Arabidopsis Research Roundup: June 9th

This edition of the Arabidopsis Research Roundup pleasingly includes four Open Access articles. Firstly Jose Gutierrez-Marcos leads an investigation into stress-induced memory, secondly Richard Morris is the corresponding author on a study that has developed a new model that explains waves of calcium signalling that response to environmental stresses. Thirdly is a UK-US collaboration that defines the factors that control carotenoid accumulation in seeds. Finally Chris Hawes leads a study that characterises the novel localisation of a subset of auxin biosynthetic enzymes.

Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity Elife Open AccessStress_Model

Jose Gutierrez-Marcos is the corresponding author on this pan-European study that adds to our increasing knowledge about the role of generational memory in the response to stress. Distinct regions of the Arabidopsis genome are susceptible to fluctuations in the level of DNA methylation in response to hyperosmotic stress, a condition that persists into a following generation. This effect is transmitted through the female lineage and the authors investigate this effect in more detail by focussing on a single epigenetically targeted locus. By designing experiments that ran over a series of generations they show that a plants ‘short term memory’ is reliant on the DNA methylation machinery and is able to transmit a distinct developmental response to immediate offspring.

Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted Calcium Wave Dependent on AtRBOHD and TPC1 Propagates the Systemic Response to Salt Stress in Arabidopsis Roots. Plant Physiol.

http:/​/​dx.​doi.​org/​10.​1104/​pp.​16.​00215 Open Access

Richard Morris (JIC) leads this US-UK collaboration that investigates the downstream mechanisms that occur after the waves of ROS and Ca2+ signalling that respond to environmental stresses. The authors show that the current model for propagation of this wave, which relies upon a diffusive wave Ca2+ signalling, is unable to explain the speed of transmission of the wave. The authors develop a new model that adds a ROS-signalling component to explain the velocity of the Ca2+ wave and experimentally verify that their model could represent the in vivo situation. In addition they show that the effectiveness of this ROS-release signalling module is dependent on the activity of the vacuolar ion channel TPC1 and the NADPH Oxidase AtRBOHD.
Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M, Lipka AE, Angelovici R, Gore MA, DellaPenna D (2016) ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing Arabidopsis seed. Plant Physiol.

http:/​/​dx.​doi.​org/​10.​1104/​pp.​16.​00604 Open Access

The lead author of this US-led study is Sabrina Gonzalez-Jorge who is currently a post-doc in GARNet committee member Ian Henderson’s lab in Cambridge. This study elucidates nine loci that are involved in carotenoid homeostasis in Arabidopsis seeds and shows that plants lacking the ZEAXANTHIN EPOXIDASE (ZEP) protein have a six-fold reduction in total seed carotenoids. Natural variation within the ZEP gene is able to account for the fine-tuning of seed carotenoid content and acts upstream of two previously characterised CAROTENOID CLEAVAGE DIOXYGENASE enzymes. Importantly, and somewhat surprisingly, four of the nine Arabidopsis loci are thought to have conserved function in determining the composition of carotenoids in maize kernels. This demonstrates that studying this phenomonen in Arabidopsis is highly relevant for study of the same process in economically important crops.

Kriechbaumer V, Botchway SW, Hawes C (2016) Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway J Exp Bot. Open Access

Chris Hawes (Oxford Brookes) leads this study that localised a subset of enzymes involved in auxin biosynthesis to the endoplasmic reticulum. In addition certain of these enzymes appear to physically interact. This localisation is confirmed by showing ER microsomal fractions are able to undertake auxin biosynthesis. The auxin signalling pathway is complex and well characterised yet this finding adds another layer of regulation that might influence the dynamics of auxin activity.

UKPPN Root Phenotyping Workshop: April 2016

Tags: No Tags
Comments: No Comments
Published on: April 15, 2016

The UK Plant Phenotyping Network is a BBSRC sponsored network that has supported meetings and workshops since 2012. A representative from GARNet sits on the UKPPN committee so it was a pleasure to attend the UKPPN Root Phenotyping Meeting that recently took place in the Department of Plant Science at the University of Nottingham.

For someone whose previous research involved growing Arabidopsis plates on agar plates or in controlled growth chambers, this workshop was a real eye-opener as it highlighted the excellent science that is largely aimed at discovering how plant roots interact with their local environment.

This work does mostly not involve Arabdopsis although many of the studies investigate aspects of root growth whose fundamentals have been discovered from lab-studies of the worlds favourite weed. The meeting was hosted by Professor Malcolm Bennett and some of his current Arabidopsis work involves the hydrotropic response which is perfectly aligned to the in-terra studies of how cereal and Brassica roots interact with the available nutrients and water. This work has been facilitated by an amalgamation of research grants that ultimately resulted in the building of the Hounsfield Facility. This purpose built facility contains a generous greenhouse, a human-sized automated robot and three different imagers for CT scanning.

FullSizeRenderThis has allowed a better understanding of how roots interact with soils. However applying more scientific rigour to this process has only been made possible by the analysis software that has been developed at CIPB alongside this imaging technology. During the UKPPN meeting Stefan Mairhofer (CPIB) outlined the development of the Root Phenotyping Pipeline that has allowed researchers to make statistical sense of the CT data that they obtain from the Hounsfield facility. Later in the same session Stefan Gerth (Frauhofer Institute for Integrated Circuits) presented their own technology that they are using for root phenotyping with CT imaging. Finally Erik Esveld (Wageningen) introduces the potential for using XRT imaging to analyse plants grown on drained Rockwool.

Earlier in the day the meeting started with a session on field phenotyping that included an introduction to ‘Shovelomics’ from Tobias Wojciechowski (Julich). He described how they are developing methods for the imaging of whole root systems that have been dug up from the soil. As expected, one difficulty with this work is inconsistency and indeed Tobias showed that the variation between root samples in a plot was greater than that seen between different geographic genotypes isolated from Germany, Norway or Austria. The software that has been developed in house at Julich is able to take 40K images overnight and this data is held in the <a href="http://dirt.iplantcollaborative cialis site” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘’, ‘Digital Imaging of Root Traits’]);” target=”_blank”>Digital Imaging of Root Traits (DIRT) platform,  now being administered through CyVerse. Perhaps there is no greater contrast than the physical digging up plants versus the in silico analysis on CyVerse but perfectly shows the interdiscplinary work occuring in this research area!IMG_9554

The field phenotyping session ended with an enjoyable trip out into the Sutton Bonnington research sites to have demonstrations of Electrical Resistance Tomography by Andrew Binley (this technique allows the measurement of soil water levels) and also Tractor-Mounted Soil Coring from Larry York (which produces soil cores to be used for later root analysis). Pleasingly, the soil water levels predicted by the EMI could be observed in the soil cores.

It might have been unusual for a conference to take people out into the field but it really highlighted the level of challenge that it will take to effectively phenotype a varied field populations of plants!

FullSizeRender_1The second day of the meeting focused on root imaging and modeling, with the audience blown away by the incredible images shown by Jonathan Lynch (Penn State University and University of Nottingham) generated using laser ablation tomography. In this technique root sections are destructively imaged and then digitally reconstituted using 3D software to give fantastic videos that investigate the length of root sections.

Professor Lynch discusses the importance of aerenchyma cells that are found in the cortex of many cereal plants. These essentially empty cells enable a lower overall metabolic cost, therefore clearly benefits the overall energy costs of the plant. Detailed phenotype analysis of aerenchyma has made possible by the RootScan software that has been developed in the PSU Roots lab and is freely available for use.

Later in the session Huw Jones from NIAB described a novel method for the estimation of root biomass. They put together two items that young researchers are told should never mix: soil and PCR. In this technique they perform qPCR on soil samples using primers that are specific for your plant of interest, which allows the approximation of the root biomass within the sample. This technique has also been used to estimate the interactions between plants and weeds across a range of soil depths and struck me as a relatively inexpensive way for this type of analysis, which can provide useful data about the composition of a soil sample.

The keynote talk of the modeling session was Johannes Postma (Julich) who provided an enthusiastic explanation of his attempts to link root phenotypes, soil content and plant biomass. One predicted finding that corresponded with real-life data was that plants with root aerenchyma showed increased biomass in soils with reduced phosphorous. It was excellent to hear this analysis as for much of the meeting the link between root phenotype and yield was not fully made. This is likely to do with the challenges of the imaging technology and the difficulties in fully correlating complex root phenotype with yield.

This meeting demonstrated that the field (pardon the pun) of root phenotyping has great strength especially within the UK, France and Germany. On day one of the meeting Gabriele Pastori (BBSRC) introduced the recently published European Strategy Forum on Research Infrastructures (ESFRI) Roadmap which has “identified the new Research Infrastructures (RI) of pan-European interest corresponding to the long term needs of the European research communities”. Through the work of the UKPPN and others, this document introduces a proposed area of interest in Plant Phenotyping, called EMPHASIS.

EMPHASISThis roadmap is used as an introduction to technologies for which the EU would be interested in developing cross-border infrastructure, by facilitating the legal and financial tools necessary for these type of linkages. At this early stage the EMPHASIS project has no funding associated with it yet the involvement of the BBSRC demonstrates that there is willingness on a national level to discuss future possibilities for funding this area of research. Ultimately any grant funding will come from research bodies within each contributing nation so over the next few years it is encumbent on the UK Plant Phenotyping community to decide how this which occur. Later in the meeting the leader of the French Plant Phenotyping Network (FPPN), Francois Tardieu describes how they have brought together 15 collaborator organisations to tackle phenotyping challenges (see image below)

FPPNThe UK would not look to replicate French or German efforts but rather focus on areas of expertise in which the UK is a world-leader and will provide greatest input toward a pan-European plant phenotyping network. A significant amount of work has already gone into the highlighting of this area for possible European involvement so watch this space to find out how the UKPPN and others can convince UK funders to support this wider initiative.

Overall this was an excellent final meeting of the UKPPN grant and since the first UKPPN gathering the research community has clearly come a long way. It is hoped that the EMPHASIS project and other initiatives will continue to support plant phenotyping across all scales from molecular analysis through to whole field phenotyping and environmental considerations.

Storify of tweets from the meeting put together by the Susie Lydon at CPIB.

Arabidopsis Research Roundup: January 29th

This weeks Arabidopsis Research Roundup features a paper from David Baulcombe and Joe Ecker that further deciphers mechanisms of RNA silencing and is kindly discussed by postdoc Mat Lewsey in a short audio description. Elsewhere there are three studies that include researchers from CPIB in Nottingham. Leah Band contributes to a study that links environment sensing, cell death and auxin signaling whilst Ive De Smet leads a study that finds new proteins involved in cell division. Malcolm Bennett and John King take a modeling approach to describe auxin signaling via the GH3 protein family. Finally Frank Menke leads a study that provides more detail into Pattern Recognition Receptor (PRR) mediated immune signaling and then Jim Dunwell participates in a paper that describes a new method of analyzing GWAS data.

Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, Nery JR, Baulcombe DC, Ecker JR (2016) Mobile small RNAs regulate genome-wide DNA methylation. Proc Natl Acad Sci U S A. Open Access

Over the past few years RNA-mediated silencing has emerged a key mechanism for the control of gene expression. This study is a collaboration between the lab of Sir David Balcombe (Cambridge) and Joe Ecker at the SALK institute in California. Mat Lewsey, who is a British postdoc working with Professor Ecker, kindly provided a short audio description of the paper.

These groups have previously shown that sRNAs are highly mobile throughout the plant. This study shows that thousands of loci expressed in roots are dependent on mobile sRNAs generated from the shoot. They unpick the genetic basis of this response showing that it is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) but not CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. They also show that mobile sRNAs are resposible for the silencing of TEs that are found in gene-rich regions, although this is not a physiologically important response in Arabidopsis, which contains a relatively small amount of transposon tissue. Interestingly they a show that sRNAs generated from different Arabidopsis ecotypes are able to move across graft junctions and can cause methylation in usually unmethylated regions.

PNASpicXuan W, Band LR, Kumpf RP, Van Damme D, Parizot B, De Rop G, Opdenacker D, Möller BK, Skorzinski N, Njo MF, De Rybel B, Audenaert D, Nowack MK, Vanneste S, Beeckman T (2016) Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science . 351(6271):384-7

This study is led by Tom Beeckman from Gent University and features Leah Band from CPIB in Nottingham. They reveal an exciting relationship between cell death in root cap cells and hormone signaling. The root cap is a protective tissue that overlies the Arabidopsis root tip and might be considered as an ‘inactive’ tissue. However this study shows that an auxin signal released from root cap cells sets the spacing of lateral organs along the root. As root cap cells move up the root they undergo programmed cell death, which in turn releases a pulse of auxin and establishes a pattern of lateral root formation. The authors suggest that this relationship might integrate external soil conditions so that lateral roots will develop to optimise uptake of water and nutrients. It is well known that an auxin signal simulates lateral root formation but this study provides an explanation as to the genesis of this signal and its integration with external environmental factors.

Yue K, Sandal P, Williams EL, Murphy E, Stes E, Nikonorova N, Ramakrishna P, Czyzewicz N, Montero-Morales L, Kumpf R, Lin Z, van de Cotte B, Iqbal M, Van Bel M, Van De Slijke E, Meyer MR, Gadeyne A, Zipfel C, De Jaeger G, Van Montagu M, Van Damme D, Gevaert K, Rao AG, Beeckman T, De Smet I (2016) PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root. Proc Natl Acad Sci U S A.

This broad collaboration between US-UK and Belgian researchers is led by Tom Beeckman and Ive De Smet, who works at CPIB in Nottingham. In addition it includes a contribution from Cyril Zipfel at TSL. This study aimed to identify proteins that interact with the plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4), which plays a role in the control of cell division in the Arabidopsis root. They find that PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes interacts with ACR4 and has a previous uncharacterised role in control of formative cell divisions. The authors show that the biochemical network that links ACR4 and PP2A-3 is regulated by phosphorylation.

Mellor N, Bennett MJ, King JR (2016) GH3-Mediated Auxin Conjugation Can Result in Either Transient or Oscillatory Transcriptional Auxin Responses. Bull Math Biol.

This paper led by Professor Malcolm Bennett and John King from CPIB is an example of the growing number of multi-disciplinary interactions between biologists and mathematicians. Here a model is developed that interrogates auxin signaling and homeostasis through the GH3 gene family. This includes a parameter that considers auxin transport via the LAX3 influx protein, which, together with the activity of GH3 proteins can facilitate a positive feedback loop that allows cells to response to excess auxin.

Mithoe SC, Ludwig C, Pel MJ, Cucinotta M, Casartelli A, Mbengue M, Sklenar J, Derbyshire P, Robatzek S, Pieterse CM, Aebersold R, Menke FL (2016) Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep. Open Access

Frank Menke (TSL, Norwich) is the leader on this collaboration between UK, Dutch and Swiss researchers that investigates innate immunity signaling mediated via Pattern Recognition Receptors (PRRs). Tight control of this signalling is very important to prevent spurious activation of the immune response. These authors find that the differentially phosphorylated MKKK7 can interact with the FLS2 protein, which is key in the perception of bacterial flagellin. In turn MKKK7 attenuates the signalling of a downstream MAPK that contributes to defence-related gene expression. Therefore the show that the FLS2-MKKK7 signaling module is critical for control of innate immunity.

Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Dunwell JM, Xu S, Zhang YM (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep. Open Access

Professor Jim Dunwell (Reading) is a UK contributor to this largely Chinese publication that introduces a new method to analysis GWAS-style data. They propose an analysis based on random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) and using stimulations show that their new method can be powerful than conventional types of analysis. To test the method they analysed flowering time traits in Arabidopsis and detected more genes that were involved in the process.

For those interested in different-types of GWAS analysis, Professor David Salt introduced another new method during a recent ARR.

Arabidopsis Research Roundup: January 22nd 2016

A mixed selection of research in this UK Arabidopsis Roundup. Firstly a study from Stefan Kepinski and Mark Estelle that adds another layer of understanding to the regulation of the auxin response. Enrique Lopez-Juez leads a study into signaling between the nucleus and chloroplast while Tracey Lawson contributes to an investigation into role of starch metabolism in guard cells. Fran Maathuis and co-worker looks at differences in vacuolar transport between Arabidopsis ecotypes while Alan Marchant is involved in a study of cell wall pectins. Finally William Amos has uses the 1001genomes project to investigate heterozygote instability (HI).

Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun. 5;7:10269. Open Access

Stefan Kepinski (Leeds) is the UK lead on this collaboration with Mark Estelle from UCSD and it continues their previous work that investigates the much-studied auxin receptor TIR1. Arabidopsis seedlings grown at 29C show auxin-dependent hypocotyl elongation although the molecular mechanism behind this response has remained opaque. In this study they show that in high temperatures TIR1 accumulates in a manner dependent on the molecular chaperone, HSP90. In addition HSP90 and the co-chaperone SGT1 directly interact with TIR1. Inhibition of HSP90 results in degradation of the TIR1 and causes a range of auxin-mediated growth processes at both high and low temperatures. This study adds another level of complexity to the molecular basis of the auxin response.

Hills AC, Khan S, López-Juez E (2015) Chloroplast Biogenesis-Associated Nuclear Genes: Control by Plastid Signals Evolved Prior to Their Regulation as Part of Photomorphogenesis. Front Plant Sci. 10;6:1078. Open Access

The work comes exclusively from the lab of Enrique Lopez-Juez at Royal Holloway and investigates at the expression of photosynthesis-associated nuclear genes (PhANGs). This expression is dependent on light as well as plastid-to-nucleus “biogenic” communication signals and causes the assembly of photosynthesis component chloroplasts. The authors investigate the factors that control the activity of the Lhcb promotor in the light and the dark, both in angiosperms and gymnosperms. They propose that suppression of PhANG responses has contributed to the evolution of light-controlled chloroplast biogenesis.

Horrer D, Flütsch S, Pazmino D, Matthews JS, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D (2015) Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening. Current Biology
Graphical Abstract
Tracey Lawson (University of Essex) is the UK lead on this UK-French-Swiss study that uses the stomatal guard cell experimental system to investigate the role of carbon metabolism in the response to blue light. Interestingly guard cells differ from other leave tissues in that they contain starch at the end of the night. However this starch store is rapidly degraded within 30minutes of light and is important for stomatal opening and subsequent biomass production. This starch degradation involves action of two enzymes, β-amylase 1 (BAM1) and α-amylase 3 (AMY3) that do not function during night time starch degradation in other tissues. This process is coordinated by blue light signalling and correlates with the activity of a plasma membrane ATPase. This study adds yet another level of our understanding into the mechanism of stomatal opening. See image for a proposed model of this process (from Cell Press).

Hartley TN, Maathuis FJ (2015) Allelic variation in the vacuolar TPK1 channel affects its calcium dependence and may impact on stomatal conductance. FEBS Lett. 90(1):110-7

Fran Maathuis (University of York) is the leader on this study that assesses the transport properties of two different vacuolar-localised AtTPK1 alleles identified for a study of natural variation in Arabidopsis. They use patch-clamping the interrogate the difference between these proteins from Lansberg (Ler) and Kas-2 ecotypes, when they showed different levels of Ca(2+) dependence. This coincided with lower water loss in either the presence of absence of ABA and higher Ler AtTPK1 activity at similar cytoplasmic [Ca]. The authors present a model that helps to explain their findings.

Dumont M, Lehner A, Vauzeilles B,, Malassis J, Marchant A, Smyth K, Linclau B, Baron A, Mas Pons J, Anderson CT, Schapman D, Galas L, Mollet JC, Lerouge P (2015) Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-D-manno-oct-2-ulosonic acid. Plant Journal.

The majority of the authors on this Technical Advance are from French institutions but also includes UK plant scientist Alan Marchant (University of Southampton). They investigate the chemistry of Arabidopsis and tobacco cell walls, specifically looking at the incorperation of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), a monosaccharide that is only found the cell wall pectin rhamnogalacturonan-II (RG-II). They show that RG-II is found in the primary cell wall including within the root elongation zone. Finally they show that monitoring of Kdo is an effective way to study the synthesis and redistribution of RG-II during root growth.

Amos W (2015) Heterozygosity increases microsatellite mutation rate. Biol Lett. Open Access

This study is led by Professor William Amos who is based in the Zoology department at Cambridge. He is not usually a plant science researcher but used the excellent 1001genome project to investigate heterozygote instability (HI) in Arabidopsis. He looked at AC microsatellite sequences from over 1100 genome sequences and used rare alleles as a surrogate for more recent mutations, ultimately showing that rare alleles are more likely to occur at locus-population combinations with higher heterozygosity even when all populations carry exactly the same number of alleles. This shows that local heterozygosity causes more mutations and represents a positive feedback loop.

Arabidopsis Research Roundup: November 25th

This weeks Arabidopsis Research Roundup contains four papers each with a different focus. Firstly is a large-scale investigation that attempts to define the transcriptional changes that occur in response to bacterial infection. Second is a study that investigates a newly proposed role for the chloroplast chaperone Hsp93. Thirdly is another piece of work that also involves University of Oxford researchers and investigates the genetic networks that control leaf morphology. Finally is an updated plant-specific protocol for the commonly used technique of Chromatin Immunoprecipitation.

Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Penfold CA, Jenkins DJ, Hill C, Baxter L, Kulasekaran S, Truman W, Littlejohn G, Prusinska J, Mead A, Steinbrenner J, Hickman R, Rand D, Wild DL, Ott S, Buchanan-Wollaston V, Smirnoff N, Beynon J, Denby K, Grant M (2015) Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000 Plant Cell. Open Access

This ‘Large Scale Biology’ publication is a collaboration between the Universities of Exeter and Warwick, led by Murray Grant and current GARNet Advisory board member Katherine Denby. This study investigates the transcriptional changes that occur over a long time course in response to infection by the pathogen Pseudomonas syringae pv tomato DC3000. The authors aim to differentiate between the changes associated with endogenous microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and those orchestrated by pathogen effectors. The responses to pathogenic and non-pathogenic P.syringae were compared and using novel computational analysis, it was shown that the majority of gene expression changes that contribute to disease or defense responses occurred within 6hour post-infection, well before pathogen multiplication. Broadly it was found that chloroplast-associated genes are suppressed by a MAMP-triggered response, presumably to restrict nutrient availability. Ultimately this manuscript identified specific promotor elements that are involved in either the MTI response or utilised by the infecting bacteria.

Corresponding author Professor Murray Grant kindly takes ten minutes to discuss the finding of this paper and the community resource that it represents. He also discusses another paper involving the Jasmonate response that resulted from this dataset and was recently highlighted in the Research Roundup. Interview end at 11m10s.

Flores-Pérez Ú1, Bédard J1, Tanabe N2, Lymperopoulos P2, Clarke AK3, Jarvis P (2015) Functional analysis of the Hsp93/ClpC chaperone at the chloroplast envelope Plant Physiology. Open Access

Paul Jarvis (Oxford) is the corresponding author on this study in which his lab collaborates with Swedish researchers to investigate the role of the Hsp93/ClpC chaperone protein in protein import into the chloroplast. This recently postulated role for this protein has not yet been experimental tested so they generated a hsp93[P-] mutant that lacked a functional ClpP-binding motif (PBM), which confers the already determined role for Hsp93 in proteolysis that occurs in the chloroplast stroma. The hsp93[P-] mutant localises to the chloroplast envelope and associates with TIC transport machinery but was unable to complement the phenotypes of a hsp93 null mutant. This showed that the PBM domain was essential for its function. Expression of the Hsp93[P-] mutant in the hsp93 null background did not improve protein import so the authors concluded that these results do not confirm this newly postulated role for the protein and they suggest that its functional role occurs immediately after its substrate had been transported into the chloroplast.

Rast-Somssich MI, Broholm S, Jenkins H, Canales C, Vlad D, Kwantes M, Bilsborough G, Dello Ioio R, Ewing RM, Laufs P, Huijser P, Ohno C, Heisler MG, Hay A, Tsiantis M (2015) Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta Genes Dev. 29(22):2391-404 Open Access

The study includes researchers from Oxford and Southampton Universities in collaboration with those from Italy, France and Germany in work that is led by Angela Hay and Miltos Tsiantis, who were both previously based in Oxford. This is familiar territory for this group as they compare leaf development between Arabidopsis, which has simple leaves, and the related , Cardamine hirsuta, which has dissected leaves. In this new work they transfer the SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes between the two species and investigate their ability to modify leaf form. In Cardamine, expression of BP is controlled by crosstalk between the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1) gene. However this regulatory network does not function in Arabidopsis and therefore leads to the establishment of differing regulatory networks that the authors propose are responsible for the alterations in organ geometry.

Posé D, Yant L (2016) DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants Methods Mol Biol. 1363:25-35.

Levi Yant is a new member of faculty at the John Innes Centre and is the lead author on this paper that introduces an updated protocol for Chromatin Immunoprecipitation in Plants (ChIP). They have used this technique in his lab to identify target genes for a number of transcriptional regulators that are involved in Arabidopsis floral development.

Arabidopsis Research Roundup: Sept 11th

Tags: No Tags
Comments: No Comments
Published on: September 11, 2015

After a slow couple of weeks the Arabidopsis Research Roundup returns with some publications in high profile journals. None more so than the widely reported study from the University of York that highlights Arabidopsis plants which are able to grow on TNT-contaminated soils. Three other broadly cell biology-based studies from the JIC, Cardiff and Nottingham look at cell wall composition, vascular patterning and polyadenylation respectively. Finally a study from the James Hutton Institute presents an improved tool for identification of DNA-binding proteins in plants.

Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, Bruce NC (2015) Monodehydroascorbate reductase mediates TNT toxicity in plants Science. 349 1072-1075

The most highly reported manuscript of this week comes from Neil Bruce’s group at the University of York. This publication in Science discusses the use of plants in the removal of historic pollution from TNT-based explosions. TNT phytotoxicity results from the creation of a reactive oxygen species in the mitochondria, a reaction catalyzed by monodehydroascorbate reductase6 (MDHAR6). The authors show that an Arabidopsis mdhar6 mutant is tolerance to TNT with no significant reduction in biomass. This discovery may very well contribute toward the remediation of contaminated sites with plants. This paper has been also reported widely in the general media including at Wired or Reuters.

Seguela-Arnaud M, Smith C, Uribe MC, May S, Fischl H, McKenzie N, Bevan MW (2015) The Mediator complex subunits MED25/PFT1 and MED8 are required for transcriptional responses to changes in cell wall arabinose composition and glucose treatment in Arabidopsis thaliana. BMC Plant Biol. 5;15(1):215

Mike Bevan at the JIC leads this work, which also includes GARNet board member Sean May that investigates the control of cell wall deposition. The Arabidopsis hsr8-1 mutant has an arabinose deficiency that prevents correct hypocotyl elongation due to a cell wall defect. This mutant is rescued by mutations in the Mediator transcription complex indicating that they have some specificity for genes involved in cell wall composition. This suppression alters gene expression is several glucose-induced genes, including cell wall enzymes and those involved in flavonoid and glucosinolate biosynthetic pathways.

Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T, Blajecka K, Melnyk CW, Alcasabas A, Forzani C, Matsumoto-Kitano M, Mähönen AP, Bhalerao R, Dewitte W, Helariutta Y, Murray JA

AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins Biol Open. bio.013128.

The aim of this multi-national collaboration led by GARNet PI Jim Murray (Cardiff)  and Yrjo Helariutta (SLCU) was to reset some established dogma which held that the AINTEGUMENTA (ANT) was epistatic to the D-type cycling CYCD3;1 in the control of vascular patterning. However this study shows that in the vascular cambium of Arabidipsis roots both genes respond to cytokinin and are required for proper root thickening. In addition this mechanism is maintained in the roots of poplar, suggesting a common regulatory mechanism.

Kappel C, Trost G, Czesnick H, Ramming A, Kolbe B, Vi SL, Bispo C, Becker JD, de Moor C, Lenhard M (2015) Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana PLoS Genet.11(8):e1005474

Corneila De Moor is a lecturer in the RNA biology group at the University of Nottingham, School of Pharmacy. However she is involved with this German-led study that looks at nuclear poly(A) polymerase (PAPS) in Arabidopsis. The three PAPS in Arabidopsis are functional specialised and this study investigates the transcriptional profile of altered poly(A) lengths to show that the PAPS1 protein is preferentially involved in ribosome biogenesis and redox homeostasis. This suggests that expression levels are strongly linked to poly(A) tail length and that relative activities of the PAPS isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.

Motion GB, Howden AJ, Huitema E, Jones S (2015) DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool Nucleic Acids Res.

Edgar Huitema is the plant science lead on this collaboration with computer scientists at the James Hutton Institute that introduces a new genome analysis tool that aims to functional annotate protein products. The focus of the study is on DNA-binding proteins and this new support vector machine model more accurately predicts this type of protein than generic versions. The model was developed in Arabidopsis but when turned to the tomato genome it annotated 36 currently uncharacterised proteins. This model is publically available and the authors hope that it will be used in combination with existing tools to increase annotation levels of DNA-binding proteins

Arabidopsis Research Roundup: July 11th

A couple of weeks since the last update as it’s been quiet for UK Arabidopsis Research publications. However we now see a variety of publications that address some important questions in different signaling pathways. Firstly a multinational collaboration performs a genome-wide analysis of DELLA binding, followed by two studies looking different aspects of light signaling, specifically the link with the production of protective carotenoids and also with the tight control of protein degradation. Elsewhere there is the description of a systems biology approach developed to aid the definition of signaling pathways in non-model organisms and finally a commentary piece about some work on Arabidopsis Arenosa.


Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins (2015) Marín-de la Rosa N, Pfeiffer A, Hill K, Locascio A, Bhalerao RP, Miskolczi P, Grønlund AL, Wanchoo-Kohli A, Thomas SG, Bennett MJ, Lohmann JU, Blázquez MA, Alabadí D PLoS Genet. 11(7):e1005337.

The Centre for Integrative Biology in Nottingham and Rothamstead Plant Science partner with groups from Sweden, Germany, Spain and Saudi Arabia in this truly international collaboration. They investigate the role of DELLA proteins in the relay of environmental cues to multiple transcriptional circuits. The primary experimentation in this study uses ChIP-Seq to analyse the DNA-binding sites of one DELLA protein. Perhaps as expected the DELLA protein binds multiple promotor regions yet with a particular enrichment in regions upstream of cytokinin-regulated genes, where they interact with type-B ARABIDOPSIS RESPONSE REGULATOR (ARR) proteins. The biological relevance of this mechanism is underpinned by the requirement for both DELLAs and B-type ARRs in the control of root growth and photomorphogenesis.


Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and co-factors (2015) Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M, Cifuentes-Esquivel N, Halliday KJ, Martinez-Garcia JF, Rodriguez-Concepcion M Plant Physiol.

Karen Halliday at the University of Edinburgh is part of this UK-Spanish team that studied the regulation of carotenoid biosynthesis via a light signaling module formed by PIF1 and HY5. In shade conditions, PIF proteins signal for a decrease in carotenoid accumulation, thus saving the plant unneeded energy consumption. The PIF1 response focusses on the phytoene synthase (PSY) biosynthetic gene and is antagonised by the PAR1 transcriptional co-factor. However this is not a universal response carried out by known antagonisers of PIF1 function, demonstrating that carotenoid biosynthesis is finely regulated by a precise subset of regulatory proteins.


High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis (2015) Hajdu A, Ádám É, Sheerin DJ, Dobos O, Bernula P, Hiltbrunner A,, Kozma-Bognár L, Nagy F Plant Journal

Professor Ferenc Nagy has dual appointments in Edinburgh and in Hungary and this output results from work performed in Hungary. This study looks at control of flowering via phytochrome B signalling, which has been previously shown to rely on the degradation of the CONSTANS (CO) protein that in turn delays flowering by attenuating FLOWERING LOCUS T (FT) expression. Therefore phyB mutants show accelerated flowering, yet this is unexpectedly also true following PHYB overexpression. The novelty of this study comes from showing that PHYB overexpression induces FT without affecting CO transcription but rather acts by causing accumulation of the CO protein, due to an affect on a COP1-ubiquitin ligase complex. This article adds further detail to the already complex relationship between light signaling, the circadian clock, protein degradation and de novo transcription in the control of flowering in Arabidopsis.


Inferring orthologous gene regulatory networks using interspecies data fusion (2015) Penfold CA, Millar JB, Wild DL. Bioinformatics. 31(12):i97-i105.

This study was led by David Wild from Warwick Systems Biology Centre. The authors have used two related Bayesian approaches to network inference that allow Gene Regulatory Networks (GRN) to be jointly inferred in, or leveraged between, several related species, for example between Arabidopsis and related crop species. Inferring gene function is achieved with more accuracy when GRNs are compared between species rather than attempting to use stand alone inference. The manuscript uses data from the yeast S.pombe but the broader principles could be applied to other experimental systems.


The High Life: Alpine Dwarfism in Arabidopsis (2015) Bomblies K Plant Physiol. 168(3):767.

This commentary piece about high altitude growth of Arabidopsis aernosa is the first published work from Kristen Bomblies since she moved her lab to the John Innes Centre from Havard (together with the lab of Levi Yant). Having these two talented young researchers relocate to the UK is be great for UK plant science so I sure everyone in the community wishes them all the best. Watch Kristen talk about her work at a New Phytologist conference from 2014.

Levi Yant also has two postdoctoral posts currently available in his lab.


COPO 2015 Meeting

Tags: No Tags
Comments: 1 Comment
Published on: June 25, 2015

COPO has big plans…. and if it is to be truly successful and benefit the plant community there needs to be a cultural change! That’s the simple if revolutionary message that came out of the recent COPO meeting held at TGAC on June 23rd-24th.

So the uninitiated will be asking: ‘What is COPO?‘ The answer is the Collaborative Open Plant Omics group which was funded by a BBSRC BBR grant in 2014. This is a >£1m collaboration between The Genome Analysis Centre (TGAC), University of Oxford, the European Bioinformatics Institute (EMBL) and the University of Warwick.

This workshop was to introduce the aims of COPO to a range of stakeholders, from curators of available data repositories to experimentalists who are generating large datasets. By the end of the 2-day session it was hoped that everyone would gain an understanding of what COPO can offer the community with regard facilitating the sharing of large datasets.

White Board Discussions

The workshop was led by Rob Davey (TGAC) and Ruth Bastow (GPC, GARNet, Warwick). Rob kicked off the meeting by describing the aims of COPO which included asking ‘What are the barriers for you and your data and how can COPO facilitate access to the workflows used to analyse data’.

Subsequently a range of stakeholders introduced the fantastic tools that are out there for repositing data of many different types. These included David Salt (University of Aberdeen, Ionomics), Elizabeth Arnaud (Montpellier, CropOntology), David Marshall (James Hutton Institute, Germinate: Plant Genetic Resources), Esther Kabore (INRA, Wheat Data Repository) Reza Salek (EMBL, Metabolights), and finally Tomasz Zielinski (Edinburgh, BioDare) who made the telling observation that ‘data Management is a user interface/user experience problem NOT a software engineering/ data modelling problem’. Many researchers are often reluctant to take the time and effort required to submit their data to an appropriate repository in a reasonable manner, for any number of opaque reasons. However the take-home message from the early talks was very positive as there are a large number of data platforms available for people to use and benefit from. One of the challenges for COPO is to not only to help convince people to use these resources but encourage them to share data in a standardised manner.

Following a useful coffee break it was time for researchers to explain the data they are producing and the challenges for their analysis. Miriam Gifford (Warwick) discussed her generation of transcriptomic data, Christine Sambles (Exeter) talked about developing a workflow for metabolomics data and TGAC group leader Ksenia Krasileva introduced her work on wheat functional genomics. Ksenia also highlighted a new portal for communication between data generators and data users called Grassroot Genomics.

The final three talks of the day highlighted the amount of data that can be produced in different sets of biological experiments. Ji Zhou (TGAC) and Chris Rawlings (Rothamstead) introduced cutting-edge field phenotyping technologies that use large imagers to capture visible and spectral aspects of plant growth. Workshop attendee Professor Peter Murray-Rust summed it up with a tweet: ‘Blown away by the crop monitoring equipment at Rothamstead’. On an opposite end of the spectrum Jim Murray (Cardiff) showed a single fluorescent image of a zebrafish taken on a light-sheet microscope that weighed in at an impressive 23Tb of data. Overall these talks served to highlight the vast amounts of data that can be produced and provided the second take-home message of the day that ‘Getting data is NOT the issue, making any sense of it IS the challenge’……


The task of second day discussions was to make sense of what had been presented the previous day and identify the best opportunities for COPO to impact on the process of data sharing. A lively first hour of debate included Dr Philippe Rocca-Serra (COPO Co-PI from Oxford) presenting a somewhat sobering eight slides of ‘Pain Points’ that he had taken out of the previous days presentations! However it was refreshing to observe that the challenge of the task was not underestimated and being tackled with realistic planning.

Pain Points!

Later in the morning discussions turned more specific with a white-board brainstorming session that was divided into ‘Data Collection’.Data Storage’ and ‘Data Analysis’ sections. Most progress was made in the first two sections with a long list of storage repositories identified that bridged the breath of biological data and with which COPO could potentially interact.

It was felt that successful interactions would be predicated on some level of data standardisation so perhaps the most effective initial use of the COPO resources would be to develop a workflow for standard data collection. This would hopefully make experimentalists think about the format of their data submission as they are planning and generating the data. The consensus was that attaching these standards to legacy-data might be a difficult task but that for future data generation, COPO could influence data sharing at this level.


Ultimately it is clear that plant science has the same generic problems as many other disciplines and the greatest challenge is to change the ‘culture’ of sharing data. The most obvious and direct way to promote this change will be via the funders and publishers. Some progress has been made in this arena with a recent shift towards open access publication in the REF process, and it would only take another small additional step to make it a requirement to share data in any REF-returnable publications. So I hope that those with greater power and influence than me, are reading the GARNet blog!

Regardless of the pace of cultural change, the feeling in the meeting was that the COPO mandate is to encourage data sharing whilst moving to a position to effectively interact with the data that is shared. There is plenty of work to do but at the end of this exploratory workshop the COPO organisers had plenty to think about regarding the direction of the project. Watch their space!

Storify of tweets from the meeting

«page 1 of 3

Follow Me
February 2017
« Jan    

Welcome , today is Monday, February 20, 2017