research Roundup! First up is a remarkable piece of work from George Bassel’s (University of Birmingham) lab that defines the network of cellular interactions that occur in the hypocotyl. Second and third are papers from the JIC in which Lars Ostergaard’s group uncovers the extent of the ETTIN signaling network and Caroline Dean‘s and Martin Howard’s labs provide evidence for a two step progression toward stable gene silencing following vernalisation at the FLC locus. Fourthly is a study that includes members of Alex Webb’s group (University of Cambridge) as co-authors that investigates the link between the circadian clock and night time starch metabolism. Fifth is a paper from Christine Foyer (University of Leeds) that looks at the effect of commonly used inhibitors on cellular redox state and gene expression. The next paper includes Phillip Carella (SLCU) as a co-author and looks at the role of classic flowering time genes on the phenomenon of Age-Related Resistance and finally Lee Sweetlove’s (University of Oxford) lab has published a methods paper for the analysis of photorespiration in non-photosynthetic tissues.


Jackson MD, Xu H, Duran-Nebreda S, Stamm P, Bassel GW (2017) Topological analysis of multicellular complexity in the plant hypocotyl. Elife http:/​/​dx.​doi.​org/10.7554/eLife.26023

Open Access

George Bassel (University of Birmingham) is the corresponding author on this work that provides fantastic images of the plant hypocotyl taken as part of an analysis on the cell growth dynamics in this organ. They show that Arabidopsis epidermal atrichoblast cells demonstrate a reduced path length that coincides with preferential movement of small molecules through these cells. They analysis this process in various mutants showing which gene activities were necessary for the construction of this pattern. In addition they compared topological features in Arabidopsis, Poppy and Foxglove, showing that cell interactions and path length determinants differ between these organisms. Overall this manuscript defines the network principles that control complex organ construction as well as a function for higher order patterning.


Simonini S, Bencivenga S, Trick M, Ostergaard L (2017) Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis. Plant Cell 10.1105/tpc.17.00389

Open Access

Last year Lars Ostergaard (JIC) discussed a paper from his lab on the GARNet YouTube channel in which they defined a new auxin-signaling paradigm that involved the non-canoical Auxin Response Factor ETTIN. This follow up to that study investigates the genetic network controlled by ETTIN activity and defines a range of developmental processes dependent on ETTIN auxin sensing. Furthermore by looking at direct ETTIN targets they suggest that this protein acts as a central node for the coordination of auxin signaling in the shoot. Finally their analysis of the effect of auxin on interactions between ETTIN and other transcription factors indicates that these are important factors in the diverse set of growth process controlled by auxin.


Yang H, Berry S, Olsson TSG, Hartley M, Howard M, Dean C (2017) Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 10.1126/science.aan1121

This is another manuscript resulting from the extremely fruitful collaboration between the labs of Caroline Dean and Martin Howard at the John Innes Centre. This paper again focuses on the FLC locus and provides evidence for a new mechanism that defines how the binding of a subset of PRC2 factors nucleates a small region (<500bp) of chromatin at the FLC TSS, causing an increase in the repressive H3K27me2 histone mark. This metastable region serves as the seed for the development of stable epigenetic marks across the length of the locus through the activity of other distinct Polycomb factors. This occurs after a cold treatment and causes the spread of H3K27me2 repression. The novelty of this work is in the distinct temporal separation of phases of silencing, which ultimately result in the repression of FLC expression after a prolonged cold treatment.


Seki M, Ohara T, Hearn TJ, Frank A, da Silva VCH, Caldana C, Webb AAR, Satake A (2017) Adjustment of the Arabidopsis circadian oscillator by sugar signalling dictates the regulation of starch metabolism. Sci Rep. 10.1038/s41598-017-08325-y

Open Access

Research from Alex Webb’s group at the University of Cambridge features in the ARR for the second consecutive week, again on a similar topic. On this occasion they collaborate with Japanese colleagues to investigate the role of the circadian clock on determining the nighttime usage rate of starch that has accumulated during the day. They used a phase oscillator model to explain the link between the speed of the clock, starch breakdown and the maintenance of sucrose homeostasis. In addition they use Arabidopsis sugar response mutants to show that the circadian clock measures amount of cellular sucrose, which then controls the dynamics of starch breakdown.


Karpinska B, Alomrani SO, Foyer CH (2017) Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. Philos Trans R Soc Lond B Biol Sci. 10.1098/rstb.2016.0392 Open Access

Christine Foyer (University of Leeds) is the corresponding author on this paper that looks at the effect of cellular oxidation on retrograde signaling between chloroplasts, mitochondria and the nucleus. They use a novel in vivo redox reporter to measure the effect of commonly used organelle inhibitors on cellular redox state. They discovered that these inhibitors cause a variety of effects on redox state and gene expression, which differed dependent on cell type. Researchers should be aware of these effects when they are drawing conclusions from their own experiments using these inhibitors.


Wilson DC, Kempthorne CJ, Carella P, Liscombe DK, Cameron R (2017) Age-Related Resistance in Arabidopsis thaliana Involves the MADS-domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae. Mol Plant Microbe Interact 10.1094/MPMI-07-17-0172-R

Phillip Carella is a Research Fellow at SLCU and this work from this previous lab in Canada investigates Arabidopsis Age-Related Resistance (ARR), a process that requires SA accumulation, which is then thought to act as an antimicrobial agent. The ARR response is lacking in plants containing a mutation in for the SHORT VEGETATIVE PHASE (SVP) gene. These svp plants have reduced SA, thought to be due to uncoupled overactivity of the SUPPRESSOR OF OVEREXPRESSION OF CO 1 gene. Overall this study shows that the flowering time gene SVP plays a complementary role in the control of SA accumulation, which confers ARR to older plants.


Fernie AR, Bauwe H, Sweetlove LJ (2017) Investigating the Role of the Photorespiratory Pathway in Non-photosynthetic Tissues. Methods Mol Biol 10.1007/978-1-4939-7225-8_15

Lee Sweetlove (University of Oxford) describes a protocol for evaluating the role of the photorespiration on the control of growth in non-photosynthetic tissues. This can be scaled for use in both Arabidopsis and in larger plants.

Arabidopsis Research Roundup: July 3rd.

The Arabidopsis Research Roundup returns this week with selection of publications from institutions across the UK. Firstly George Bassel (Birmingham) leads a study that investigates the integration of inductive signals in the embryonic root. Secondly a group from the Oxford Brookes plant science group look into the literal linkages between the golgi apparatus and ER. Thirdly John Christie (Glasgow) and co-workers define a new variant of the phototropin receptor. Next Caroline Dean and Martin Howard (John Innes Centre) collaborate on work that defines the relationship between FLC, COOLAIR and cell size. The fifth paper is led by members of SLCU and investigates the regulatory influence of the Evening Complex of the circadian clock. The penultimate paper features work from Alison Smith’s group at the JIC that looks at dynamics of starch accumulation and degradation. Lastly is research from NIAB that defines the pathogeniticity of novel UK isolates of the fungal pathogen Verticillium longisporum.


Topham AT, Taylor RE, Yan D, Nambara E, Johnston IG, Bassel GW (2017) Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds. PNAS

http:/​/​dx.​doi.​org/10.1073/pnas.1704745114

Open Access

George Bassel (University of Birmingham) leads this study that identifies a decision making centre in the embryonic root that is defined by the intimate interaction between the hormones abscisic acid (ABA) and gibberellin (GA). The activity of this ‘decision centre’ is linked to both hormone transport and changes in temperature, the overall output of which is the decision to promotes seed germination or to delay until more favourable environmental conditions.

George discusses this paper on the GARNet YouTube channel.



Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C (2017) Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. J Exp Bot. http:/​/​dx.​doi.​org/10.1093/jxb/erx167

Open Access

Anne Osterrieder and Chris Hawes (Oxford Brookes University) continue their work that looks at  the cellular dynamics of the golgi apparatus with this study that identifies the AtCASP protein as a important component that tethers the golgi to the ER. They use live-cell imaging to visualise golgi formation in cells that have different levels of AtCASP, allowing the authors to confirm that ER-golgi tethering is disrupted without the activity of this protein.


Petersen J, Inoue SI, Kelly SM, Sullivan S, Kinoshita T, Christie JM (2017) Functional Characterization of a Constitutively Active Kinase Variant of Arabidopsis Phototropin 1

J Biol Chem. http:/​/​dx.​doi.​org/10.1074/jbc.M117.799643

Open Access

John Christie (University of Glasgow) collaborates with Japanese colleagues to identify a novel variant of the phototropin receptor. Study of this variant allows a greater understanding regarding the mode of action of this protein under different light conditions, as controlled by phosphorylation.


Ietswaart R, Rosa S, Wu Z, Dean C, Howard M (2017) Cell-Size-Dependent Transcription of FLC and Its Antisense Long Non-coding RNA COOLAIR Explain Cell-to-Cell Expression Variation. Cell Syst. http:/​/​dx.​doi.​org/10.1016/j.cels.2017.05.010

Open Access

Martin Howard and Caroline Dean (John Innes Centre) again collaborate on research that analyses the mode of regulation of FLC. They dissect RNA dynamics of FLC expression by single molecule in situ RNA fluorescence, showing that this is dependent on the presence of the antisense COOLAIR regulatory DNA. In the absence of COOLAIR they show FLC expression has a linear relationship with cell size but in the presence of the antisense transcript, FLC expression decreases with cell size. Overall they demonstrate FLC expression is tightly dependent on the presence of the antisense COOLAIR transcript.


Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V,, Cortijo S, Lai X,, Stöckle D, Zubieta C, Jaeger KE, Wigge PA (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants.

http:/​/​dx.​doi.​org/10.1038/nplants.2017.87

Free to view with this URL.

Phil Wigge and Katja Jaeger (SLCU) lead this study that investigates how the evening complex of the circadian clock coordinates the expression of numerous important growth regulators. This genome wide regulation is determined by temperature and concides with the binding of phytochrome B, which provides a cellularly mechanism of this level of environmental control.


Fernandez O, Ishihara H, George GM, Mengin V, Flis A, Sumner D, Arrivault S, Feil R, Lunn JE, Zeeman SC, Smith AM, Stitt M (2017) Foliar starch turnover occurs in long days and in falling light at the end of the day. Plant Physiol. http:/​/​dx.​doi.​org/10.1104/pp.17.00601

Open Access

On this paper Alison Smith (John Innes Centre) is a co-corresponding author together with Mark Stitt from the Max Planck Institute for Molecular Plant Physiology in Potsdam. They continue their work to investigate the dynamics of starch metabolism in Arabidopsis leaves. Broadly they show the rate of starch accumulation corresponds to the photosynthetic rate whilst degradation is linked to correct functioning of the circadian clock. They investigate this process in more detail by determining how the rate of starch degradation alters dependent on the time after dawn.


Depotter J, Rodriguez-Moreno L, Thomma BP, Wood T (2017) The emerging British Verticillium longisporum population consists of aggressive Brassica pathogens. Phytopathology http:/​/​dx.​doi.​org/10.1094/PHYTO-05-17-0184-R

Tom Wood (NIAB) is the corresponding author of this study that characterises four new UK isolates of the fungal pathogen Verticillium longisporum. The pathogenticity of V.longisporum was tested on Arabidopsis alongside three other Brassica crops. They demonstrate that the UK isolates were unusually aggressive yet this was not consistent across all Brassica cultivars with different fungal lineages showing different effects on oil seed rape, cabbage or cauliflower.

Arabidopsis Research Roundup: March 6th.

Tags: No Tags
Comments: No Comments
Published on: March 6, 2017

This weeks Arabidopsis Research Roundup includes four papers that focus on different aspects of plant cell biology. Firstly Ian Henderson’s research group in Cambridge defines the role of a critical component that determines crossover frequency in plants and other eukaryotes. Secondly Karl Oparka (Edinburgh) leads a broad collaboration that defines the mechanism of unloading of solutes and macromolecules from the root phloem. Thirdly Keith Lindsey (Durham) has developed a model that describes how auxin patterns the Arabidopsis root. Finally Mike Blatt (Glasgow) is part of a group that uses Arabidopsis as a framework for the study of ABA-signaling during stomatal movement in ferns.


Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FC, Martienssen RA, Henderson IR (2017) Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev

http:/​/​dx.​doi.​org/10.1101/gad.295501.116

Open Access

GARNet committee member Ian Henderson (University of Cambridge) leads this work that features collaborators from the UK, US and Poland. They use an experimental technique that allows facile analysis of recombination rates alongside a study of Arabidopsis natural variation to isolate a QTL that is critical for maintaining the correct number of crossovers during meiosis. This HEI10 gene codes for an E3 ligase (the targets of which are currently unknown) whose copy number is a key component in the control of recombination rate. Hei10 mutants have less crossovers whilst plants with extra copies of HEI10 have an increased number, especially in sub-telomeric regions of the genome. HEI10 is a highly conserved protein, demonstrating its important role to ensure appropriate levels of recombination throughout the evolution of eukaryotes.

Ian kindly takes ten minutes to discuss this paper with GARNet on our YouTube Channel.


Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero-Perez S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. Elife.

http:/​/​dx.​doi.​org/10.7554/eLife.24125

Open Access

Karl Oparka (University of Edinburgh) is the corresponding author of this study that includes researchers from the UK, US and Denmark. Movement of solutes and macromolecules through the plant phloem is key for the correct distribution of nutrients allowing for optimal growth. In this paper they discover that unloading of molecules from the phloem occurs via a set of specialized funnel plasmodesmata that link the phloem to adjacent pericycle cells. Remarkably they find that whereas solutes are constantly unloaded, larger proteins are released through these plasmodesmata in discrete pulses, which they describe as ‘batch unloading’. Overall this study provides evidence of a major role for the phloem-pericycle cells in the process of moving essential nutrients from the phloem into surrounding tissues.


Moore S, Liu J, Zhang X, Lindsey K (2017) A recovery principle provides insight into auxin pattern control in the Arabidopsis root. Sci Rep. http:/​/​dx.​doi.​org/10.1038/srep43004

Open Access

The work comes from the lab of Keith Lindsey (University of Durham) and developes a data-driven model that predicts the role of auxin patterning in the recovery of an Arabidopsis root following a perturbation of polar auxin transport. They demonstrate three main principles that define the role of auxin influx and efflux carriers in this process and also provide experimental validation for their predictions.


Cai S, Chen G, Wang Y, Huang Y, Marchant B, Wang Y, Yang Q, Dai F, Hills A, Franks PJ, Nevo E, Soltis D, Soltis P, Sessa E, Wolf PG, Xue D, Zhang G, Pogson BJ, Blatt MR, Chen ZH (2017)

Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns Plant Physiol

http:/​/​dx.​doi.​org/10.1104/pp.16.01848

Open Access

Mike Blatt (University of Glasgow) is a co-author on this global study that looks into the evolution of ABA-signaling in the control of stomatal closure. Although this study is focused on this process in ferns they build their findings on the analysis of transcriptional networks from Arabidopsis. Ultimately they find that the evolution of ABA-controlled guard cells movements are important in the adaptation of ferns to a terrestrial environment.

Arabidopsis Research Roundup: February 20th

Tags: No Tags
Comments: No Comments
Published on: February 19, 2017

This weeks Arabidopsis Research Roundup begins with two papers that look at endogenous and exogenous causes of cell proliferation. Firstly Mike Bevan (JIC) leads a team that looks into the role of controlled protein degradation in this process whilst secondly, Peter Etchells from Durham is a co-author on a study that investigates how nematode pathogens stimulate cell proliferation at the site of infection.

Thirdly is work featuring Cyril Zipfel and colleagues from TSL that looks at how autophosphorylation controls the activity of calcium dependent protein kinases. Fourthly is a broad collaboration led by Richard Mott (UCL) that uses genomic structural variation to identify novel loci. Next Simon Turner from the University of Manchester phylogenetically defines the RALK peptide lineages across plant species. Finally researchers at the University of York conduct a structural analysis of the Arabidopsis AtGSTF2 glutathione transferase.


Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y, Bevan MW (2017) Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis.

Genes Dev. http:/​/​dx.​doi.​org/10.1101/gad.292235.116

Open Access


Mike Bevan (John Innes Centre) is the corresponding author of this study that also includes researchers from labs in Belgium, Germany and China. They investigate a fundamental determinant of organ shape, the pattern of cell proliferation that leads to final cell size. They show that two RING E3 ligases activate the DA1 peptidase that in turn affects the stabilization and activity of a range of other proteins including the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22. Overall this results in continued cell proliferation and repression of endoreduplication, which ultimately serves to regulate the timing of the transition from cell proliferation to organ differentiation.

Mike discusses the science surrounding this paper on the GARNet YouTube channel.


Guo X,, Wang J, Gardner M, Fukuda H, Kondo Y, Etchells JP, Wang X, Mitchum MG. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathog. http:/​/​dx.​doi.​org/10.1371/journal.ppat.1006142

Open Access

Peter Etchells (University of Durham) is a co-author on this US-led study that looks at the effect of nematode-delivered CLE-like peptides on cell growth and how that impacts parasitism. This study has identified a new class of peptides from nematodes that are similar to the plant B-type CLE-like peptide TDIF (tracheary element differentiation inhibitory factor). They show that the nematodes alter the activity of the TDIF-TDR (TDIF receptor)-WOX4 signaling module during infection, whose endogenous function acts during procambial meristem cell proliferation. A variety of mutants involved in this process show reduced infection and leading to the hypothesis that WOX4 is a potential target for nematode CLEs. When exogenous nematode CLE peptides are added to Arabidopsis roots they cause massive cell proliferation. This demonstrates that this response is clearly important for the establishment of nematode infection, usually in cambial cell files.


Bender KW, Blackburn RK, Monaghan J, Derbyshire P, Menke FL, Zipfel C, Goshe MB, Zielinski RE, Huber SC (2017) Autophosphorylation-based calcium (Ca2+) sensitivity priming and Ca2+/Calmodulin inhibition of Arabidopsis thaliana Ca2+-dependent protein kinase 28 (CPK28) J Biol Chem.

http:/​/​dx.​doi.​org/10.1074/jbc.M116.763243

Cyril Zipfel (The Sainsbury Lab) features for a second consecutive week on the Arabidopsis research roundup, this time as a co-author in a study that investigates the role of autophosphorylation in the regulation of calcium (Ca2+) dependent protein kinases (CPKs). In addition they evaluated the role of Calmodulin (CaM) on the activity of CPKs, something that had been previously overlooked. Indeed they show that CPK28 is a CaM-binding protein and that autophosphorylation causes increased activity, especially in low Ca2+ concentrations. Therefore this research provides a mechanistic insight into how a cell might respond to low levels of Ca2+.


Imprialou M, Kahles A, Steffen JG, Osborne EJ, Gan X, Lempe J, Bhomra A, Belfield E, Visscher A, Greenhalgh R, Harberd NP, Goram R, Hein J, Robert-Seilaniantz A, Jones J, Stegle O, Kover P, Tsiantis M, Nordborg M, Rätsch G, Clark RM, Mott R Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits. Genetics. http:/​/​dx.​doi.​org/10.1534/genetics.116.192823

Open Access

Richard Mott (UCL) is corresponding author on this paper includes authors from throughout the UK, Europe and the US. They provide a new analysis of Arabidopsis populations that relies on the genome structural variation. They treat these structural variants as quantitative traits and subsequently map genetically in the same way as in a gene expression study. When a structural variant locus is linked to a genotype at a distant locus then it is designated as a site of transposition. Remarkably they show 25% of the structural variants can be assigned to the transposition events. This method of assessing structural variant loci is amendable to sequencing at low-coverage and this study identified loci that might be involved in germination and resistant to pathogens. Overall they find that genes within structural variants are more likely to be silenced and that this novel analysis technique is particularly useful when mapping transposition events.


Campbell L, Turner SR1(2017) A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Front Plant Sci. http:/​/​dx.​doi.​org/10.3389/fpls.2017.00037

Open Access

This study from the lab of Simon Turner (University of Manchester) analyse Rapid Alkalinization Factor (RALFs) cysteine-rich peptides from across 51 plant species. They infer that these plant RALFs originate from four major clades in which the majority of the variation exists in the mature peptide sequence, indicative of clade-specific activities. Clade IV accounts for a third of the total peptides yet these lack a number of sequence features thought to be important for RALF function, which leads the authors to speculate that this clade should be thought of as containing RALF-related peptides instead of regular RALFs. Further experimental work is needed in order to define the true nature of the functional relationship between Clades I-III and Clade IV.


Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G (2016) Structural evidence for Arabidopsis glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands. FEBS Open Bio. http:/​/​dx.​doi.​org/10.1002/2211-5463.12168

Open Access

This paper links plant science and structural biology in a study that was undertaken at the University of York. Plant Glutathione transferases (GSTs) have multiple roles including in the detoxification of xenobiotics as well as in various non-catalytic roles. In this work the structure of the Arabidopsis AtGSTF2 is revealed in tandem with a variety of non-catalytic partners including indole-3-aldehyde, camalexin, the flavonoid quercetrin and its non-rhamnosylated analogue quercetin. These are thought to bind to AtGSTF2 by hydrophobic interactions at either one or two symmetrical binding sites. The authors speculate that this non-catalytic binding might have a possible role in ligand transport.

Arabidopsis Research Roundup: January 11th

The first Arabidopsis Research Roundup of 2017 includes a wide range of studies that use our favourite model organism.

Firstly Kerry Franklin (University of Bristol) is the corresponding author on a paper that describes the complex interaction between the responses to sunlight and heat. Secondly Paul Dupree (University of Cambridge) leads a study that defines the important structural relationship between xylan and cellulose. Thirdly members of Gos Micklem’s group in Cambridge are part of the Araport team that present their ThaleMine tool.

Richard Napier (University of Warwick) is a co-author on the fourth paper that introduces a new chemical tool for study of the auxin response. The penultimate paper includes Matthew Terry (University of Southampton) on a paper that investigates the role of a Fe-S-containing protein cluster in chlorophyll biosynthesis and finally there is a methods paper from Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre that describes the use of FISH to detect single molecules of RNA.


Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA (2016) UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Current Biology http:/​/​dx.​doi.​org/10.1016/j.cub.2016.11.004

Open Access

This collaboration between the research groups of Kerry Franklin (University of Bristol) and Gareth Jenkins (University of Glasgow) looks at how the perception of UV-B light inhibits the morphological changes that occur in response to increased temperatures (thermomorphogenesis). This response includes induced hypocotyl elongation, which is mediated via PIF4 and various players in the auxin response. Interestingly the authors show that UV-B light perceived by UVR8 attenautes this response by preventing PIF4 abundance and by stabilising the the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1) protein. These results suggest that there exists a precise mechanism for fine-tuning the growth responses that occur in sunlight that would usually include both increased temperature and UV-B irradiation.
UVB_pic


Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, deAzevedo ER, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun.

http:/​/​dx.​doi.​org/10.1038/ncomms13902 Open Access
In this paper Paul Dupree (University Cambridge) collaborates both with colleagues in Spain and with his father Ray, who is a physicist at the University of Warwick. They use NMR to perform a structural analysis of xylan, which is the most prevalent non-cellulosic polysaccharide in the cell wall matrix and binds to cellulose microfibrils. Whereas in solution xylan forms a threefold helical screw, it flattens into a twofold helical screw ribbon to closely bind to cellulose when in the cell wall. They used the cellulose-deficient Arabidopsis irx3 mutant to show that the xylan two-fold screw confirmation breaks down when it cannot bind cellulose. The authors state that this finding has important implications in our understanding of the formation of the cell wall and perhaps more importantly how it might be broken down during attempts to maximise economic usages of plant biomass.

A local Cambridge newspaper reported that this finding could ‘pave the way for wooden skyscrapers’
XylanPic


Krishnakumar V, Contrino S, Cheng CY, Belyaeva I, Ferlanti ES, Miller JR, Vaughn MW, Micklem G, Town CD, Chan AP (2016) ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery. Plant Cell Physiol http:/​/​dx.​doi.​org/10.1093/pcp/pcw200 Open Access

This paper is presented by the Araport team, which is based in the USA but includes representatives from Gos Micklem’s lab in University of Cambridge. They outline the functionality of the ThaleMine data warehouse which is an important component of the tools included on Araport (https://www.araport.org/). ThaleMine collects a wide variety of data from public datasets and presents it in a easy-to-interrogate form, facilitating the experiments of both lab-based researchers or bioinformaticians. This tool is build upon the InterMine software framework, which has been widely adopted across other model organisms.

Chris Town and Sergio Contrino provided a hands-on workshop describing the tools on Araport in last year GARNet2016 meeting and their workshop materials can be downloaded here.


Steenackers WJ, Klíma P, Quareshy M, Cesarino I, Kumpf RP, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack MK, Ljung K, Friml J, Blakeslee JJ, Novák O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) cis-cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol. http:/​/​dx.​doi.​org/pp.00943.2016 Open Access
cCApic
This pan-european collaboration includes members of Richard Napier’s lab at the University of Warwick. They outline the activity of a novel inhibitor of auxin efflux transport called cis-cinnamic acid (c-CA). When c-CA is applied to growth media plants appears to exhibit an auxin-response phenotype yet these experiments show that c-CA is neither an auxin or anti-auxin and in fact blocks local auxin efflux, thus causing buildup of cellular auxin. This effect does not occur with t-CA showing specificity for c-CA and it does not affect long distance auxin transport, which occurs through the phloem. Therefore this paper presents a new pharamolgical tool for the study of in planta auxin transport and homeostasis.


Hu X, Page MT, Sumida A, Tanaka A, Terry MJ, Tanaka R (2016) The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling. Plant J.

http:/​/​dx.​doi.​org/10.1111/tpj.13455

Matthew Terry and Mike Page (University of Southampton) are co-authors on this Japanese-led study that investigates the function of the SUFB subunit of the SUFBCD iron-sulfur cluster. These Fe-S protein clusters play roles in many metabolic processes and the SUFB mutant hmc1 exhibits a defect in chlorophyll biosynthesis due to an accumulation of Mg-containing biosynthetic intermediates. In addition both SUFC- and SUFD-deficient RNAi lines accumulated the same Mg intermediate indicating that the SUFBCD cluster is responsible for this step necessary for chlorophyll production.


Duncan S, Olsson TS, Hartley M, Dean C, Rosa S (2016) A method for detecting single mRNA molecules in Arabidopsis thaliana. Plant Methods. http:/​/​dx.​doi.​org/10.1186/s13007-016-0114-x

Open Access
This paper from is lead by Stefanie Rosa in Caroline Dean’s lab at the John Innes Centre describes a novel method for imaging single molecules of RNA by smFISH. They analyse the localisation of both nascent and mature mRNAs, allowing for analysis of the location of RNA processing and translation.<
RosaPic

Arabidopsis Research Roundup: August 19th

This weeks Arabidopsis Research Roundup includes broad representation from Norwich Research Park with Caroline Dean, Enrico Coen and Cyril Zipfel each leading studies that focus respectively on the regulation of transcriptional state, auxin patterning that defines leaf shape or the molecular basis of the PAMP response.

Elsewhere Liam Dolan (Oxford) leads, and Malcolm Bennett (CPIB) is the principal UK contributor on studies that look into different aspects of the key molecular signals in either root hair or lateral root development.

Finally Richard Napier is a co-author on a study that better characterises the molecular basis of the well-used plant growth inhibitor MDCA.

Yang H, Howard M, Dean C (2016) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC PNAS http://dx.doi.org/10.1073/pnas.1605733113

Dame Caroline Dean and Martin Howard (JIC) lead this follow-on work from a paper highlighted in an ARR from the start of 2016. Here they use the FLOWERING LOCUS C (FLC) locus as a model to study the trans factors that control methylation state. They find a physical interaction between the H3K36 methyltransferase SDG8 (which promotes the active H3K36me3 mark) and the H3K27me3 demethylase ELF6 (which removes the silencing H3K27me3 mark). SDG8 also associated with RNA polymerase II and the PAF1 transcriptional regulatory complex. Therefore the authors suggest that the addition of active histone marks coincides with transcription at the locus whilst SDG8 and ELF6 exhibit co-dependent localisation to FLC chromatin. Therefore this interaction links activation and derepression and coordinates active transcription whilst preventing ectopic silencing.

Abley K, Sauret-Güeto S, Marée AF, Coen E (2016) Formation of polarity convergences underlying shoot outgrowths. Elife. http://dx.doi.org/10.7554/eLife.18165.

Open Access
elife-18165-fig7-v1
Enrico Coen (JIC) is the corresponding author on this investigation that had generated models that predict locations of leaf outgrowth linked to auxin biosynthesis and transport. They use live imaging in wildtype and kanadi1kanadi2 mutants to show that the cellular polarity of the PIN1 auxin transporter is orientated so as to move auxin away from regions with high levels of biosynthesis. In turn, this moves auxin toward regions with high expression of AUX/LAX auxin importers. This data allows the generation of detailed models that describe the processes that control auxin-mediated tissue-patterning (and are impossible to describe in a single paragraph).

Couto D, Niebergall R, Liang X, Bücherl CA, Sklenar J, Macho AP, Ntoukakis V, Derbyshire P, Altenbach D, Maclean D, Robatzek S, Uhrig J, Menke F, Zhou JM, Zipfel C (2016) The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1 PLoS Pathog. http://dx.doi.org/10.1371/journal.ppat.1005811

Open Access

Cyril Zipfel is the lead investigator on this study that links researchers at TSL with colleagues in China and Germany. The focus of this work is the cytoplasmic kinase BIK1, which is a target of several pattern recognition receptors (PRRs) that are involved in the defence response, and the novel protein phosphatase PP2C38, which acts as a negative regulator of BIK1. Under non-inductive conditions PP2C38 prevents BIK1 activity but following pathogen-associated molecular patterns (PAMP) perception, it is phosphorylated and dissociates from BIK1, allowing full activity. This study provides another layer of detail into the complex central immune response that allows plants to response to a vast array of pathogenic microorganisms.

Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M, Mimura T, Weijers D, Fukaki H, Laplaze L, Bennett MJ, Guyomarc’h S (2016) Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor Development. http://dx.doi.org/10.1242/dev.135319

Open Access

Malcolm Bennett and Darren Wells (CPIB) are authors on this international collaboration that links UK, Japanese, French and Dutch researchers. The essential role of the central organizer center (the quiescent center, QC) is well known in primary root meristem development but its role during lateral root (LR) formation remained unclear. LR formation is characterised by biphasic growth that involves early morphogenesis from the central stele and subsequent LR meristem formation. This study uses 3D imaging to demonstrate that LR QC cells originate from outer cell layers of early primordial, in a SCARECROW (SCR) dependent manner. Perturbing SCR function causes incorrect formation of the LR QC and prevents wildtype LR patterning. The manuscript also contains some excellent videos of growing LRs that are very informative.
AUX1-YFPKim CM, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon PLoS Genet.

http://dx.doi.org/10.1371/journal.pgen.1006211 Open Access

This study comes from Liam Dolan’s lab at the University of Oxford and moves their research focus on root hair development from Arabidopsis into the grass Brachypodium distachyon. ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix genes are expressed in cells that develop root hair fate in Arabidopsis and this study indentifies 3 RSl1 genes in Brachypodium which, when ecoptically expressed, are sufficient for the development of root hairs in all cell files. The function of these RSL proteins is conserved as the Brachypodium versions are able to restore a wildtype phenotype to root hair-less Arabidopsis mutants. Even though root hair patterning is significantly different in Brachypodium and Arabidopsis, this study shows the role of the RSL genes is conserved.
RootHairPic
Steenackers WJ, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novak O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology http://dx.doi.org/10.1104/pp.15.01972

Open Access

Richard Napier (Warwick) is the UK PI on this pan-European study that investigates the molecular basis behind the physiological role of the compound phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA), which inhibits the phenylpropanoid pathway, important in lignin formation. MDCA causes inhibition of primary root growth and increase proliferation of lateral roots, not through lignin perturbation but due to a disruption in auxin homeostasis. MS analysis demonstrates that MDCA causes overall changes in auxin biosynthesis, conjugation and catabolism, similar to changes observed in mutants involved in the phenylpropanoid pathways. These result link auxin and phenylpropanoid biosynthesis pathways and provide a new explanation for the well demonstrated phytotoxic properties of MDCA.

Arabidopsis Research Roundup: August 8th

This weeks Arabidopsis Roundup contains a wide breadth of UK research. Firstly the lab of Jurriaan Ton undertakes a global analysis into the role of methylation in the immune response. Jurriaan kindly provides a short audio description of this work. Secondly Dame Caroline Dean’s lab further add to our understanding of the vernalisation response in Arabidopsis. Thirdly is work from Rothamstead that evaluates the fatty acid composition of the seed aleurone while fourthly is a study from Durham and Oxford Brookes that introduces a novel regulator of autophagy. Finally is a study that adds clarity to the phenotypic effects resulting from ascorbic acid deficiency.

López Sánchez A, H M Stassen J, Furci L, Smith LM, Ton J (2016) The role of DNA (de)methylation in immune responsiveness of Arabidopsis Plant Journal http://dx.doi.org/10.1111/tpj.13252 Open Access

Jurriaan Ton is the corresponding for study from the University of Sheffield that looks into the role of reversible methylation on the Arabidopsis immune response. Methylation is a well known regulator of gene expression and in this research the authors attempt to interrogate its effect on the immune response. Hypo-methylated mutants are more resistant, whilst hyper-methylated mutants are more suspectible to the biotrophic pathogen Hyaloperonospora arabidopsidis (Hpa). Downstream gene expression changes in these methylation mutants focus at the level of cell-wall modification and salicylic acid (SA)-responses. Oppositely the hypo-methylated mutant nrpe1 is more suspective to the necrotrophic pathogen Plectosphaerella cucumerina whilst the hyper-methylated ros1 mutant is resistant to this organism. The Ton-lab has been involved in the discovery of the exciting phenomon of transgenerational acquired resistance, and both nrpe1 and ros1 fail to develop this response against Hpa. Global gene expression shows that either NRPE1 or ROS1 influence about 50% of the gene expression changes that occur following Hpa infection. Finally since less than 15% of genes with altered gene expression reside close to NRPE1 or ROS1, the authors are able to propose that much of this regulation is due to methylation effects that act in trans- throughout the genome.

Jurriaan kindly provides a comprehensive description of this work:


Qüesta JI, Song J, Geraldo N, An H, Dean C (2016) Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization Science. 353(6298):485-8 http://dx.doi.org/10.1126/science.aaf7354

VAL_pic
From http://science.sciencemag.org/content/353/6298/485

Dame Caroline Dean (John Innes Centre) is the lead author of this manuscript that builds upon the portfolio of work from her lab aimed at characterising the vernalization response. This work again uses the FLOWERING LOCUS C (FLC) gene as a model to study the factors that allow gene-silencing mediated by Polycomb silencing complexes. The authors find that a single intragenic point mutation prevents nucleation of the homeodomain-Polycomb repressive complex 2 (PHD-PRC2) to this region, a process that involves the transcriptional repressor VAL1. In the wildtype FLC locus the localisation of VAL1 promotes transcriptional silencing through histone deacylation through interaction with the conserved apoptosis- and splicing-associated protein (ASAP) complex. This study adds an additional layer of molecular complexity to the process of regulating the FLC locus and provides insight into the important role for primary sequence-specific targeting during gene silencing.

Bryant F, Munoz-Azcarate O, Kelly AA, Beaudoin F, Kurup S, Eastmond PJ (2016) Acyl carrier protein DESATURASE 2 and 3 are responsible for making omega-7 fatty acids in the aleurone Plant Physiology http://dx.doi.org/10.1104/pp.16.00836 Open Access

Peter Eastmond (Rothamstead) leads this work that investigates the components that determine seed fatty acid content. Specifically Omega-7 monounsaturated fatty acids (ω-7s) are enriched in the aleurone of Arabidopsis seeds so this study used a Multiparent Advanced Generation Inter-Cross population to identify a QTL linked to ω-7 content that includes the ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 genes. AAD family members possess both stearoyl- and palmitoyl-ACP Δ9 desaturase activity and aad3 mutants show a significant reduction in ω-7 content, which is common with mutants in other AAD family members. In addition the authors show that the FATTY ACID ELONGASE1 protein is required for accumulation of long-chain ω-7s in the aleurone. Overall this research provides new insight into the pathway that produces ω-7s in the aleurone, indicating that these genes might represent a target for future strategies to alter seed fatty acid content.

Wang P, Richardson C, Hawes C, Hussey PJ.(2016) Arabidopsis NAP1 Regulates the Formation of Autophagosomes Current Biology http://dx.doi.org/10.1016/j.cub.2016.06.008

NAP1_pic
From http://www.sciencedirect.com/science/article/pii/S0960982216306200

This is collaborative effort between the labs of Patrick Hussey (Durham) and Chris Hawes (Oxford Brookes) investigates the role of the NAP1 protein, which is a member of the SCAR/WAVE complex, on the formation of autophagosomes. These organelles are induced by certain stress conditions and fewer are produced in nap1 mutants after starvation stress. This also corresponds to wildtype NAP1 localisation. Concomitantly nap1 mutants, as well as mutants of other members of SCAR/WAVE complex, are more suspectible to nitrogen starvation and is less tolerant to salt stress. The best characterised role of the SCAR/WAVE complex is during ARP2/3-mediated actin nucleation yet this study demonstrates an addition function as a regulatory of autophagy.

Lim B, Smirnoff N, Cobbett CS, Golz JF (2016) Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth Front Plant Sci. 7:1025

http://dx.doi.org/10.3389/fpls.2016.01025 Open Access

Nick Smirnoff (Exeter) is a co-author on the Australian-led research into Arabidopsis vtc mutants, which have a significant reduction in ascorbate-acid levels. Ascorbate is synthesized via the L-galactose pathway, the first enzyme of which is encoded by the paralogs VITAMIN C2 (VTC2) and VTC5. This study characterises the growth of a vtc2 T-DNA mutant that has a 30% reduction in ascorbate levels. Surprisingly this does not result in any signficant phenotypic and they suggest that a previously characterised growth reduction in other vtc2 mutant alleles is likely due to unknown genetic lesions.

«page 1 of 4

Follow Me
TwitterRSS
GARNetweets
Categories
December 2024
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Welcome , today is Sunday, December 8, 2024