GARNet Research Roundup: April 11th 2018

This weeks GARNet research roundup begins with a microscopy-based study led by Lorenzo Frigerio from the University of Warwick that investigates the origin of Protein Storage Vacuoles. The second paper from John Doonan at Aberystwyth University looks at how differential splicing of cyclin-dependent Kinase G1 effects the thermosensory response. Reiner van de Hoorn from Oxford leads the next paper that characterises the use of activity-based protein profiling (ABPP) to identify novel α-glycosidases in model and non-model plants. Simon McQueen-Mason from York is corresponding author of the next paper that identified a new QTL from Brachypodium that is involved in cell wall formation. The fifth paper is led by Anthony Dodd from Bristol and characterises the role of the SnRK1 complex in hypocotyl elongation whilst the penultimate manuscript from Julia Davies’s lab in Cambridge performs patch clamp analysis of dorn1 mutant plants. The final paper from Brendan Davies at the University of Leeds characterises the SMG kinase, a gene that is lacking from the Arabidopsis genome, in Physcomitrella patens.


http://www.plantphysiol.org/content/early/2018/03/19/pp.18.00010.long

Feeney M, Kittelmann M, Menassa R, Hawes C, Frigerio L. Protein storage vacuoles originate from remodelled pre-existing vacuoles in Arabidopsis thaliana (2018) Plant Physiol. 2018 Mar 19. pii: pp.00010.2018. doi: 10.1104/pp.18.00010 Open Access

This collaboration between the Universities of Warwick and Oxford Brookes is led by Lorenzo Frigerio and Chris Hawes. They have investigated the origin of seed Protein Storage Vacuoles (PSV) using a two-pronged approach using confocal and immunoelectron microscopy. They looked at embryo development as well as in leaf cells that have been reprogrammed for embryonic cell fate by overexpression of the LEAFY COTYLEDON2 TF. These studies indicate that PSVs are formed following the reprogramming of pre-existing embryonic vacuole (EV) rather than from de novo assembly.


https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.13914

Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, Doonan JH. The Cyclin Dependent Kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A (2018) Plant J. doi: 10.1111/tpj.13914 Open Access

John Doonan (Aberystwyth University) is the corresponding author on this UK-Austrian collaboration that presents the role of the cyclin-dependent Kinase G1 (CDKG1) in thermosensing in Arabidopsis. Ambient temperature change causes altered gene expression of the spliceosome component, ATU2AF65A. Interestingly the CDKG1 gene is differentially spliced and to produces two protein isoforms that are both needed to complement the expression of ATU2AF65A across a temperature range. This alternative splicing is dependent on CDKG2 and CYCLIN L1 and is a novel control mechanism in the temperature control response.


Husaini AM, Morimoto K, Chandrasekar B, Kelly S, Kaschani F, Palmero D, Jiang J, Kaiser M, Ahrazem O, Overkleeft HS, van der Hoorn RAL (2018) Multiplex fluorescent, activity-based protein profiling identifies active α-glycosidases and other hydrolases in plants. Plant Physiol. pii: pp.00250.2018. doi: 10.1104/pp.18.00250 Open Access

Renier Van de Hoorn (University of Oxford) leads this pan-european study that uses novel cyclophellitol aziridine probes that label α-glycosidase enzymes. They identified two novel α-glycosidases in Arabidopsis as well as using the technique in non-model saffron crocus. Finally they showed that this multiplex fluorescent labelling in combination with probes for serine hydrolases and cysteine proteases can be used to identify changes in hydrolase activity in response to pathogen infection.


Whitehead C, Ostos Garrido FJ, Reymond M, Simister R, Distelfeld A, Atienza SG, Piston F, Gomez LD, McQueen-Mason SJ (2018) A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. New Phytol. doi: 10.1111/nph.15089 Open Access

Simon McQueen-Mason (University of York) leads this study that use QTL mapping to identify a gene in Bracypodium that is involved in cell wall architecture, which might then be a target to develop plants with improved cellulose digestibility. This glycosyl transferase family (GT) 43 protein is an orthologue of Arabidopsis IRX14, which is involved in xylan biosynthesis. When RNAi was used to reduce expression of this gene the resulting plants showed increased digestibility, indicating that this BdGT43A will be a good target for future breeding plans.


Wang L, Wilkins KA, Davies JM (2018) Arabidopsis DORN1 extracellular ATP receptor; activation of plasma membrane K(+) -and Ca(2+) -permeable conductances New Phytol. 2018 Mar 25. doi: 10.1111/nph.15111. Open Access

This letter to New Phytologist from the lab of Julia Davis (University of Cambridge) outlines some experiments to determine whether the DORN1 plasma membrane receptor is responsible for transmitting a signal from extracellular ATP (eATP). They performed patch clamp analysis on isolated protoplasts and showed that DORN1 is involved in the activation of Ca+ and K+ pumps by eATP as, in contrast to wildtype, dorn1 mutant protoplast showed no voltage changes after incubation with eATP.


Simon NML, Sawkins E, Dodd AN. Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation (2018) Plant Signal Behav. 27:1-9. doi: 10.1080/15592324.2018.1457913.

Anthony Dodd (University of Bristol) is the corresponding author of this follow-on study from one that previously featured on the GARNet YouTube channel. This study measures sucrose-induced hypocotyl elongation in two T-DNA mutants of the SnRK1 subunit KIN10 gene. These mutants had altered responses to sucrose leading to the hypothesis that the SnRK1 complex suppresses hypocotyl elongation in the presence of external sugar.


Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B (2018) The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res. doi: 10.1093/nar/gky225 Open Access

Brendan Davis (University of Leeds) is the corresponding author on research that investigates the role of the SMG1 kinase during nonsense-mediated mRNA decay (NMD) in the moss Physcomitrella patens. This kinase plays a critical role in animals but as it is not present in Arabidopsis, its function is not well studied in plants. However moss smg mutants show expression changes in genes involved in a variety of processes indicating that NMD is a common control mechanism in moss. In addition these plants have increased susceptibility to DNA damage, which suggests that the SMG1 kinase is a key player in quality control mechanisms in plants.

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky225/4955258

Arabidopsis Research Roundup: December 18th

This festive Arabidopsis Research Roundup begins with a commentary article from a global consortium of plant scientists who propose a framework of future training for researchers who will take advantage of the experimental tools available in Arabidopsis. Secondly is study from Caroline Dean (JIC) that defines the role of the LHP1 protein in epigenetic control of gene expression. Thirdly John Doonan (Aberystwyth) is a co-author of work that defines an important component of mitotic spindle formation. Next is a study led by Zinnia Gonzalez-Carranza in Nottingham that offers further insights into the function of the HWS gene. The fifth study comes from the lab of Alexander Ruban (QMUL), further investigating the importance of NPQ in photosynthetic control. The sixth paper from the Van Ooijen lab (Edinburgh) characterises the role of sumoylation in the control of CCA1 activity. The penultimate paper from the Harberd lab in Oxford defines the importance of DNA mismatch repair on genome sequence integrity whilst the final paper characterises the next phase in the long story of Arabidopsis ALF4 function and includes Charles Melynk (SLCU) as a co-author.


Friesner J et al (2017) The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiol. doi: 10.1104/pp.17.01490. Open Access

The current GARNet PI Jim Murray and past GARNet coordinator Ruth Bastow are authors in this international consortium that suggests future directions for the global Arabidopsis community. This consortium is led by Joanna Friesner and concludes that it is critical that the next generation of plant scientists receive appropriate training in bioinformatics and quantitative biology so as to take advantage of the remarkable array of datasets that are now available to Arabidopsis researchers.


Berry S, Rosa S, Howard M, Bühler M, Dean C (2017) Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression Genes Dev. doi: 10.1101/gad.305227.117 Open Access

Caroline Dean (John Innes Centre) leads this study that investigates the role of the polycomb associated protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in the regulation of the repressive histone mark H3K27me3. They demonstrate that the intrinsically disordered hinge region of LHP1 is responsible for RNA-binding and that disruption of this region prevents the formation of sub-nuclei foci, provides a potential link to wider epigenetic regulation.


Lee YJ, Hiwatashi Y, Hotta T, Xie T, Doonan JH, Liu B (2017) The Mitotic Function of Augmin Is Dependent on Its Microtubule-Associated Protein Subunit EDE1 in Arabidopsis thaliana. Current Biol. doi: 10.1016/j.cub.2017.11.030

Open Access

John Doonan and colleagues at Aberystwyth University are co-authors on this study regarding the role of the Microtubule-Associated Protein Subunit EDE1, which is a member of the Augmin complex, during mitosis. EDE1 specifically localised with the augmin complex during spindle formation, a role that cannot be replaced by the homologous protein AUG8. This work reveals that specificity of the augmin complex can be determined by interaction with subunits that only contribute to complex function during particular phases of the cell cycle.


Zhang X, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH (2017) The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One. doi: 10.1371/journal.pone.0189788 Open Access

Zinnia Gonzalez-Carranza (Nottingham) is the corresponding author on this study that follows on from work published earlier in 2017 regarding the role of the HAWAIIAN SKIRT gene is plant development. In this latest work they identify mutations in the previously characterized Exportin-5 HASTY gene as suppressors of the hws mutant phenotype. Further investigation shows that HWS genetically interacts with other genes involved in miRNA pathway indicates that HWS somehow interacts with biogenesis, accumulation or function of these small RNAs.


Townsend AJ1, Ware MA1, Ruban AV (2017) Dynamic interplay between photodamage and photoprotection in photosystem II. Plant Cell Environ doi: 10.1111/pce.13107

In this paper Alexander Ruban (QMUL) is the corresponding author on work that expands his groups contribution to the understanding of the role non-photochemical quenching (NPQ) plays during photoinhibition. In this work they compare the activity of NPQ versus endogenous photosystemI repair mechanisms in the maintenance of photosynthetic activity during photoinhibitory conditions. Overall they conclude that NPQ is a more important mechanism for photoprotection under short periods of illumination.


Hansen LL, Imrie L, Le Bihan T, van den Burg HA, van Ooijen G (2017) Sumoylation of the Plant Clock Transcription Factor CCA1 Suppresses DNA Binding. J Biol Rhythms doi: 10.1177/0748730417737695 Open Access

This paper from the Van Ooijen lab accompanies one that was featured in last weeks ARR and extends their finding that sumoylation plays an important role in control of the circadian clock. In this paper they show that the CCA1 clock protein is sumoylated and that perturbing this modification alters the binding of CCA1 to a target promotor, even though it’s localization or stability were unaffected. Using an in vitro system they show that sumoylation is a direct determinant of CCA1 binding to its target promotor suggesting that this PTM fine tunes the activity of this key circadian control element.


Belfield EJ, Ding ZJ, Jamieson FJC, Visscher AM, Zheng SJ, Mithani A, Harberd NP (2017) DNA mismatch repair preferentially protects genes from mutation. Genome Res. doi: 10.1101/gr.219303.116

Past GARNet Advisory board member Nick Harberd (Oxford) leads this multi-generational study on the effect of DNA mismatch repair (MMR) on maintenance of an entire genome. They perform whole genome sequencing across five generations of Arabidopsis plants with a mutation in the MMR pathway and show that particular types of nucleotide error are more prevelant amongst the total 9000 mutations that accumulate. Interestingly they show that single nucleotide variants are more likely to accumulate in genic regions, indicating that protein coding areas of the genome are preferentially protected from damage.


Bagchi R, Melnyk CW, Christ G, Winkler M,, Kirchsteiner K, Salehin M, Mergner J, Niemeyer M, Schwechheimer C, Calderón Villalobos LIA, Estelle M (2017) The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J. doi: 10.15252/embj.201797159

During his time as a research fellow at the Sainsbury lab in Cambridge. Charles Melynk contributed to this research that is a throwback to the early day of Arabidopsis mutant analysis. The alf4 was first described as a possible auxin mutant in 1995 and this work brings this study full circle by characterising the ALF4 protein as a novel regulator of SCF complexes, which are known to be involved in auxin and GA signaling. ALF4 specifically functions by interacting with the SCF-core component RBX1. Future work will determine whether this effect is specific to SCFs involved in hormone signaling or whether it is a more general effect.

Arabidopsis Research Roundup: December 8th.

This weeks Research Roundup begins with two papers from the University of Edinburgh on very different topics of Arabidopsis research. Firstly Alistair McCormick and Sofirtios Tsaftaris introduce a new low-cost phenotyping platform whilst Gerben Ooijen’s group has analysed the role of SUMOylation in the control of the circadian clock. The next three papers each involve wide UK collaborations and either look at plant nutrient composition (Nottingham, Dundee, York), the role of N-end rule pathway in the control of seed storage mobilisation (Rothamsted, Nottingham, Oxford, Birmingham, Cambridge) or the development of a new tool for the study of phloem sieve elements (Leeds, Rothamsted, Cambridge, Newcastle). The penultimate paper from Daniel Zilbermann (JIC) highlights the global mechanisms of methyltransferase function in Arabidopsis and mice whilst the final paper from Alexandre Ruban (QMUL) and co-authors continues his groups work to unpick the specifics of NPQ.


Dobrescu A, Scorza LCT, Tsaftaris SA, McCormick AJ (2017) A “Do-It-Yourself” phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants. Plant Methods. doi: 10.1186/s13007-017-0247-6

Open Access

University of Edinburgh colleagues Alistair McCormick and Sofirtios Tsaftaris lead this work that presents a low cost phenotyping system for the analysis of the growth rate and phenotypic characteristics of Arabidopsis thaliana rosettes. The software that they have developed allows the accurate segmentation of multiple rosettes within a single image and overall offers a straightforward solution for automated phenotyping across a range of growth environments.


Hansen LL, van den Burg HA, van Ooijen G (2017) Sumoylation Contributes to Timekeeping and Temperature Compensation of the Plant Circadian Clock. J Biol Rhythms. doi: 10.1177/0748730417737633

Gerben van Ooijen (University of Edinburgh) is the corresponding author of this work that has identified SUMOylation as a novel mechanism of regulating circadian clock genes in Arabidopsis. Plants with defects in sumoylation have altered circadian periods that exhibit incorrect temperature compensation. Overall these results indicate that sumoylation importantly buffers clock function in response to changing temperatures.


Alcock TD, Havlickova L, He Z, Bancroft I, White PJ, Broadley MR, Graham NS (2017) Identification of Candidate Genes for Calcium and Magnesium Accumulation in Brassica napus L. by Association Genetics. Front Plant Sci. doi: 10.3389/fpls.2017.01968

Open Access

Neil Graham and Martin Broadley (University of Nottingham) are the corresponding authors of this study that has taken advantage of the Brassica napus Associative Transcriptomes RIPR diversity panel developed by Ian Bancroft’s lab in York. Novel loci involved with an altered response to calcium and magnesium were identified in B.napus before mineral composition was analysed in Arabidopsis mutants defective in orthologous genes. The analysed plants exhibited alteration in mineral composition, meaning that the associated Brassica loci might be targets for future breeding strategies aimed at improving plant nutrient compositions.


Zhang H, Gannon L, Hassall KL, Deery MJ, Gibbs DJ, Holdsworth MJ, van der Hoorn RAL, Lilley KS, Theodoulou FL (2017) N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway. New Phytol. doi: 10.1111/nph.14909

Freddie Theodoulou (Rothamsted Research) is the corresponding author of this research that involved a collaboration with colleagues in Cambridge, Birmingham, Nottingham and Oxford. They have performed a proteomic analysis on etiolated seedlings to identify those proteins designated for degradation by the N-end rule pathway. They analysed prt6 mutant plants that lack the function of the E3 ligase PROTEOLYSIS6 (PRT6) and discovered that N-terminal peptides from 45 protein groups were upregulated in this mutant, corresponding to the equivalent downregulation of several known N-end rule proteases. Overall the authors show that PRT6 plays an important role in the regulation of seed storage mobilisation in young seedlings and is therefore a possible future target to manipulate the plant responses to adverse environmental conditions. Dr Kirsty Hassall, a statistician at Rothamsted, is an author on this paper and in the latest edition of the GARNish newsletter explains how she interacts with plant scientists during her work.


Torode TA, O’Neill RE, Marcus SE, Cornuault V, Pose-Albacete S, Lauder RP, Kracun SK, Gro Rydahl M, Andersen MCF, Willats WGT, Braybrook SA, Townsend BJ, Clausen MH, Knox JP (2017) Branched pectic galactan in phloem-sieve-element cell walls: implications for cell mechanics. Plant Physiol. doi: 10.1104/pp.17.01568 Open Access

Paul Knox (University of Leeds) is the corresponding author of this study that includes contributions from researchers at SLCU, Newcastle and Rothamsted. This work is based around the development of a monoclonal antibody, LM26 that is able to recognize a β-1,6-galactosyl substitution of β-1,4-galactan. LM26 has allowed the identification of this unusual branched galactan that is specific to phloem elements and the authors hope that it can be a useful tool in future studies on the biology of phloem elements


Lyons DB, Zilberman D (2017) DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes. Elife. doi: 10.7554/eLife.30674 Open Access

Daniel Zilberman has recently moved to the John Innes Centre and is the lead author of this work that was conducted when he was working in US. This research is a cross-kingdom analysis showing that nucleosome-free DNA is the preferred target for methyltransferases in both Arabidopsis and mice, and that nucleosomes appear to be a barrier to the function of these enzymes. Furthermore they demonstrate that linker-specific methylation that is usually absent in Arabidopsis can be introduced by removal of histone H1. This shows that flowering plants still possess this ability despite its loss, during the evolution of H1, over a billion years ago.


Tutkus M, Chmeliov J, Rutkauskas D, Ruban AV, Valkunas L (2017) Influence of the Carotenoid Composition on the Conformational Dynamics of Photosynthetic Light-Harvesting Complexes. J Phys Chem Lett. doi: 10.1021/acs.jpclett.7b02634

Alexandre Ruban (QMUL) is a co-author on this study that investigates the role that carotenoid composition plays in the control of Non-photochemical quenching (NPQ), a mechanism that protects the photosynthetic apparatus from light-damage. Arabidopsis mutants with differing carotenoid compositions were analysed for the dynamics of the conformation switches that occur during NPQ. Interestingly they show that LHCII has robust function  that is resistant to different carotenoid concentrations.

Arabidopsis Research Roundup: August 23rd

There is a bumper crop of papers in this weeks UK Arabidopsis Research Roundup! First up is a remarkable piece of work from George Bassel’s (University of Birmingham) lab that defines the network of cellular interactions that occur in the hypocotyl. Second and third are papers from the JIC in which Lars Ostergaard’s group uncovers the extent of the ETTIN signaling network and Caroline Dean‘s and Martin Howard’s labs provide evidence for a two step progression toward stable gene silencing following vernalisation at the FLC locus. Fourthly is a study that includes members of Alex Webb’s group (University of Cambridge) as co-authors that investigates the link between the circadian clock and night time starch metabolism. Fifth is a paper from Christine Foyer (University of Leeds) that looks at the effect of commonly used inhibitors on cellular redox state and gene expression. The next paper includes Phillip Carella (SLCU) as a co-author and looks at the role of classic flowering time genes on the phenomenon of Age-Related Resistance and finally Lee Sweetlove’s (University of Oxford) lab has published a methods paper for the analysis of photorespiration in non-photosynthetic tissues.


Jackson MD, Xu H, Duran-Nebreda S, Stamm P, Bassel GW (2017) Topological analysis of multicellular complexity in the plant hypocotyl. Elife http:/​/​dx.​doi.​org/10.7554/eLife.26023

Open Access

George Bassel (University of Birmingham) is the corresponding author on this work that provides fantastic images of the plant hypocotyl taken as part of an analysis on the cell growth dynamics in this organ. They show that Arabidopsis epidermal atrichoblast cells demonstrate a reduced path length that coincides with preferential movement of small molecules through these cells. They analysis this process in various mutants showing which gene activities were necessary for the construction of this pattern. In addition they compared topological features in Arabidopsis, Poppy and Foxglove, showing that cell interactions and path length determinants differ between these organisms. Overall this manuscript defines the network principles that control complex organ construction as well as a function for higher order patterning.


Simonini S, Bencivenga S, Trick M, Ostergaard L (2017) Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis. Plant Cell 10.1105/tpc.17.00389

Open Access

Last year Lars Ostergaard (JIC) discussed a paper from his lab on the GARNet YouTube channel in which they defined a new auxin-signaling paradigm that involved the non-canoical Auxin Response Factor ETTIN. This follow up to that study investigates the genetic network controlled by ETTIN activity and defines a range of developmental processes dependent on ETTIN auxin sensing. Furthermore by looking at direct ETTIN targets they suggest that this protein acts as a central node for the coordination of auxin signaling in the shoot. Finally their analysis of the effect of auxin on interactions between ETTIN and other transcription factors indicates that these are important factors in the diverse set of growth process controlled by auxin.


Yang H, Berry S, Olsson TSG, Hartley M, Howard M, Dean C (2017) Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 10.1126/science.aan1121

This is another manuscript resulting from the extremely fruitful collaboration between the labs of Caroline Dean and Martin Howard at the John Innes Centre. This paper again focuses on the FLC locus and provides evidence for a new mechanism that defines how the binding of a subset of PRC2 factors nucleates a small region (<500bp) of chromatin at the FLC TSS, causing an increase in the repressive H3K27me2 histone mark. This metastable region serves as the seed for the development of stable epigenetic marks across the length of the locus through the activity of other distinct Polycomb factors. This occurs after a cold treatment and causes the spread of H3K27me2 repression. The novelty of this work is in the distinct temporal separation of phases of silencing, which ultimately result in the repression of FLC expression after a prolonged cold treatment.


Seki M, Ohara T, Hearn TJ, Frank A, da Silva VCH, Caldana C, Webb AAR, Satake A (2017) Adjustment of the Arabidopsis circadian oscillator by sugar signalling dictates the regulation of starch metabolism. Sci Rep. 10.1038/s41598-017-08325-y

Open Access

Research from Alex Webb’s group at the University of Cambridge features in the ARR for the second consecutive week, again on a similar topic. On this occasion they collaborate with Japanese colleagues to investigate the role of the circadian clock on determining the nighttime usage rate of starch that has accumulated during the day. They used a phase oscillator model to explain the link between the speed of the clock, starch breakdown and the maintenance of sucrose homeostasis. In addition they use Arabidopsis sugar response mutants to show that the circadian clock measures amount of cellular sucrose, which then controls the dynamics of starch breakdown.


Karpinska B, Alomrani SO, Foyer CH (2017) Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. Philos Trans R Soc Lond B Biol Sci. 10.1098/rstb.2016.0392 Open Access

Christine Foyer (University of Leeds) is the corresponding author on this paper that looks at the effect of cellular oxidation on retrograde signaling between chloroplasts, mitochondria and the nucleus. They use a novel in vivo redox reporter to measure the effect of commonly used organelle inhibitors on cellular redox state. They discovered that these inhibitors cause a variety of effects on redox state and gene expression, which differed dependent on cell type. Researchers should be aware of these effects when they are drawing conclusions from their own experiments using these inhibitors.


Wilson DC, Kempthorne CJ, Carella P, Liscombe DK, Cameron R (2017) Age-Related Resistance in Arabidopsis thaliana Involves the MADS-domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae. Mol Plant Microbe Interact 10.1094/MPMI-07-17-0172-R

Phillip Carella is a Research Fellow at SLCU and this work from this previous lab in Canada investigates Arabidopsis Age-Related Resistance (ARR), a process that requires SA accumulation, which is then thought to act as an antimicrobial agent. The ARR response is lacking in plants containing a mutation in for the SHORT VEGETATIVE PHASE (SVP) gene. These svp plants have reduced SA, thought to be due to uncoupled overactivity of the SUPPRESSOR OF OVEREXPRESSION OF CO 1 gene. Overall this study shows that the flowering time gene SVP plays a complementary role in the control of SA accumulation, which confers ARR to older plants.


Fernie AR, Bauwe H, Sweetlove LJ (2017) Investigating the Role of the Photorespiratory Pathway in Non-photosynthetic Tissues. Methods Mol Biol 10.1007/978-1-4939-7225-8_15

Lee Sweetlove (University of Oxford) describes a protocol for evaluating the role of the photorespiration on the control of growth in non-photosynthetic tissues. This can be scaled for use in both Arabidopsis and in larger plants.

Arabidopsis Research Roundup: March 31st.

This bumper edition of the Arabidopsis Research Roundup includes a wide range of research topics. Firstly Mike Roberts leads a study that adds another layer of complexity to our understanding of the factors that control seed dormancy. Secondly a paper from Ottoline Leyser’s lab at SLCU provides more details regarding the role of BRC1 during shoot branching. Next is a paper that continues David Salt’s collaborative work that aims to understand how the root endodermal barrier influences nutrient uptake. Fourthly is work from Bristol that looks at the interaction between viral infection, the structure of the leaf surface and the polarization of reflected light. The fifth paper features a wide collaboration from the Sainsbury lab in Norwich and aims to more fully understand the factors that lead to non-host infection by Phytophthora infestans. The penultimate paper looks at the interaction of aldolase enzymes with the plant actin cytoskeleton and the final paper brings us full circle back to seed dormancy where researchers from University of Warwick investigate the link between this complex growth response and the circadian clock.

Singh P, Dave A, Vaistij FE, Worrall D, Holroyd GH, Wells JG, Kaminski F, Graham IA, Roberts MR (2017) Jasmonic acid-dependent regulation of seed dormancy following maternal herbivory in Arabidopsis. New Phytol http:/​/​dx.​doi.​org/10.1111/nph.14525

Taken from: http://www.snakesandspiders.com/wp-content/uploads/2013/05/red-spider-mite-control.jpg

Open Access

Mike Roberts (University of Lancaster) kindly provides an audio description of this paper on the GARNet YouTube channel, explaining that, in collaboration with Ian Graham at the University of York, they have identified a new control mechanism that links jasmonic acid, herbivory and seed dormancy. ABA and GA are known to be important hormones in the control of seed dormancy but this study adds complexity to this story by showing that following herbivory (or leaf wounding), the level of JA increases within Arabidopsis seeds. Perhaps counter-intuitively, in the following generation this leads to a reduction in dormancy, causing seed to germinate sooner than those from non-predated parents. The authors show that this is due to an increase in JA within seeds that importantly also alters sensitivity to ABA. Unlike transgenerational defence priming that acts through a epigenetic mechanism and persists for multiple generations , this study shows that the JA effect on seeds is a more direct response. Ultimately the mechanism in which parents prepare their offspring for subsequent generations is a complex trade off between multiple sources of predation and pathogenesis, environmental factors as well as through the effect of interacting hormone signaling pathways.


Seale M, Bennett T, Leyser O (2017) BRC1 expression regulates bud activation potential, but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development http:/​/​dx.​doi.​org/10.1242/dev.145649 Open Access

This is the latest contribution from Ottoline Leyser’s lab that looks into the hormonal control of shoot branching. A key determinant of this process is the transcription factor, BRANCHED1 (BRC1) yet this study shows that under certain conditions, in this case with varied amount of strigolactone, the controlling effect of BRC1 expression levels can be mitigated. The authors provide evidence for a mechanism for branching control that involves the coordinated activity of BRC1 and an auxin-transport mechanism, both of which are influenced by a separate strigolactone-mediated signaling pathway.


Li B, Kamiya T, Kalmbach L, Yamagami M, Yamaguchi K, Shigenobu S, Sawa S, Danku JM, Salt DE, Geldner N, Fujiwara T (2017) Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers. Current Biology

http:/​/​dx.​doi.​org/10.1016/j.cub.2017.01.030

Former GARNet chairman David Salt is a co-author on this paper that is lead by Japanese and Swiss colleagues and continues his work on the development of the casparian strip. These rings of lignin polymers are deposited within root endodermal cells and play a key role in the movement of water and nutrients into the vascular tissue. Suberin lamellae have a similar function and surround endodermal cells, likely acting as a barrier to apoplastic movement. This paper documents the identification of the Tolkienesquely-named LOTR1, which is essential for casparian strip formation. Lotr1 mutants show disrupted casparian strips, ectopic suberization and reduced calcium accumulation in the shoot. Further analysis demonstrates that it is this suberized layer substitutes for the CS in regions of lateral root emergence. Utliamtely they show that the relationship between suberization of the endodermal layer is a key determinant of calcium movement into the root and then around the rest of the plant.


Maxwell DJ, Partridge JC, Roberts NW, Boonham N, Foster GD (2017) The effects of surface structure mutations in Arabidopsis thaliana on the polarization of reflections from virus-infected leaves. PLoS One

http:/​/​dx.​doi.​org/10.1371/journal.pone.0174014.g003 Open Access

Gary Foster (University of Bristol) leads this study that continues his labs work on the effect that viral infection has on light polarization when reflected off leaves. This attribute is important to attract insect predators, which in turn increase the possibility of successful viral transmission. Light polarization is affected by structures on the leaf surface such as trichomes or the makeup of the waxy cuticle. Here the authors show that the cer5 wax synthesis mutant alters the polarization of light following infection with Turnip vein clearing virus (TVCV) but not following infection with Cucumber mosaic virus (CMV). The paper provides no mechanism for this difference but the authors do show that leaf viral titre is equivalent in these mutants and therefore speculate that these changes might influence transmission of each virus by a different insect carrier that in turn responses to different patterns of polarized light.


Prince DC, Rallapalli G, Xu D, Schoonbeek HJ, Çevik V,, Asai S,, Kemen E,, Cruz-Mireles N, Kemen A,, Belhaj K, Schornack S,, Kamoun S, Holub EB, Halkier BA, Jones JD (2017) Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biol. 

http:/​/​dx.​doi.​org/10.1186/s12915-017-0360-z  Open Access

This paper is a wide collaboration that features many colleagues from the Sainsbury lab in Norwich. Wildtype Arabidopsis plants are suspectible to Phytophthora infestans only after earlier infection with Albugo laibachii yet the molecular explanation of this complex interaction between plant and microbes remained opaque. This study demonstrates that Albugo infection alters the levels of a set of tryptophan-derived antimicrobial compounds, which were then found to be relevant for infection with P.infestans. This shows that these antimicrobial compounds might be key for the general maintenance of non-host resistance and might provide important information to aid future strategies to improve food security by reducing biomass loss due to plant pathogens.


Garagounis C, Kostaki KI, Hawkins TJ, Cummins I, Fricker MD, Hussey PJ, Hetherington AM2, Sweetlove LJ (2017) Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis. J Exp Bot.

http:/​/​dx.​doi.​org/10.1093/jxb/erx015

This collaboration between the Universities of Oxford, Bristol and Durham looks into the functional role that molecular microcompartments play in the workings of a cell. Animal models have shown that certain aldolase enzymes are able to function as actin-bundling proteins and so this study focuses on a major plant cytosolic aldolase, FBA8, which is predicted to have two actin binding sites. Although the authors could not detect co-localisation of FBA8-RFP with the actin cytoskeleton they provide in vitro evidence that FBA8 can functionally interact with F-actin. In addition in fba8 mutants there is altered arrangement of actin filaments in guard cells that concomitantly results in a reduced rate of stomatal closure. Therefore these findings leads the authors to propose that FBA8 is able to subtly interact with actin in vivo, evidenced by some FRET-FLIM experiments, and that this may modulate actin dependent cell responses.


Footitt S, Ölcer-Footitt H, Hambidge AJ, Finch-Savage WE (2017) A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant Cell Environ http:/​/​dx.​doi.​org/10.1111/pce.12940

William Savage-Finch (University of Warwick) is the corresponding author on this paper that investigates mechanisms that control seed dormancy, which has been built from the analysis of a variety of genetic and environmental factors. They test their predictions by testing a range of mutants in both known dormancy related genes and in the function of the circadian clock. This provides a link between the circadian cycle and the daily variation in the level of seed dormancy in Arabidopsis.

Arabidopsis Research Roundup: Feb 9th

Tags: No Tags
Comments: 2 Comments
Published on: February 14, 2017

This weeks Arabidopsis Roundup again includes a broad selection of research topics. Firstly researchers at SLCU are involved in work that describes Arabidopsis sepal development. Secondly Cyril Zipfel from TSL leads a study that adds a layer of complexity to our knowledge of cellular pathogen perception. Thirdly the group of Reiner van der Hoorn from Oxford introduces the use of a novel set of inhibitors that reveals differential activity of proteosomal subunits during bacterial infection. Finally Hugh Pritchard from Kew Gardens is a co-author on a lipidomic study of the seed dessication-stress response.

Meyer HM, Teles J, Formosa-Jordan P, Refahi Y, San-Bento R, Ingram G, Jönsson H, Locke JC, Roeder AH (2017) Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal. Elife.

http:/​/​dx.​doi.​org/10.7554/eLife.19131

Open Access

James Locke and Henrik Jonsson (SLCU) are authors on this paper that is led by Adrienne Roeder at Cornell in the USA. The Roeder lab largely focused their research on development of the sepal. The SLCU researchers provided modeling support for this investigation into the critical role of the ATML1 gene in the differentiation of initially identical cells into giant or regular sized sepal cells. They show that there it is a threshold level of differential ATML1 expression that is key in determining cell fate. If this threshold is met during the G2 phase of the cell cycle the cells enter endoreduplication and become giant. If the threshold isn’t reached then the cells divide and remain at a ‘normal’ size. Ultimately they demonstrate a fluctuation-driven patterning mechanism that determines cell fate.

Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C (2017) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling Science

http:/​/​dx.​doi.​org/10.1126/science.aal2541

Cyril Zipfel (The Sainsbury Lab, Norwich) is the lead author of this study that builds upon his labs work into mechanisms of pathogen perception by cell-surface receptor kinases. In this latest work they show that the SITE-1 PROTEASE (ST1P) cleaves endogenous RAPID ALKALINIZATION FACTOR (RALF) propeptides to inhibit plant immunity, a response mediated via the receptor kinase FERONIA (FER). The FER protein is also involved in the formation of other immune complexes. The authors have discovered a mechanism by which FER reglates RALK signaling, indicating that they might have uncovered a more general mechanism for this key control point of immune signaling.

Misas-Villamil JC,, van der Burgh AM, Grosse-Holz F, Bach-Pages M, Kovács J,, Kaschani F, Schilasky S, Emon AE, Ruben M, Kaiser M, Overkleeft HS, van der Hoorn RA (2017) Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections. Plant Journal

http:/​/​dx.​doi.​org/10.1111/tpj.13494

Reiner van der Hoorn (University of Oxford) lead this cross-Europe collaboration that introduces a range of inhibitors and probes that can discriminate between catalytic subunits of the proteasome. These tools were studied in both Arabidopsis and Nicotiana benthamiana and the authors used the plant-microbe interactions to further validate their specificity. They show that proteasomal subunits have separate paralogs that are differentiatially incorperated into the larger complex depending on an interaction with pathogenic bacteria. Aliquots of these probes are available on request from renier.vanderhoorn@plants.ox.ac.uk

The authors encourage their usage so as to increase the chance that they might become commercially available. More information from the Plant Chemetics lab.

Chen H, Yu X, Zhang X, Yang L, Huang X, Zhang J, Pritchard HW, Li W (2017) Phospholipase Dα1-mediated phosphatidic acid change is a key determinant of desiccation-induced viability loss in seeds. Plant Cell Environ.

http:/​/​dx.​doi.​org/10.1111/pce.12925

Hugh Pritchard (Kew Gardens) is a co-author on this Chinese-led study that investigates the role of phosphatidic acid (PA) on seed viability. Higher levels of PA correlated with lower seed viability after a desiccation stress. Using Arabidopsis seeds they showed that the enzyme phospholipase D α1 (PLD α1) localises to the plasma membrane following desiccation, where it produces PA. When PLD α1 was suppressed, seed recovery following desiccation improved. The authors used comparative lipidomics to compare PA levels in eight plant species and from their Arabidopsis work, they propose a new model for the mechanism by which seed desiccation effects germination rates.

Arabidopsis Research Roundup: January 17th

Todays Arabidopsis Research Roundup includes some excellent examples of UK labs engaged in collaborative work with researchers from around the globe. However first up is a study solely from the John Innes Centre, led by Vinod Kumar, that investigates the role of PIF4 during the thermosensory response. Secondly David Evans (Oxford Brookes University) is a co-author on a French-led study that has looked into the role of LINC complexes during interphase heterochromatin patterning. Thirdly is the description of the new PhenoTiki imaging tool that has come from the lab of Sotirios Tsaftaris in Edinburgh. Work from Paul Dupree (University of Cambridge) features in the ARR for the second consecutive week, this time with a study looking at the sugar composition of seed mucilage. The penultimate study is from the lab of Renier van der Hoorn (Oxford University) who investigates the role of Cys proteases during senescence and finally is a study from Seth Davis (University of York) that looks at the link between the circadian clock and the plants energy sensing mechanisms.


Gangappa SN, Berriri S, Kumar SV (2016) PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis. Current Biology

http:/​/​dx.​doi.​org/10.1016/j.cub.2016.11.012

Open Access
PIF4
Vinod Kumar (John Innes Centre) leads this study that looks at the role of the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) transcription factor during the thermosensory response and its effect on plant architecture. They looked at the natural variation of PIF4, demonstrating the role of different varients on the balance between growth and immunity to pathogens. Pertubing PIF4-mediated effects result in temperature-resilient disease resistance. This study links with a paper highlighted in last weeks ARR from Kerry Franklin and co-authors that presented the role of UVR8 on the control of PIF4 heat responsive effects. These studies further confirm the important role of PIF4 in plant development in response to environmental change and biotic challenges.

Vinod discusses this paper and a related manuscript from next weeks ARR. Also available on the GARNet YouTube channel.


Poulet A, Duc C, Voisin M, Desset S, Tutois S, Vanrobays E, Benoit M, Evans DE, Probst AV, Tatout C (2017) The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J Cell Science.

http:/​/​dx.​doi.​org/10.1242/jcs.194712

Open Access

This study is led by Christophe Tatout from Clermond-Ferrand and includes David Evans and Axel Poulet (Oxford Brookes University) as co-authors. The paper focuses on the role of the nuclear envelope-localised LInker of Nucleoskeleton and Cytoskeleton (LINC) complex on nuclear morphology and interphase chromatin localisation. This work is underpinned by the use of novel 3D imaging tools to define where in the nucleus the chromatin is localised in both wildtype and linc mutant plants. This allows the authors to show that the LINC complex is necessary for proper heterchromatin organisation at the nuclear periphery, which might have broad implications for gene expression and transcriptional silencing.
LINC


Minervini M, Giuffrida MV, Perata P, Tsaftaris SA (2017) Phenotiki: An open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. http:/​/​dx.​doi.​org/10.1111/tpj.13472

Open Access
PhenoTiki
This manuscript describes the PhenoTiki tool that is designed for the automated phenotyping of Arabidopsis rosettes, work which is led by Sofortios Tsaftaris (University of Edinburgh). PhenoTiki describes both the imaging software and also cheap-to-use off-the-shelf hardware that allows for facile imaging at reduced costs. The proof-of-concept study in the paper shows a comprehensive analysis from a range of parameters in 24 Arabidopsis rosettes from different genotypes. This data is compared favourably to more expensive methods of automated phenotyping so the authors hope PhenoTiki can be adopted as a low-cost method for image analysis. Full details can be found at http://phenotiki.com.


Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, Sandoval-Ibañez O, Doñas-Cofré DA, Parra-Rojas JP, Ebert B, Lehner A, Mollet JC, Dupree P, Scheller HV, Heazlewood JL, Reyes FC, Orellana A (2016) UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter that Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. Plant Cell. http:/​/​dx.​doi.​org/10.1105/tpc.16.00465

Open Access
CysProtease
Paul Dupree (University of Cambridge) is part of this global collaboration with colleagues from Australia, USA and Chile. The study investigates the intracellular movement of the plant cell polysaccharide pre-cursor UDP-glucuronic acid (UDP-GlcA). To identify genes involved in this process they cleverly screened mutants for alteration in seed mucilage, which has high level of other polysaccharides. This strategy identified UUAT1, which is a golgi-localised transporter of UDP-GlcA and UDP-galacturonic acid (UDP-GalA). Uuat1 mutants have altered sugar composition in both the seed coat mucilage and in other plant organs. These changes were also associated with an increase, by a currently unknown mechanism, of homogalacturonan methylation. Overall the authors show that UUAT1 is important for the correct distribution of cell wall polysaccahrides throughout growing embryo and will surely play important developmental roles in the function of the cell wall.


Pružinská A, Shindo T, Niessen S, Kaschani F, Tóth R, Millar AH, van der Hoorn RA (2017) Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves. BMC Plant Biol.

http:/​/​dx.​doi.​org/10.1186/s12870-016-0955-5

Open Access

In this paper Renier van der Hoorn (University of Oxford) interacts with US, German and Australian colleagues to use the activity-based protein profiling (ABPP) technique to assess the activity of active enzymes during senescence. They show that in Arabidopsis leaves the expression of several Papain-like Cys Proteases (PLCPs) is elevated but the activity of many Vacuolar Processing Enzymes (VPEs) is decreased, even though their transcript level increases. The amount of senescence was assessed in plants with mutations in different members of these protease families and surprisingly did not find any difference when compared to wildtype plants. One exception was in plants containing a mutation in the AALP PLCP which showed a significant, albeit slight, descrease in the rate of senescence.


Shin J, Sánchez-Villarreal A,, Davis AM,, Du SX, Berendzen KW, Koncz C, Ding Z, Li C, Davis SJ (2017) The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner. Plant Cell Environ.

<a href=”http://onlinelibrary.wiley.com/doi/10.1111/pce.12903/full” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘http://onlinelibrary.wiley generic cialis express.com/doi/10.1111/pce.12903/full’, ‘http:/​/​dx.​doi.​org/10.1111/pce.12903’]);” target=”_blank”>http:/​/​dx.​doi.​org/10.1111/pce.12903

Seth Davies (University of York) leads this study that includes German, Mexican and Chinese collaborators and looks at the link between the circadian clock and plant metabolism. The energy sensing Snf1 (sucrose non-fermenting 1)-related kinase 1 (SnRK1) complex contains the catalytic AKIN10 protein, which plays an important role in clock function by controlling expression of the key evening element GIGANTEA (GI). This AKIN10 effect requires the clock regulator TIME FOR COFFEE (TIC) demonstrating an important role for the plants energy sensing mechanisms, via the AKIN10, in conditional control of clock gene expression.

Arabidopsis Research Roundup: August 19th

This weeks Arabidopsis Research Roundup includes broad representation from Norwich Research Park with Caroline Dean, Enrico Coen and Cyril Zipfel each leading studies that focus respectively on the regulation of transcriptional state, auxin patterning that defines leaf shape or the molecular basis of the PAMP response.

Elsewhere Liam Dolan (Oxford) leads, and Malcolm Bennett (CPIB) is the principal UK contributor on studies that look into different aspects of the key molecular signals in either root hair or lateral root development.

Finally Richard Napier is a co-author on a study that better characterises the molecular basis of the well-used plant growth inhibitor MDCA.

Yang H, Howard M, Dean C (2016) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC PNAS http://dx.doi.org/10.1073/pnas.1605733113

Dame Caroline Dean and Martin Howard (JIC) lead this follow-on work from a paper highlighted in an ARR from the start of 2016. Here they use the FLOWERING LOCUS C (FLC) locus as a model to study the trans factors that control methylation state. They find a physical interaction between the H3K36 methyltransferase SDG8 (which promotes the active H3K36me3 mark) and the H3K27me3 demethylase ELF6 (which removes the silencing H3K27me3 mark). SDG8 also associated with RNA polymerase II and the PAF1 transcriptional regulatory complex. Therefore the authors suggest that the addition of active histone marks coincides with transcription at the locus whilst SDG8 and ELF6 exhibit co-dependent localisation to FLC chromatin. Therefore this interaction links activation and derepression and coordinates active transcription whilst preventing ectopic silencing.

Abley K, Sauret-Güeto S, Marée AF, Coen E (2016) Formation of polarity convergences underlying shoot outgrowths. Elife. http://dx.doi.org/10.7554/eLife.18165.

Open Access
elife-18165-fig7-v1
Enrico Coen (JIC) is the corresponding author on this investigation that had generated models that predict locations of leaf outgrowth linked to auxin biosynthesis and transport. They use live imaging in wildtype and kanadi1kanadi2 mutants to show that the cellular polarity of the PIN1 auxin transporter is orientated so as to move auxin away from regions with high levels of biosynthesis. In turn, this moves auxin toward regions with high expression of AUX/LAX auxin importers. This data allows the generation of detailed models that describe the processes that control auxin-mediated tissue-patterning (and are impossible to describe in a single paragraph).

Couto D, Niebergall R, Liang X, Bücherl CA, Sklenar J, Macho AP, Ntoukakis V, Derbyshire P, Altenbach D, Maclean D, Robatzek S, Uhrig J, Menke F, Zhou JM, Zipfel C (2016) The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1 PLoS Pathog. http://dx.doi.org/10.1371/journal.ppat.1005811

Open Access

Cyril Zipfel is the lead investigator on this study that links researchers at TSL with colleagues in China and Germany. The focus of this work is the cytoplasmic kinase BIK1, which is a target of several pattern recognition receptors (PRRs) that are involved in the defence response, and the novel protein phosphatase PP2C38, which acts as a negative regulator of BIK1. Under non-inductive conditions PP2C38 prevents BIK1 activity but following pathogen-associated molecular patterns (PAMP) perception, it is phosphorylated and dissociates from BIK1, allowing full activity. This study provides another layer of detail into the complex central immune response that allows plants to response to a vast array of pathogenic microorganisms.

Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M, Mimura T, Weijers D, Fukaki H, Laplaze L, Bennett MJ, Guyomarc’h S (2016) Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor Development. http://dx.doi.org/10.1242/dev.135319

Open Access

Malcolm Bennett and Darren Wells (CPIB) are authors on this international collaboration that links UK, Japanese, French and Dutch researchers. The essential role of the central organizer center (the quiescent center, QC) is well known in primary root meristem development but its role during lateral root (LR) formation remained unclear. LR formation is characterised by biphasic growth that involves early morphogenesis from the central stele and subsequent LR meristem formation. This study uses 3D imaging to demonstrate that LR QC cells originate from outer cell layers of early primordial, in a SCARECROW (SCR) dependent manner. Perturbing SCR function causes incorrect formation of the LR QC and prevents wildtype LR patterning. The manuscript also contains some excellent videos of growing LRs that are very informative.
AUX1-YFPKim CM, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon PLoS Genet.

http://dx.doi.org/10.1371/journal.pgen.1006211 Open Access

This study comes from Liam Dolan’s lab at the University of Oxford and moves their research focus on root hair development from Arabidopsis into the grass Brachypodium distachyon. ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix genes are expressed in cells that develop root hair fate in Arabidopsis and this study indentifies 3 RSl1 genes in Brachypodium which, when ecoptically expressed, are sufficient for the development of root hairs in all cell files. The function of these RSL proteins is conserved as the Brachypodium versions are able to restore a wildtype phenotype to root hair-less Arabidopsis mutants. Even though root hair patterning is significantly different in Brachypodium and Arabidopsis, this study shows the role of the RSL genes is conserved.
RootHairPic
Steenackers WJ, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novak O, Zažímalová E, Napier RM, Boerjan WA, Vanholme B (2016) The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology http://dx.doi.org/10.1104/pp.15.01972

Open Access

Richard Napier (Warwick) is the UK PI on this pan-European study that investigates the molecular basis behind the physiological role of the compound phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA), which inhibits the phenylpropanoid pathway, important in lignin formation. MDCA causes inhibition of primary root growth and increase proliferation of lateral roots, not through lignin perturbation but due to a disruption in auxin homeostasis. MS analysis demonstrates that MDCA causes overall changes in auxin biosynthesis, conjugation and catabolism, similar to changes observed in mutants involved in the phenylpropanoid pathways. These result link auxin and phenylpropanoid biosynthesis pathways and provide a new explanation for the well demonstrated phytotoxic properties of MDCA.

«page 1 of 2

Follow Me
TwitterRSS
GARNetweets
July 2018
M T W T F S S
« Jun    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Welcome , today is Monday, July 16, 2018