Arabidopsis Research Roundup: March 17th

Tags: No Tags
Comments: No Comments
Published on: March 17, 2017

This weeks UK Arabidopsis Research Roundup includes three papers featuring researchers from the University of Nottingham as well as manuscripts from Leeds, Lancaster, QMUL and The Sainsburys Lab in Norwich

Firstly Stefan Kepinski (Leeds) leads a study that investigates how Gravitropic Set Point Angle (GSA) is controlled in response to different growth factors. Secondly are two Methods papers featuring researchers from CPIB in Nottingham, the first of which is in collaboration with Lancaster University and introduces the Microphentron, which is an automated phenotyping platform that can be used for chemical biology screens. The second paper describes a non-destructive method for imaging floral tissues using CT scanning.

Ranjan Swarup is also a member of CPIB and in the next paper he has collaborated with French colleagues to investigate the role of SHR on root development in rice.

The fourth paper includes Cyril Zipfel as a co-author and investigates the role of damage-associated molecular patterns (DAMPs) in the response to pathogen attack whereas this weeks final paper is from the lab of Alexander Ruban (QMUL) and discovers the phenotypic consequences of persistent damage to PSII by photoinhibition.


Suruchi Roychoudhry, Martin Kieffer, Marta Del Bianco, Che-Yang Liao, Dolf Weijers Stefan Kepinski (2017) The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean Scientific Reports http://dx.doi.org/10.1038/srep42664

Open Access

Stefan Kepinski (University of Leeds) leads this study that involves a collaboration with Dolf Weijers from Wageningen University. They investigate the role of both auxin and environmental factors in determining gravitropic set point angle (GSA), which is a measure of the growth of lateral organs away from primary shoots and roots. They show that nitrogen and phosphorous deficiency causes opposing effects on lateral root GSA, each of which are auxin-dependent. This contrasts with previous findings from work using bean adventitious roots. They find that these differences are maintained when Arabidopsis and bean roots are treated with different auxin concentrations. Latterly they also look at the effect of different light conditions on shoot GSA and put these findings into the context of potentially altering crop growth.

Stefan takes some time to discuss this paper for the GARNet YouTube Channel.


Burrell T, Fozard S, Holroyd GH, French AP, Pound MP, Bigley CJ, James Taylor C, Forde BG (2017) The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology. Plant Methods

http://dx.doi.org/10.1186/s13007-017-0158-6 Open Access

This methods paper is a collaboration between the Universities of Lancaster and Nottingham led by Brian Forde that describes the Microphenotron. This device has been developed to facilitate chemical biology screens on in vivo plant tissues. This allows for the automated screening of either dicot or monocot roots or aerial tissues that have been grown on media infused with whichever chemical is relevant for the intended expriments. In situ GUS screening is also possible allowing for researchers to integrate information about growth and gene expression. The use of ‘Phytostrips’ in a 96-well format allows for high-throughput screening that is aligned with AutoRoot automated image analysis software to provide a rapid and facile method for undertaking small scale phenotypic screens. The Microphenotron facility is housed at the Lancester University, who are extremely open to collaboration so please get in contact if you are interested in using the facility.


Tracy SR, Gómez JF, Sturrock CJ, Wilson ZA, Ferguson AC (2017) Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT) Plant Methods. http://dx.doi.org/10.1186/s13007-017-0162-x Open Access

Alison Ferguson is the corresponding author on this methods paper that includes GARNet committee member Zoe Wilson and Saoirse Tracy from Dublin. They have developed a technique using X-ray µCT scanning to image developing flowers in Arabidopsis and barley plants, taking advantage of the excellent Hounsfield facility at the University of Nottingham. They show that the technique can be hugely beneficial for plant phenotyping by providing a non-destructive method of analyzing live floral development and how this can response to changes in the growth environment. Members of the Hounsfield facility are happy to discuss any potential collaborative work and future access to these type of facilities will hopefully be improved through the UKs involvement in the pan-european EMPHASIS project.


Henry S, Dievart A, Fanchon D, Pauluzzi G, Meynard D, Swarup R, Wu S, Lee CM, Gallagher K, Périn C (2017) SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Dev Biol. http://dx.doi.org/10.1016/j.ydbio.2017.03.001

Ranjan Swarup (CPIB) is a co-author on this study that includes French and US researchers. Previously they had shown that expression of rice SHORTROOT (OsSHR) genes could compliment the Arabidopsis shr mutant. In this study they show that overexpression of OsSHR and AtSHR in rice roots causes growth of wider, shorter roots that have an increased number of cortical cell layers. This demonstrates that the mechanisms that control the differentiation of cortical cell layers is conserved throughout land plants, with SHR being a key determinant in this process.


de Azevedo Souza C, Li S, Lin AZ, Boutrot F, Grossmann G, Zipfel C, Somerville S (2017) Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol. http://dx.doi.org/10.1104/pp.16.01680

Cyril Zipfel (The Sainsbury Lab) is a co-author on this study from the lab of Shauna Somerville in California that focuses on the concept of damage-associated molecular patterns (DAMPs). These can be defined as cell wall breakdown components and stimulate the same defence responses as more fully characterised pathogen- or microbe-associated molecular patterns (PAMPs). Intuitively this makes sense as during infection many pathogens will cause cell wall breakdown. The authors show that cellulose-derived oligomers trigger a signalling response similar to that caused by oligogalacturonides or chito-oligomers but that lacks an increase in ROS or in callose deposition. These results confirm that cellulose-derived signals feed into the plants mechanism for cell wall scanning and acts synergistically with other signals that result from pathogen attack.


Tian Y, Ungerer P, Zhang H, Ruban AV (2017) Direct impact of the sustained decline in the photosystem II efficiency upon plant productivity at different developmental stages. J Plant Physiol. http://dx.doi.org/110.1016/j.jplph.2016.10.017

Image from http://www.sciencedirect.com/science/article/pii/S0176161717300433

Alexander Ruban (QMUL) leads this Sino-UK collaboration that investigates how the photoinhibiton of photosystem II impacts overall plant growth. In this study they use lincomycin to block chloroplast protein synthesis, which prevents the plant from restoring PSII function after photoinhibitory damage. Treated plants accumulate less starch and showed reduced above-ground biomass. This leads to a decrease in seed yield. Perhaps unsurprisingly this research shows that restoring the full function of PSII after photoinhibition to key to maintaining normally functioning electron transport rate that leads into metabolic production and growth rate.

Arabidopsis Research Roundup: October 12th

Tags: No Tags
Comments: No Comments
Published on: October 11, 2015

The Arabidopsis Research Roundup is ‘defense-focused’ this week. We present three papers that highlight different aspects of plant immunity, two of which result from UK-US-China collaborations. Firstly a team from the Sainsbury Lab, Norwich looks at two molecular mechanisms that control stomatal closure. There are then two studies that involve University of Exeter researchers that investigate either the role of plant hormones in the response to bacterial pathogens or the role that the physical barrier of the cell wall plays in the prevention of infection. Next a group of JIC researchers present a Large Scale Biology investigation of microtubule interacting proteins. Finally a study from QMUL looks at the interaction between NPQ and photoinhibition in controlling the activity of Photosystem II.

Gou M, Zhang Z, Zhang N, Huang Q, Monaghan J, Yang H, Shi Z, Zipfel C, Hua J (2015) Opposing effects on two phases of defense responses from concerted actions of HSC70 and BON1 in Arabidopsis. Plant Physiol. http://dx.doi.org/10.1104/pp.15.00970

GARNet Advisory Board Member Cyril Zipfel is the UK lead on this US-China-UK collaboration that looks at two aspects of the plant immune response that are regulated by the same proteins, albeit in an antagonistic way. The heat shock protein HSC70 and the calcium binding protein BON1 both are involved in stomatal closure, the formers effect mediated by the SNC1 protein and the latter (BON1) via the activitation of SGT1 that in turn inhibits HSC70. These new functions demonstrate opposing roles for HSC80 and BON1 in the immune response and further highlight the complexity of the signaling pathways that ultimately feed into the gross phenotypic change of stomatal closure.

de Torres Zabala M, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R, Yang R, Truman W, Tang S, Smirnoff N, Grant M (2015) Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection New Phytol. http://dx.doi.org/10.1111/nph.13683

This is another UK-USA-China collaboration led by Murray Grant at the University of Exeter, in which the role of the plant hormones is assessed in the response to bacterial pathogens. The defence response is mediated by both the hormones salicylic acid (SA) and jasmonic acid (JA) which antagnise many of each others activity. Pathogens have been shown to produce a JA-mimic cornatine (COR) in order to stall SA-mediated effects. In this study the authors use a systems-biology based approach that involved targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq to introduce a complex network of regulation that involves JAZ proteins, which are repressors of the JA signal. In short they show that JAZ5 and JAZ10 specifically co-operate to inhibit pathogen growth by restricting COR cytotoxicity by novel mechanisms, which do not involve previously well-defined signaling proteins.

Marcos R, Izquierdo Y, Vellosillo T, Kulasekaran S, Cascón T, Hamberg M, Castresana C (2015) 9-Lipoxygenase-derived oxylipins activate brassinosteroid signaling to promote cell wall-based defense and limit pathogen infection Plant Physiol. http://dx.doi.org/10.1104/pp.15.00992

This work was performed in Madrid under the supervision of Carmen Castresana but includes the work of Satish Kulasekaran who is now at the Exeter. The focus of the work is the oxylipins, which are oxygenated lipid derivatives that regulate plant development and immunity. Using a variety of noxy mutants (non-responding to oxylipins) they show that the effect of the oxylipins is mediated via changes in the cell wall and this is signalled via the Brassinosteriod response pathway. Suspectibility to bacterial and fungal infection was enhanced in noxy mutants but plants were resistance when BR signalling was switched on. Therefore this manuscript introduces an important interaction between the oxylipins and BR signalling and helps to clarify their role in modulating plant defense.

Derbyshire P, Ménard D, Green P, Saalbach G, Buschmann H, Lloyd CW, Pesquet E (2015) Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis Plant Cell. http://dx.doi.org/10.1105/tpc.15.00314

The experiments in this Large Scale Biology paper were performed in the lab of Clive Lloyd (John Innes Centre) which included the work of Eduoard Pesquet, who now has his own lab in Sweden. They looked the microtubule patterning that defines the nature of tracheary element (TEs) thickening in plant vascular tissues. They used Arabidopsis cell suspension culture to isolate microtubule interacting proteins present during TE differentiation. One protein of interest was CELLULOSE SYNTHASE-INTERACTING PROTEIN1, associated with primary wall synthesis, which was enriched during secondary cell wall formation of TEs. The authors knocked-down the expression of some of their identified proteins and indeed showed that they were important for this differentiation. A take-home message is that the proteins that interact with microtubules and link them to different metabolic compartments do indeed specifically vary during TE differentiation, regulating different aspects of cell wall patterning.

Giovagnetti V, Ruban AV (2015) Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves J Photochem Photobiol B. http://dx.doi.org/10.1016/j.jphotobiol.2015.09.010

Arabidopsis Research Roundup Regular Alexandre Ruban (QMUL) again looks at the mechanisms that lessen the amount of photoinhibition (when photosystem II is damaged by being exposed to too much light). An opposing response is Non-photochemical quenching (NPQ) of chlorophyll a fluorescence which serves to protect PSII from high light conditions. In this study they confirm that a recently devised procedure that aims to discern between the effect of NPQ and photoinhibition works well as a measurement for the efficiency of PSII activity.

Arabidopsis Research Roundup: August 12th

The UK Arabidopsis Research Roundup this week includes a couple of EVO-DEVO-type studies that compare processes within different organisms (Physcomitrella and Cardamine) to those occurring in Arabidopsis. These include the evolution of both hormone signaling and leaf development. Elsewhere a cell-biological focused study looks at the factors that control formation of plasmodesmata whilst another manuscript investigates the details of a plants mechanism to avoid photoinhibition.

Yasumura Y1, Pierik R2, Kelly S3, Sakuta M4, Voesenek LA5, Harberd NP (2015) An Ancestral Role for Constitutive Triple Response 1 (CTR1) Proteins in Both Ethylene and Abscisic Acid Signaling Plant Physiology http://dx.doi.org/10.1104/pp.15.00233

GARNet Advisory Board Member Nick Harberd leads this study that investigates the evolution of the CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) protein, which has known to be involved in ethylene signalling for two decades. CTR1 is compared between mosses, lycophytes and angiosperms, showing that PpCTR1 from moss Physcomitrella patens has the same function and the Arabidopsis equivalent, indicating that this signaling pathway predates the land plant lineage. However PpCTR1 is also involved in ABA signaling, which is not the case with AtCTR1 and may be explained by the presence of an AtCTR1 homolog in angiosperms. The authors state that this work provides new insights into the molecular events that contributed to the adaptive evolution of regulatory mechanisms across plant species

Kirsten Knox, Pengwei Wang, Verena Kriechbaumer, Jens Tilsner, Lorenzo Frigerio, Imogen Sparkes, Chris Hawes, Karl Oparka (2015) Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation Plant Physiology http://dx.doi.org/10.1104/pp.15.00668

This study is led by Karl Oparka (Edinburgh) and Chris Hawes (Oxford Brookes) as well as including PIs from Exeter (Sparkes), Warwick (<a href="http://www2.warwick cialis professional 20 mg.ac.uk/fac/sci/lifesci/people/lfrigerio/” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘http://www2.warwick.ac.uk/fac/sci/lifesci/people/lfrigerio/’, ‘Frigerio’]);” target=”_blank”>Frigerio) and St Andrews (Tilsner). The manuscript investigates formation of plasmodesmata (PD), which are known to form from endoplasmic reticulum (ER) via an intermediant termed the desmotubule. Members of the Reticulon (RTNLB) family of ER-tubulating proteins are found in the PD proteome are are associated with developing PD following cell division. The authors use super-resolution imaging to show that RTNLB6 colocalises with desmotubules. The mobility of these RTNLB proteins was show, using FRAP, to vary dependent on their positioning within a developing cell plate. Mutant studies show that RTNLB proteins act as important regulators of the formation of PDs and the authors discuss the wider potential roles of these proteins in this process.

Ware MA, Giovagnetti V, Belgio E, Ruban AV (2015) PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems J Photochem Photobiol B http://dx.doi.org/10.1016/j.jphotobiol.2015.07.016

Alexander Ruban (QMUL) continues a fine run of recent publications with this study that investigates plants that express increased levels of the photosynthetic PsbS protein, in the context of a subsequent increase in levels of non-photochemical fluorescence quenching (NPQ). In these PsbS overexpressors, there is increased amplitude of the irreversible NPQ component, qI, which likely results from aggregation of the LHCII antenna complex. Use of freeze-fracture electron microscopy show that quenched thylakoids have 3x more aggregated LHCII particles compared to those that are dark-adapted. Overall, these results demonstrate the importance of this LHCII aggregation in the NPQ mechanism whilst showing that structure of the PSII supercomplex plays no role in formation in process of quenching.

Cartolano M, Pieper B, Lempe J, Tattersall A, Huijser P, Tresch A, Darrah PR, Hay A, Tsiantis M (2015) Heterochrony underpins natural variation in Cardamine hirsuta leaf form Proc Natl Acad Sci U S A. 2015 Aug 4. http://dx.doi.org/10.1073/pnas.1419791112

The study is a continuation of many years of work led by Miltos Tsiantis (who maintains links with Oxford University), aimed at increasing the understanding of how different morphological patterns develop. They compare leaf patterning in Arabidopsis (which has a simple leaf) and in the related plant, Cardamine (that has a complex leaf). They have identified a novel QTL from Cardamine that shows that age-dependent progression of leaf form underlies variation in this trait within species. Interestingly the QTL mapped to a cis-acting region controlling expression of the floral regulator FLC. Genotypes expressing low levels of FLC show early flowering and accelerated changes in leaf form, including faster leaflet production. These findings link reproductive timing with leaf development and the authors speculate that this may help to optimize resource allocation to the next generation.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
April 2017
M T W T F S S
« Mar    
 12
3456789
10111213141516
17181920212223
24252627282930

Welcome , today is Wednesday, April 26, 2017