Arabidopsis Research Roundup: July 19th

There are six papers in this weeks Arabidopsis Research Roundup. Two of these include research on the stomatal patterning gene TMM. Firstly a White Rose consortium investigates the ancestral basis of stomatal patterning, whilst a Glasgow-based study investigates the relationship between patterning and the dynamics of guard cell opening. The GARNet committee is represented by work from Cardiff that looks at the relationship between seed size and shoot branching and also from Cambridge in research that studies meiotic recombination in genomic regions important for pathogen defense. Finally are two studies that look into aspects of root and shoot patterning and include co-authors from CPIB in Nottingham or the John Innes Centre.

Caine R, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ (2016) An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens Development

http://dx.doi.org/10.1242/dev.135038 Open Access

This study is a collaboration between labs in Sheffield and Leeds, led by Andrew Fleming (Sheffield). They investigate the role that the signalling module comprised of Epidermal Patterning Factors (EPFs), ERECTA and TMM play during the evolution of stomatal patterning. This module is known to play an important role in Arabidopsis and in this study the authors show that the moss Physcomitrella patens contains homologs of each of the genes and that they perform the same function. When P.paten versions of these genes are transferred to equivalent Arabidopsis mutants they show conserved function demonstrating that this module is an example of an ancestral patterning system.

Andrew Fleming provides a brief audio description of this manuscript:

Papanatsiou M, Amtmann A, Blatt MR (2016) Stomatal spacing facilitates guard cell ion transport independent of the epidermal solute reservoir. Plant Physiol. http://dx.doi.org/10.1104/pp.16.00850 Open Access

Mike Blatt and Anna Amtmann (University of Glasgow) are the co-supervisors for this study into the relationshop between ion transport in stomatal guard cells and their physical positioning within a leaf. They used a genetic approach to assess the effect of stomatal clustering, showing that too many mouths (tmm) mutant plants have reduced stomatal movements associated with alterations in K+ channel gating and coincident with a surprising reduction in the level of K+ ions in guard cells. These results underline the importance of stomatal spacing in this process but do not provide a full explanation into the alteration in K+ ion dynamics.

Sornay E, Dewitte W, Murray JAH (2016) Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture Plant Signaling and Behaviour e1192741

http://dx.doi.org/10.1080/15592324.2016.1192741 Open Access

From http://dx.doi.org/10.1080/15592324.2016.1192741
From http://dx.doi.org/10.1080/15592324.2016.1192741

This research comes from the lab of GARNet PI Jim Murray (Cardiff) and investigates cell proliferation and growth within a developing seed. They previously have shown that targeting of D-type cyclin CYCD7;1 to the central cell and early endosperm can trigger nuclear divisions and ovule abortion, which leads to a smaller number of larger seed. In this study they show that development of larger seed in transgenic plants is influenced by the architecture of the mother, as plants with increased side branches, caused by pruning of the main stem, do not generate this phenotype. This is indicative of a close relationship between the amount of resources allocated to different parts of the plant and that a transgenic effect was altered by a different plant morphology. This should provide an important insight into future work that aims to define the effect of any particular transgenic alteration.

Choi K, Reinhard C, Serra H, Ziolkowski PA,, Underwood CJ,, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP,, Henderson IR (2016) Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet. 12(7):e1006179.

http://dx.doi.org/10.1371/journal.pgen.1006179 Open Access

GARNet advisory board member Ian Henderson (Cambridge) is the corresponding author of this study that involves contributions from the UK, US, Poland and France. They investigate genomic regions that show increased meiotic recombination, which is predicted to occur coincident with genes involved in pathogen defence given their requirement to adapt to new external challenges. This study focuses on NBS-LRR domain proteins that tend to physically cluster in the Arabidopsis genome. Interesting they discovered both hot and coldspots for meiotic recombination that associate with NBS-LRR clusters, the later often correlating with structural heterozygosity. In a more detailed dissection of 1000 crossovers in the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R hotspot, they discovered higher recombination frequencies associating with known sequence motifs important for the pathogen response, which were influenced by ecotype-specific factors. Ultimately the authors note that there is a complex relationship between regions of meiotic recombination, structural heterozygosity and the evolutionary pressures that occurs with host-pathogen relationships.

Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development http://dx.doi.org/10.1242/dev.136465 Open Access

From http://dx.doi.org/10.1242/dev.136465
From http://dx.doi.org/10.1242/dev.136465

 Malcolm Bennett (CPIB) is the sole UK-based co-author on this study led by Belgian collaborators and investigates the role of reactive oxygen species (ROS) in auxin-regulated lateral root (LR) formation. They show that ROS can reactivate LR primordia and pre-branch sites, resulting in increased LR numbers. This occurs in both wildtype and in auxin mutants that have reduced numbers due to changes in auxin-mediated cell wall remodeling. ROS is deposited in the apoplast of emerging LR cells in a pattern that is coincident with the expression of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH) genes. Concomitantly the altered expression of RBOH was shown to affect the development and emergence of LRs. This adds a further level of complexity to the current understanding of the signaling factors that converge to facilitate LR growth.

 

Shi B,, Zhang C, Tian C, Wang J,, Wang Q,, Xu T,, Xu Y, Ohno C, Sablowski R, Heisler MG, Theres K, Wang Y, Jiao Y (2016) Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genet. http://dx.doi.org/10.1371/journal.pgen.1006168 Open Access

This Chinese-led study includes Robert Sablowski (JIC) as a co-author and studies the factors that influence the development of axillary meristems. They use innovative live imaging to show that SHOOT MERISTEMLESS (STM) is continuously expressed and that this dependent on a leaf axil auxin minimum. Once STM expression is lost then the axil is unable to form a meristem even if STM is switched back later in development, indicating that cells undergo an irreversible developmental commitment. The expression domain of STM is under cell-type specific control of REVOLUTA (REV) DNA binding. Overall this study demonstrates that meristematic competence and initiation is dependent on differing levels of the key regulator STM.

From http://dx.doi.org/10.1371/journal.pgen.1006168
From http://dx.doi.org/10.1371/journal.pgen.1006168

Arabidopsis Research Roundup: April 14th

This week Arabidopsis Research Roundup contains two studies that originate at the University of Birmingham. Firstly George Bassel kindly provides an audio description of a study that looks at the processes regulating seed germination. Secondly Juliet Coates leads an investigation into the function of evolutionarily conserved ARABIDILLO proteins. Elsewhere is a University of Edinburgh study into the tissue-specificity of PhyA responses and lastly an investigation of the phytotoxic effects of Cerium nanoparticles.

Nieuwland J, Stamm P, Wen B, Randall RS, Murray JA, Bassel GW (2016) Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6. Sci Rep. http://dx.doi.org/10.1038/srep23586 Open AccessRootTip

George Bassel (Birmingham), GARNet PI Jim Murray (Cardiff) and Jeroen Nieuwland (South Wales) are the leaders of this study that investigates the activation of the root meristem during germination, a process that requires de novo GA synthesis. Using hormone applications and genetic analysis the authors show that root meristem can begin elongation independent of germination, which is defined as occurring following both testa rupture and radicle protrusion. KRP6 is a cell cycle regulator and partially represses activation of the cell cycle by GA so krp6 mutants germinate more rapidly. Overall this study concludes that the cell cycle can uncouple the interactions of GA and ABA that act to conclude germination and promote root meristem elongation.

George Bassel kindly provides a short audio description of this paper.

Moody LA, Saidi Y, Gibbs DJ, Choudhary A, Holloway D, Vesty EF, Bansal KK, Bradshaw SJ, Coates JC (2016) An ancient and conserved function for Armadillo-related proteins in the control of spore and seed germination by abscisic acid. New Phytol. http://dx.doi.org/10.1111/nph.13938 Open Access

This study comes exclusively from the University of Birmingham and is led by Juliet Coates. This group investigates the role of Armadillo-related ARABIDILLO proteins on branching processes across plant species. In the moss Physcomitrella patens these proteins are linked to the action of the hormone ABA on spore germination, which converges with a role for the proteins in Arabidopsis seed germination. Importantly both P.patens and Selaginella moellendorffii ARABIDILLO proteins are able to substitute for native proteins in Arabidopsis, demonstrating their conserved function. The authors conclude that these proteins were co-opted into the regulation of both sporophytic and gametophytic processes early in plant evolution.

Kirchenbauer D, Viczián A, Ádám É, Hegedűs Z, Klose C, Leppert M, Hiltbrunner A, Kircher S, Schäfer E, Nagy F (2016) Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-A expressed in different tissues. New Phytologist . http://dx.doi.org/10.1111/nph.13941 Open Access

Ferenc Nagy (Edinburgh) is the corresponding author of this Hungaro-German study that focuses on how phytochrome responses are mediated in a tissue-specific manner. Considering that phyA is expressed throughout plant tissues it remained a mystery as to how the PhyA responses are able to control plant development. This study used tissue-specific promotors to drive PHYA production in a variety of tissues and discovered that expression in a limited number of tissues is able to regulate flowering time and root growth. In addition they find evidence for the intercellular movement of PhyA. The authors conclude that the PhyA response is partly controlled by a mix of tissue-specific expression and the regulation of key downstream factors in a tissue-autonomous cell activity.

Yang X, Pan H, Wang P, Zhao FJ (2016) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana J Hazard Mater. http://dx.doi.org/10.1016/j.jhazmat.2016.03.054

GraphThis Sino-UK-Australian study is led by Fang-Jie Zhao at Rothamstead Research. They investigate the uptake and phytotoxicity of commonly used (in consumer products) cerium oxide nanoparticles (CeO2-NPs) into Arabidopsis. At high concentrations the NP component, but not the Ce ions, were shown to have toxic effects on plant growth. These CeO2-NPs were taken up and translocated to the shoot where they aggregate in needle-like particles. This movement was independent of the type or concentation of Ce. The authors suggest this represents important information for the environmental considerations linked to the use and disposal of this type of NPs.

Arabidopsis Research Roundup: March 4th

There are six articles in this weeks Arabidopsis Research Roundup that bridge a diverse range of topics. Firstly lead author Deirdre McLachlan provides an audio description of a study that investigates the role of triacylglycerol breakdown in stomatal signaling. Secondly is a study that assesses the role of a Rab GTPase in control of anisotropic cell growth. The third and fourth papers looks into the defence response, focused on either JA or nitric oxide signaling. Finally are two papers that look into the response of Arabidopsis seedlings to growth on either arsenic or cadmium.

McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Hõrak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening Current Biology http://dx.doi.org/10.1016/j.cub.2016.01.019 Open Access
Slide 1
The control of stomatal opening is a key environmental response to changes in CO2 levels and water availability. This study, led by Alistair Hetherington (Bristol), demonstrates that triacylglycerols (TAGs), contained in lipid droplets (LD), are critical for light-induced stomatal opening. Following illumination, the number of LDs are reduced through the β-oxidation pathway, a response that requires blue-light receptors. The authors postulate that a reduction in ATP-availability due to delayed fatty acid breakdown contributed to the stomatal phenotype. The lack of available ATP was confirmed following analysis of the activity of a plasma membrane H+-ATPase. Overall the authors suggest that the light-induced breakdown of TAG contributes to an evolutionarily conserved signaling pathway that controls stomatal opening therefore playing a key role in environmental adaptation.

The lead author of this study, Deidre McLachlan kindly provides a brief audio description of this paper.

During our discussion Deidre mentioned some related work that links blue-light signaling and starch degradation during stomatal opening that was included in a recent ARR.

 

Kirchhelle C, Chow CM, Foucart C, Neto H, Stierhof YD, Kalde M, Walton C, Fricker M, Smith RS, Jérusalem A, Irani N, Moore I (2016) The Specification of Geometric Edges by a Plant Rab GTPase Is an Essential Cell-Patterning Principle During Organogenesis in Arabidopsis. Developmental Cell 36(4):386-400 http://dx.doi.org/10.1016/j.devcel.2016.01.020 Open Access
Rab5C
Ian Moore (Oxford) is the corresponding author on this UK-German collaboration that investigates the role of a Rab GTPase in pattern formation during organogenesis. It is known that the endomembrane system controls the asymmetric distribution of cargoes to different ‘geometric edges’ of a plant cell, establishing biochemically distinct domains that are important for anisotropic growth. This study identifies a new type of membrane vesicle that accumulates specifically along geometric edges and that contains the RAB-A5c protein which, when inhibited, distorts the geometry of cells in subsequently formed lateral organs (in this case, lateral roots). Interestingly this effect is independent of changes to general endomembrane trafficking. The precise mechanism of RAB-A5c activity is unknown but loss of its activity reduces cell wall stiffness at domain-specific locations, therefore perturbing cell growth in those directions. Therefore this study provides interesting insight into fundamental mechanisms that control the growth of cells in a developing organ.

Thatcher LF, Cevik V, Grant M, Zhai B, Jones JD, Manners JM, Kazan K (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum J Exp Bot. http://dx.doi.org/10.1093/jxb/erw040 Open Access

Jonathan Jones (TSL) and Murray Grant (Exeter) are collaborators on this research that investigates the role of jasmonic acid signaling in plant resistance to the fungal pathogen Fusarium oxysporum. In this study they show that the JASMONATE ZIM-domain7 (JAZ7) gene is induced by Fusarium oxysporum and that the jaz7-1D mutant has increased suspectibility to infection. This genotype has constitutive JAZ7 expression and also demonstrates sensitivity to a bacterial pathogen. To cause alterations in gene expression, the JAZ7 protein interacts with a range of transcriptional activators and repressors. The authors postulate that in wildtype plants JAZ7 represses the JA-transcriptional network through its interaction with the co-repressor TOPLESS protein and that in the jaz7-1D plants this response network is hyper-activated leading to an inappropriately high response to pathogen attack.

Yun BW, Skelly MJ, Yin M, Yu M, Mun BG, Lee SU, Hussain A, Spoel SH, Loake GJ (2016) Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol. http://dx.doi.org/10.1111/nph.13903

Gary Loake and GARNet Advisory board member Steven Spoel (Edinburgh) are the leaders of this UK-Korean collaboration that studies the role of Nitric Oxide (NO) in the plant defence response. NO often undergoes S-nitrosylation to produce S-nitrosothiol (SNO), which is important for its bioactivity. This reaction involves the S-nitrosoglutathione reductase 1 (GSNOR1) enzyme, which serves to turnover the NO donor, S-nitrosoglutathione (GSNO). In this study the authors investigate mutant plants that accumulate NO and some a reduction in the basal defence response due to a reduction in salicylic acid (SA) signaling. This response was not rescued by the overexpression of GSNOR1 even though this was able to reduce phenotypes resulting from SNO accumulation. Mutant plants that have increased NO accumulation but lower activity of GSNOR1, so therefore an increased ratio of NO:SNO, were more suspectible to growth of bacterial pathogens. The authors conclude that the relationship between NO and GSNO is critically for plant immunity and development.

Lindsay ER, Maathuis FJ (2016) Arabidopsis thaliana NIP7;1 is Involved in Tissue Arsenic Distribution and Tolerance in Response to Arsenate FEBS Lett. http://dx.doi.org/10.1002/1873-3468.12103

Francois Maathuis (York) is the corresponding author of this study that investigates the role of the Arabidopsis aquaglyceroporin NIP7;1 in the uptake of different chemical forms of arsenic. Mutant nip7;1 plants improved the tolerance of arsenic by reducing uptake of the chemical. This is the first demonstration for the role of a NIP transporter in the response to arsenic and highlights the possibility of focussing on these proteins as a target for breeding or genetically-modifying tolerance to this toxic metal.

Wang H, He L, Song J, Cui W, Zhang Y, Jia C, Francis D, Rogers HJ, Sun L, Tai P, Hui X, Yang Y, Liu W (2016) Cadmium-induced genomic instability in Arabidopsis: Molecular toxicological biomarkers for early diagnosis of cadmium stress Chemosphere 150:258-265 http://dx.doi.org/10.1016/j.chemosphere.2016.02.042

Hilary Rodgers (Cardiff) is the sole UK representative on this Chinese study that has developed screening parameters to evaluate the growth of plants on cadmium. The study uses microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) to define a range of genomic alterations that occurred after growth of Arabidopsis plants across a range of concentrations of cadmium. They conclude that analysis of genomic methylation polymorphisms were the most sensitive biomarkers to diagnosis early cadmium stress in these plants and provide important insights for future biomonitoring strategies.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
March 2017
M T W T F S S
« Feb    
 12345
6789101112
13141516171819
20212223242526
2728293031  

Welcome , today is Monday, March 27, 2017