GARNet Research Roundup: June 26th 2020

This edition of the GARNet Research Roundup begins with a study from Nottingham and Leeds that looks at the much-neglected subject of the control of floral arrest. The second paper from Edinburgh identifies a signaling role for the co-opted transposable elements ALP1 and ALP2 in Arabidopsis. Hans-Wilhelm Nützmann from the University of Bath leads the next study that looks at the co-regulation of clustered biosynthetic pathway genes. The fourth paper is from Cambridge and looks at the role of the ASY1 protein during meiotic recombination. The next paper is from Durham and looks at the role of GA-regulated DELLA proteins in the regulation of stomatal aperature.

The next five papers have a methods-type application that should be useful to other researchers. Firstly a research team led from Oxford highlights an improved protocol for the proteome-analysis technique of RNA interactome capture. Secondly researchers from UEA introduce the NATpare tool, which is a pipeline for high-throughput prediction and functional analysis of nat-siRNAs. The third ‘methods’ paper is from the University of Warwick where they have developed novel markers for protoplast-based analyses of hormone signaling. The fourth paper is a protocol for using CRISPR-Cas9 gene editing in Brachypodium. The final ‘methods-type’ paper is from Alison Smith’s group in Cambridge and has developed a riboswitch-based resource for use in the model alga Chlamydomonas reinhardtii.

The eleventh paper is led from the University of Glasgow and looks at the activity of the circadian clock in Arabidopsis roots. The next paper introduces genes from the parasitic plant Striga hermonthica into Arabidopsis to show that strigolactone signaling can replace GA signaling in the control of seed germination. The final two papers are focused on research in wheat, first led from the University of Leicester that looks at recombination in durum wheat and secondly from Rothamsted in which they have identified a whole family of NPF membrane transporter genes.


Ware A, Walker CH, Šimura J, et al (2020) Auxin export from proximal fruits drives arrest in temporally competent inflorescences Nat Plants. 2020;10.1038/s41477-020-0661-z. doi:10.1038/s41477-020-0661-z

Open Access with this link rdcu.be/b4rmT

Al Ware and Catriona Walker are co-first authors on this study from the Universities of Nottingham and Leeds. They have looked at the factors that control the timing of floral arrest in Arabidopsis. They discover that there is a minimum number and optimal positioning of fruits that is necessary for floral arrest, as well as looking into the role of auxin transport in this process.


Velanis CN, Perera P, Thomson B, et al (2020) The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2) PLoS Genet. 2020;16(5):e1008681. doi:10.1371/journal.pgen.1008681

Open Access

Christos Velanis is first author on this research led by the Goodrich group at the University of Edinburgh that looked at the function of the Arabidopsis ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) gene, which has arose by domestication of the Harbinger class of transposable elements (TEs). ALP1 is a component of the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) but yet its functional significance is not yet known. They also identify the related ALP2 gene and find that it interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1) as part of the PRC2.


Nützmann HW, Doerr D, Ramírez-Colmenero A, et al (2020) Active and repressed biosynthetic gene clusters have spatially distinct chromosome states Proc Natl Acad Sci U S A. 2020;201920474. doi:10.1073/pnas.1920474117

Hans-Wilhelm Nützmann is a now a member of faculty at the University of Bath but led this research as a member of the Osbourn group at the John Innes Centre. They use Hi-C and related techniques to study the control of expression of clustered biosynthetic pathway genes in Arabidopsis. This study reveals potential mechanisms that suggest gene clustering in the one-dimensional chromosome is accompanied by compartmentalization of the 3D chromosome.


Lambing C, Kuo PC, Tock AJ, Topp SD, Henderson IR (2020) ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis Proc Natl Acad Sci U S A. 2020;201921055. doi:10.1073/pnas.1921055117

Open Access

Christophe Lambing is first author on this study from the Henderson lab at the University of Cambridge that investigates the role of the ASY1 protein in the control of recombination frequency during meiosis. ASY1 is localized in an ascending telomere-to-centromere gradient and this informs the role that it plays to antagonize telomere-recombination to ensure this occurs in more gene-rich regions of the chromosomes.


Sukiran NA, Steel PG, Knight MR (2020) Basal stomatal aperture is regulated by GA-DELLAs in Arabidopsis J Plant Physiol. 2020;250:153182. doi:10.1016/j.jplph.2020.153182

Nur Afiqah Sukiran is the first author of this study from the Durham University that investigates the role of DELLA proteins in the regulation of stomatal aperature. They also find that the GID1 gibberellin receptor is necessary for optimal basal stomatal aperture.

Professor Marc Knight will be discussing his labs work on the #GARNetPresents webinar on June 30th 2020


Bach-Pages M, Homma F, Kourelis J, et al (2020) Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules. 2020;10(4):661 doi:10.3390/biom10040661

Open Access

Marcel Bach-Pages is first author on this research led from the University of Oxford that has improved the proteome-analysis technique of RNA interactome capture (RIC) to identify 717 RNA Binding Proteins (RBP) from Arabidopsis. Many of these RBPs exhibit unconventional modes of RNA binding and uncovered greater diversity in the number of proteins for which RNA binding is an important part of their function.


Thody J, Folkes L, Moulton V (2020) NATpare: a pipeline for high-throughput prediction and functional analysis of nat-siRNAs Nucleic Acids Res. 2020;gkaa448. doi:10.1093/nar/gkaa448

Joshua Thody leads this work from the University of East Anglia in which the authors present a new software pipeline, called NATpare, for prediction and functional analysis of Natural antisense transcript-derived small interfering RNAs (nat-siRNAs) using sRNA and degradome sequencing data. Although this tool could be used to analyse data from different experimental systems it is benchmarked using Arabidopsis data and the authors show that it could rapidly identify a comprehensive set of nat-siRNAs from different tissues and that are produced in response to different stresses.


Lehmann S, Dominguez-Ferreras A, Huang WJ, Denby K, Ntoukakis V, Schäfer P (2020) Novel markers for high-throughput protoplast-based analyses of phytohormone signaling. PLoS One. 2020;15(6):e0234154. doi:10.1371/journal.pone.0234154

Open Access

Silke Lehmann leads this work from the University of Warwick that has generated a community-resource of 18 promoter::luciferase constructs that respond to different phytohormones. In addition they suggest an experimental setup for high-throughput analyses in which these new reporter constructs might be used to screen for biological and environmental stimuli that effect hormone-mediated gene expression.


Hus K, Betekhtin A, Pinski A, et al (2020) A CRISPR/Cas9-Based Mutagenesis Protocol for Brachypodium distachyon and Its Allopolyploid Relative, Brachypodium hybridum. Front Plant Sci. 2020;11:614. doi:10.3389/fpls.2020.00614 Open Access

This Polish project is led by Karolina Hus and includes co-authors from Cambridge and Aberystwyth. They have developed a protocols for CRISPR-Cas9 gene editing in Brachypodia species. As proof of concept they target two cyclin-dependent kinases (CDKG1 and CDKG2) that are involved in DNA recombination.


Mehrshahi P, Nguyen GTDT, Gorchs Rovira A, et al (2020) Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas ACS Synth Biol. 2020;10.1021/acssynbio.0c00082. doi:10.1021/acssynbio.0c00082

Open Access

Payam Mehrshahi is the first author on this Academia-Industry collaboration led from the University of Cambrige. They have used a synthetic biology approach to assess the effectiveness of riboswitchs (RNA regulatory elements) in the control of gene expression in the model alga Chlamydomonas reinhardtii.


Nimmo HG, Laird J, Bindbeutel R, Nusinow DA (2020) The evening complex is central to the difference between the circadian clocks of Arabidopsis thaliana shoots and roots Physiol Plant. 2020;10.1111/ppl.13108. doi:10.1111/ppl.13108 Open Access

Hugh Nimmo from the University of Glasgow is lead author on this UK-USA collaboration that has looked at the operation of the circadian clock in root tissues and in particularly how it responds to light quality. They found that plants with mutations in certain genes that make up the circadian clock evening complex have root-specific effects, confirming that the shoot and root clocks response to differently to light signals.


Bunsick M, Toh S, Wong C, et al (2020) SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga Nat Plants. 2020;10.1038/s41477-020-0653-z. doi:10.1038/s41477-020-0653-z

Michael Bunsick is first author of this Canadian-led study that includes Julie Scholes from the University of Sheffield as a co-author. Leading from a curiosity about the relationship between host root exudates and the parasitic plant Striga hermonthica, they were led to find that expression of Striga strigolactone-hormone receptor proteins in Arabidopsis is able to bypass the requirement for GA in seed germination. This demonstrates both how the Striga might sense host signals and that there is no absolute requirement for GA-during seed germination.


Desjardins SD, Ogle DE, Ayoub MA, et al (2020) MutS homologue 4 and MutS homologue 5 maintain the obligate crossover in wheat despite stepwise gene loss following polyploidization Plant Physiol. 2020;pp.00534.2020. doi:10.1104/pp.20.00534

Open Access

Stuart Desjardins is first author on his research led from the University of Leicester. They work with allotetraploid (AABB) durum wheat and show that this plant undergoes two pathways of meiotic recombination. They show that the class I pathway requires the MSH4 and MSH5 (MutSγ) proteins and the authors show that these genes are absent in hexaploid (AABBDD) wheat. These findings enable the authors to speculate about the function of these proteins in allopolyploid wheat.


Wang H, Wan Y, Buchner P, King R, Ma H, Hawkesford MJ (2020) Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) in Triticum aestivum L J Exp Bot. 2020;eraa210. doi:10.1093/jxb/eraa210 Open Access

Huadun Wang is first author on this manuscript that is led from Rothamsted Research and includes Chinese collaborators. They investigate the 331 member family of wheat NPF genes that encode membrane transporters that transport a diverse range of substrates. Phylogenetically these wheat NPF genes are closely clustered with Arabidopsis, Brachypodium and rice orthologs and this study and lays the foundation for their further functional analysis in wheat.

GARNet Research Roundup: April 9th 2020

This Easter edition of the GARNet Research Roundup begins with research from Aberystwyth University that has developed a system for studying self-incompatability in self-compatible Arabidopsis. Next is an outstanding community-focussed study led from the John Innes Centre that outlines the development of new resources that better enable discovery-led science to be conducted within hexaploid wheat.

Third is a study led by the Dodd group at the JIC that links the circadian clock to water-use efficiency. The fourth paper is from the Edwards group at Bristol investigates the effect of higher temperatures on meiotic recombination in wheat. The fifth paper is from Rothamsted Research and introduces novel molecular tools that will be useful in future studies of the economically important weed Blackgrass.

The next paper includes co-authors from the Sainsbury lab in Norwich and looks at the role of carbonic anhydrases in plant immunity at higher levels of CO2. The seventh paper looks at the integration of light signaling and the circadian clock and includes Paul Devlin from RHUL as a co-author. The penultimate paper includes Gareth Jenkins from Glasgow as a co-author and looks at the perception of different wavelengths of UV light by the photoreceptor UVR8. The final paper includes Marko Hyvönen from Cambridge as a co-author and investigates the organisation of the RALF gene family in strawberry.


Wang L, Triviño M, Lin Z, Carli J, Eaves DJ, Van Damme D, Nowack MK, Franklin-Tong VE, Bosch M (2020) New opportunities and insights into Papaver self-incompatibility by imaging engineered Arabidopsis pollen. J Exp Bot. doi: 10.1093/jxb/eraa092 Open Access

Ludi Wang is first author on this work led from Maurice Bosch’s lab at Aberystwyth University. They have transferred their work on self-incompatability (SI) in Papaver into Arabidopsis, so as to take advantage of its excellent genetic resources. They show that the SI response can be recapitulated in Arabidopsis, even though it is self-compatible. This research has allowed them to discover new roles for clathrin-mediated endocytosis, the actin cytoskeleton and calcium signaling during SI.

Ludi and Maurice discuss this work on the GARNet Community podcast.


Adamski NM, Borrill P, Brinton J, Harrington SA, Marchal C, Bentley AR, Bovill WD, Cattivelli L, Cockram J, Contreras-Moreira B, Ford B, Ghosh S, Harwood W, Hassani-Pak K, Hayta S, Hickey LT, Kanyuka K, King J, Maccaferrri M, Naamati G, Pozniak CJ, Ramirez-Gonzalez RH, Sansaloni C, Trevaskis B, Wingen LU, Wulff BB, Uauy C (2020) A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. Elife. doi: 10.7554/eLife.55646 Open Access

This research is led from the Uauy lab at the John Innes Centre by Nikolai Adamski, Phillippa Borrill (now at Birmingham), Jemima Brinton, Sophie Harrington and Clemence Marchal. This team worked with collaborators based around the UK, in Australia, Canada and Mexico and they outline the resources that they have developed that will promote the use of wheat as an experimental organism for discovery-led research.


Simon NM, Graham CA, Comben NE, Hetherington AM, Dodd AN (2020) The circadian clock influences the long-term water use efficiency of Arabidopsis. Plant Physiol. doi: 10.1104/pp.20.00030 Open Access

This research is led by Noriane Simon who worked with Anthony Dodd at the University of Bristol and the John Innes Centre. They showed that misregulation of components that control the circadian oscillator causes alterations in water-use efficiency in Arabidopsis plants. This response is linked to the control of transpiration via circadian control of guard cell physiology.


Coulton A, Burridge AJ, Edwards KJ (2020) Examining the Effects of Temperature on Recombination in Wheat. Front Plant Sci. doi: 10.3389/fpls.2020.00230 Open Access

Alexander Coulton is lead author on this study from the University of Bristol that has looked at how temperature changes alter the landscape of meiotic recombination in wheat. Despite showing that high temperature induces movement of recombination events toward centromeres, the overall effect is limited due to the tight linkages of many wheat genes.


Mellado-Sánchez M, McDiarmid F, Cardoso V, Kanyuka K, MacGregor DR (2020) Virus-mediated transient expression techniques enable gene function studies in black-grass. Plant Physiol. doi: 10.1104/pp.20.00205 Open Access

This Letter to the editor of Plant Physiology is led by Macarena Mellado-Sánchez, who works with Dana MacGregor at Rothamsted Research. They demonstrate the first usage of Virus-mediated gene silencing (VIGS) and Virus-mediated protein overexpression (VOX) in Blackgrass, which is a significant crop weed. They use these techniques in genetic gain and loss of function studies that result in changes in herbicide resistance in transformed blackgrass. Hopefully this work can be a prelude to future research in this potentially important experimental system for understanding how weeds effect crop yields.

http://www.plantphysiol.org/content/early/2020/04/01/pp.20.00205.long

Zhou Y, Vroegop-Vos IA, Van Dijken AJH, Van der Does D, Zipfel C, Pieterse CMJ, Van Wees SCM (2020) Carbonic anhydrases CA1 and CA4 function in atmospheric CO(2)-modulated disease resistance. Planta. doi: 10.1007/s00425-020-03370-w

Yeling Zhou is first author on this Dutch-led research that includes Dieuwertje Van der Does and Cyril Zipfel from the Sainsbury lab in Norwich. They show that the Carbonic anhydrases CA1 and CA4 play a role in plant immunity under higher levels of atmospheric CO2. This indicates that these genes might be future targets for improving plant disease resistance.


Liu Y, Ma M, Li G, Yuan L, Xie Y, Wei H, Ma X, Li Q, Devlin PF, Xu X, Wang H (2020) Transcription Factors FHY3 and FAR1 Regulate Light-induced CIRCADIAN CLOCK ASSOCIATED1 Gene Expression in Arabidopsis. Plant Cell. doi: 10.1105/tpc.19.00981

Paul Devlin from RHUL is a co-author on this Chinese-study led by Yang Liu. They show that FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its paralogue FAR-RED IMPAIRED RESPONSE1 (FAR1) are essential for light induction of CCA1, which contracts to the repressive effect of PHYTOCHROME INTERACTING FACTOR 5 (PIF5). They introduce an integrated photosensory signaling pathway that brings together light signalling with control of the circadian clock.


Rai N, O’Hara A, Farkas D, Safronov O, Ratanasopa K, Wang F, Lindfors AV, Jenkins GI, Lehto T, Salojärvi J, Brosché M, Strid Å, Aphalo PJ, Morales LO. (2020) The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant Cell Environ. doi: 10.1111/pce.13752 Open Access

Neha Rai is first author on this Finnish-led study that includes Gareth Jenkins from the University of Glasgow as a co-author. They investigated the response of the photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) to UV wavelengths included in sunlight. They show that the wavelength of 350 nm is an important cut-off for the perception of UV-B and UV-A by these different photoreceptors.

https://onlinelibrary.wiley.com/doi/full/10.1111/pce.13752

Negrini F, O’Grady K, Hyvönen M, Folta KM, Baraldi E (2020) Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS One. doi: 10.1371/journal.pone.0226448 Open Access

Marko Hyvönen working at the University of Cambridge is a co-author on this Italian-US collaboration led by Francesca Negrini. This work describes the genomic organisation of the family of the Rapid Alkalinization Factors (RALFs) in octoploid strawberry. In addition they describe the upregulation of one family member, FanRALF3-1, during fungal infection. This will lead to future research aimed at defining the precise molecular relationship between FanRALF3-1 expression and the immune response in strawberry.

GARNet Research Roundup: February 18th 2020

This weeks GARNet Research Roundup begins with two studies that characterize the role of proteins that are involved in the control of meiotic recombination. The first study is from the Henderson lab at the University of Cambridge and investigates the role of the REC8 protein whilst the second is from John Doonan’s group at Aberystwyth University and investigates the role of the cyclin-dependent kinase CDKG.

The third paper is from the same research group in Aberystwyth and investigates how alternative splicing can impact the function of the FLOWERING LOCUS M gene.

The next papers is a cross-UK collaboration led from Rothamsted Research and the John Innes Centre that identifies an important QTL associated with the generation of high-fibre wheat. The fifth paper is from the JIC and reveals how the immune resistance gene MLO plays a role in a plants association with beneficial microbial symbiotes.

The sixth paper is from the Gibbs lab at the University of Birmingham and further characterizes the function of the VRN2 component of the polycomb repressive complex 2.

Nick Harberd from Oxford is a corresponding author of the next paper, which identifies a new gene that could be used to improve nitrogen-use efficiency in rice.

The eighth paper is a proteomic-based study from the University of Cambridge that identifies novel stress-induced components of the Arabidopsis spliceosome.

The penultimate paper is from Jonathan Jones’ lab at the Sainsbury lab, Norwich in which they characterize a new transgenic line useful for studying the plant immune response.

The final paper includes Liam Dolan from Oxford as a co-author in a study that characterizes a novel ATPase from the algae Chara australis.


Lambing C, Tock AJ, Topp SD, Choi K, Kuo PC, Zhao X, Osman K, Higgins J, Franklin FCH, Henderson IR (2020) Interacting genomic landscapes of REC8-cohesin, chromatin and meiotic recombination in Arabidopsis thaliana. Plant Cell. doi: 10.1105/tpc.19.00866
Open Access

This study is led by Chris Lambing from Ian Henderson’s group at the University of Cambridge and includes collaborators from Leicester and Birmingham. They use ChIP-seq to identify the genomic regions associated with the REC8 protein, showing that it interacts with regions with multiple distinct chromatin states. This interaction plays a key role in controlling the formation of double strands breaks and is required to organize meiotic chromosome architecture and interhomolog recombination.


Nibau C, Lloyd AH, Dadarou D, Betekhtin A, Tsilimigka F, Phillips DW, Doonan JH (2020) CDKG1 Is Required for Meiotic and Somatic Recombination Intermediate Processing in Arabidopsis. Plant Cell. doi: 10.1105/tpc.19.00942 Open Access

Candida Nibau from Aberystwyth University leads this research that reveals a critical role for the cyclin-dependent kinase G1 (CDKG) in the control of recombination, both during meiosis and within somatic cells. The authors discover that this role occurs early in the process through the stabilization of recombination intermediates.


Nibau C, Gallemí M, Dadarou D, Doonan JH, Cavallari N (2020) Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2. Front Plant Sci. doi: 10.3389/fpls.2019.01680 Open Access

Candida Nibau is first author on this collaboration between researchers in the UK (Aberystwyth University) and Vienna, Austria. They assess the factors that control the contribution of two splicing variants of the FLOWERING LOCUS M gene on flowering time across a temperature range. They find that this process is controlled by the activity of the cyclin-dependent kinase G2 (CDKG2) and its cognate cyclin, CYCLIN L1 (CYCL1).

https://www.frontiersin.org/articles/10.3389/fpls.2019.01680/full

Lovegrove A, Wingen LU, Plummer A, Wood A, Passmore D, Kosik O, Freeman J, Mitchell RAC, Hassall K, Ulker M, Tremmel-Bede K, Rakszegi M, Bedő Z, Perretant MR, Charmet G, Pont C, Salse J, Waite ML, Orford S, Burridge A, Pellny TK, Shewry PR, Griffiths S (2020) Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS One. doi: 10.1371/journal.pone.0227826
Open Access

Alison Lovegrove at Rothamsted Research is the first author on this cross-UK research that has gained significant interest from the main–stream media. Through analysis of a Chinese wheat variety with high dietary fibre due to the high amounts of cell wall polysaccharide arabinoxylan the authors identified a QTL that is responsible for this phenotype. Understanding this QTL will allow use of both marker-assisted breeding and new breeding technologies to aid in the generation of high yield, high fibre varieties.


Jacott CN, Charpentier M, Murray JD, Ridout CJ (2020) Mildew Locus O facilitates colonization by arbuscular mycorrhizal fungi in angiosperms. New Phytol. doi: 10.1111/nph.16465

Catherine Jacott is first author on this study from the JIC that investigates the role of the known barley resistance gene Mildew Resistance Locus O (MLO) during arbuscular mycorrhizal interactions in wheat, barley and Medicago. They show that MLO is important for this beneficial symbiotic association and that the role of MLO has been appropriated during infection with pathogenic powdery mildew.


Labandera AM, Tedds HM, Bailey M, Sprigg C, Etherington RD, Akintewe O, Kalleechurn G, Holdsworth MJ, Gibbs DJ (2020) The PRT6 N-degron pathway restricts VERNALIZATION 2 to endogenous hypoxic niches to modulate plant development. New Phytol. doi: 10.1111/nph.16477

Anne-Marie Labandera is first author on this work from Dan Gibbs’ lab in Birmingham. They show that ubiquitin-mediated proteolysis of the VERNALIZATION2 (VRN2) protein via the oxygen-dependent PRT6 N-degron pathway is important for many areas of plant development. This regulation of VRN2 has different developmental outcomes depending on whether it occurs in or out of meristematic tissues.


Wu K, Wang S, Song W, Zhang J, Wang Y, Liu Q, Yu J, Ye Y, Li S, Chen J, Zhao Y, Wang J, Wu X, Wang M, Zhang Y, Liu B, Wu Y, Harberd NP, Fu X (2020) Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science. doi: 10.1126/science.aaz2046

Kun Wu is first author on this Chinese-led investigation that also includes Nick Harberd from Oxford University as a corresponding author. Working in rice they link genomic-wide chromatin changes with expression of the NGR5 (NITROGEN-MEDIATED TILLER GROWTH RESPONSE 5) transcription factor during nitrogen-induced growth. Overexpression of NGR5 can uncouple nitrogen-sensing from tiller production and therefore provide a novel tool to possibly enhance agricultural production in low nitrogen conditions.

https://science.sciencemag.org/content/367/6478/eaaz2046.long

Marondedze C, Thomas L, Lilley KS, Gehring C (2020) Drought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components. Front Mol Biosci. doi: 10.3389/fmolb.2019.00163 Open Access

Claudius Marondedze is the first author on this collaboration between the University of Cambridge and KAUST in Saudi Arabia. They perform label-free mRNA interactome-capture to identify RNA interacting proteins that are induced after drought stress. This reveals over 40 novel spliceosome-interacting proteins but also 32 proteins that associate with stress granules, which are indicative of transcriptional arrest. This provides new insights into how plant stress responses might be altered by the activity of spliceosome components.


Ngou BPM, Ahn HK, Ding P, Redkar A, Brown H, Ma Y, Youles M, Tomlinson L, Jones JDG (2020) Estradiol-inducible AvrRps4 expression reveals distinct properties of TIR-NLR-mediated effector-triggered immunity. J Exp Bot. doi: 10.1093/jxb/erz571

This research from Jonathan Jones’ group at the Sainsbury Lab, Norwich is led by Bruno Pok Man Ngou. They have developed a transgenic line that enables the transient in planta expression of AvrRps4, which is a potent bacterial immune effector. This stimulates the RRS1/RPS4-dependent immune response and provides insights into certain mechanisms of this pathway without exposing the plants to pathogens.


Zhang S, Habets M, Breuninger H, Dolan L, Offringa R, van Duijn B (2020) Evolutionary and Functional Analysis of a Chara Plasma Membrane H(+)-ATPase. Front Plant Sci. doi: 10.3389/fpls.2019.01707 Open Access

Liam Dolan from the University of Oxford is a co-author on this Dutch-led research that includes Sutun Zhang as first author. They characterize a plasma membrane localised ATPase from the algae Chara australis and perform complementation studies in both yeast and Arabidopsis. These studies allow the authors to propose that the mode of regulation of this algal ATPase is likely different from that of known yeast and land plant PM H+-ATPases.

GARNet Research Roundup: February 7th 2020

This latest edition of the GARNet Research Roundup begins with two studies that look at different aspects of lateral root formation and include members of Malcolm Bennett’s lab in Nottingham. The first investigates a critical role for hydropatterning in the control of lateral root initiation whilst the second looks at how cell death in overlying tissue layers plays an active role in the control of lateral root emergence.

The third paper is from the John Innes Centre and investigates the mechanism through which a small number of noncoding SNPs can alter chromatin dynamics at the FLC locus. The fourth paper is from Glasgow and assesses a link between auxin signaling and proteins involved in membrane trafficking.

The next paper is from Rothamsted Research and looks at how aerial differences in wheat cultivars can affect the root-associated microbiome. The sixth paper is from the James Hutton Institute and investigates the relationship between phosphate and zinc signaling during the growth of Brassica oleracea.

The final three papers focus on some aspect of plant mechanical strength. The first paper is from Aberystwyth and looks at the how mechanical stress impacts growth of Brachypodium. The next two papers are led from the US and Sweden respectively and include UK co-authors from Leeds, the JIC and York. The first looks at how lignin modifications illicits defence responses whilst the second begins to demonstrate how xyloglucan modifications alter secondary cell wall growth.


von Wangenheim D, Banda J, Schmitz A, Boland J, Bishopp A, Maizel A, Stelzer EHK, Bennett M (2020) Early developmental plasticity of lateral roots in response to asymmetric water availability. Nat Plants. doi: 10.1038/s41477-019-0580-z Open Access with link.

This brief communication is led by Daniel von Wangenheim, who worked with Malcolm Bennett and colleagues at the University of Nottingham. They use light sheet fluorescence microscopy to investigate how the local water environment controls the initiation of lateral root primordia. They show that this response is extremely plastic and that the initiation of pericycle cell files is linked to the external hydrological landscape. This study reveals a potential adaptive advantage when roots forage under heterogeneous soil conditions, which of course exists in all ‘real-world’ situations.

BotanyOne has written a nice blog about this paper and Daniel von Wangenheim has produced a superb explanatory video.


Escamez S, André D, Sztojka B, Bollhöner B, Hall H, Berthet B, Voß U, Lers A, Maizel A, Andersson M, Bennett M, Tuominen H (2020) Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Curr Biol. doi: 10.1016/j.cub.2019.11.078 Open Access

Ute Voss and Malcolm Bennett from Nottingham are co-authors on this Finnish-led study in which Sacha Escamez is first author. They show that cell death occuring in advance of emerging lateral roots is an active developmental process rather than a passive effect of lateral root initiation. Plants with a cell-death-deficiency show delayed lateral root development, which is rescued through physical or genetic removal of outer cell files.


Qüesta JI, Antoniou-Kourounioti RL, Rosa S, Li P, Duncan S, Whittaker C, Howard M, Dean C (2020) Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. Genes Dev. doi: 10.1101/gad.333245.119 Open Access

This research from the John Innes Centre is led by Julia Qüesta and Rea Antoniou-Kourounioti. They show that four noncoding SNPs in the Lov-1 Arabidopsis accession are responsible for the reactivation of FLC after only a short cold treatment. They combine experimentation and modelling to also propose that the control of FLC reactivation is linked to the extent of DNA replication during the cold period.

Rea discusses this paper on the GARNet Community podcast. Look out for it on February 19th.


Xia L, Marquès-Bueno MM, Karnik RA (2020) Trafficking SNARE SYP132 Partakes in Auxin-associated Root Growth. Plant Physiol. doi: 10.1104/pp.19.01301 Open Access

This short communication is led by Lingfeng Xia in the Karnik lab at the University of Glasgow and looks at the role of auxin in the control of expression of the SNARE protein SYP132 during root growth and the gravitropic response. This linkage is indicative of an important role for membrane trafficking during the auxin response.


Kavamura VN, Robinson RJ, Hughes D, Clark I, Rossmann M, Melo IS, Hirsch PR, Mendes R, Mauchline TH (2020) Wheat dwarfing influences selection of the rhizosphere microbiome. Sci Rep. doi: 10.1038/s41598-020-58402-y
Open Access

Vanessa Kavamura is first author on this study led from Rothamsted Research that looks at how the aerial phenotypes of different wheat cultivars impacts root traits and the soil microbiome. Interestingly they show that taller wheat varieties are predicted to have a more connected bacterial network, which might lead to a more favourably rhizosphere for plant growth.


Pongrac P, Fischer S, Thompson JA, Wright G, White PJ (2020) Early Responses of Brassica oleracea Roots to Zinc Supply Under Sufficient and Sub-Optimal Phosphorus Supply. Front Plant Sci. doi: 10.3389/fpls.2019.01645 Open Access

Paula Pongrac is the first author on this study led from the James Hutton Institute in which they investigate how plants respond to their access to environmental phosphate and zinc. They assess gene expression of Brassica oleracea plants grown under different mineral conditions and reveal important relationships between the response to phosphorous and zinc that will inform future nutrient supply strategies and identification of novel germplasm.


Gladala-Kostarz A, Doonan JH, Bosch M (2020) Mechanical stimulation in Brachypodium distachyon: implications for fitness, productivity and cell wall properties. Plant Cell Environ. doi: 10.1111/pce.13724.

Agnieszka Gladala‐Kostarz who works with Maurice Bosch at Aberystwyth University is the first author on this research that looked at the effect of both wind- and mechanical- treatments on growth of two accessions of Brachypodium distachyon. They catalogue the physical changes that occur in this important base-line study that tracks the relevance of these environmental factors on the multiple growth traits.


Gallego-Giraldo L, Liu C, Pose-Albacete S, Pattathil S, Peralta AG, Young J, Westpheling J, Hahn MG, Rao X, Knox JP, De Meester B, Boerjan W, Dixon RA (2020) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1914422117 Open Access

Lina Gallego-Giraldo is the first author on the US-led paper that includes Paul Knox and Sara Pose-Albacete from the University of Leeds. In this work they look at the link between lignin modifications and the inappropriate initiation of plant defence responses. They show that cell wall pectin remodeling mediated by the ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) protein releases defence elicitors and as such provides important information on the link between these processes.


Kushwah S, Banasiak A, Nishikubo N, Derba-Maceluch M, Majda M, Endo S, Kumar V, Gomez L, Gorzsás A, McQueen-Mason S, Braam J, Sundberg B, Mellerowicz EJ (2020) Arabidopsis XTH4 and XTH9 contribute to wood cell expansion and secondary wall formation. Plant Physiol. doi: 10.1104/pp.19.01529 Open Access

Sunita Kushwah leads this Swedish-study that has co-authors from the JIC and York. They investigate a novel role for the XTH4 and XTH9 xyloglucan endo-transglycosylase/ hydrolases during secondary growth in Arabidopsis. The activity of these enzymes has a significant effect on cell wall composition and in the control of wood formation

https://www.nottingham.ac.uk/biosciences/people/ute.voss

GARNet Research Roundup: Jan 24th 2020

The first GARNet Research Roundup of 2020 begins with a study from the University of Dundee at the James Hutton Institute in which they have adapted nanopore direct sequencing to analyse the Arabidopsis mRNA methylome. The second study is also from Dundee and is an analysis of alternative splicing in C4 sugarcane.

The next two papers look at the control of stomatal development. In the first, researchers from Bristol investigate the integration of temperature and light-induced signals whilst the second paper is from Sheffield and looks at the role, or lack thereof, of the HY5 protein. The fifth paper is also from Sheffield and looks at the role of the MALECTIN DOMAIN KINESIN 2 protein in dividing tissues.

The next two papers investigate the control of lateral root formation. Firstly researchers from Glasgow look at how potassium signaling integrates with both the mechanisms of RNA-directed DNA-methylation and the auxin response. The other paper looks at how auxin signaling integrates with the plasmodesmata development and includes co-authors from the University of Nottingham.

The eighth paper is led from Nottingham and looks at the role of the PROTEOLYSIS (PRT)1 during the plant immune response whilst the next paper, which is from the University of Cambridge, also looks at plant immunity, specifically at how the biosynthesis of phytic acid impacts this response.

The remaining four papers include UK-based co-authors from University of South Wales, Rothamsted and Cardiff, Durham, Oxford and Aberystwyth in international research teams led from Malaysian (the expression of Acyl-CoA-binding proteins in oil palm), China (the effect of silver nanoparticles on plant growth), Japan (convergent evolution of lateral organ formation) and Chile (the factors that influence grain filling in wheat) respectively.


Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJ, Barton GJ, Simpson GG (2020) Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modification. Elife. doi: 10.7554/eLife.49658 Open Access

Matt Parker, Kasia Knop, Anya Sherwood and Nicholas Schurch are co-first authors on this study from the University of Dundee at the James Hutton Institute in which they perform direct RNA sequencing using a nanopore sequencer. They used this technical advance to analyse the mRNA (m6A) methylome and reveal a contribution to the control of the circadian clock. Future use of this technique will undoubtedly allow for an improved annotation of the Arabidopsis genome (and others).

https://elifesciences.org/articles/49658

Dantas LLB, Calixto CPG, Dourado MM, Carneiro MS, Brown JWS, Hotta CT (2019) Alternative Splicing of Circadian Clock Genes Correlates With Temperature in Field-Grown Sugarcane. Front Plant Sci. doi: 10.3389/fpls.2019.01614 Open Access

This study is led from Brazil with Luiza Dantas as first author and includes co-authors from the University of Dundee at the James Hutton Institute. They investigate the level of alternative splicing (AS) in commercial sugarcane, which is an important C4 crop. Tissue samples were collected in winter and summer and this analysis reveals temperature- and organ-dependent differences in the levels of AS across a set of genes under circadian control.


Kostaki KI, Coupel-Ledru A, Bonnell VC, Gustavsson M, Sun P, Mclaughlin FJ, Fraser DP, McLachlan DH, Hetherington AM, Dodd AN, Franklin KA (2020). Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. doi: 10.1104/pp.19.01528 Open Access

Kalliopi-Ioanna Kostaki is first author on this study from the University of Bristol that begins to unpick the mechanisms that integrate light and temperature signals in the control of stomatal development. These signals converge on phototropin photoreceptors and multiple members of the 14-3-3 protein family. This work also reveals a currently uncharacterised pathway that controls temperature regulation of guard cell movement.


Zoulias N, Brown J, Rowe J, Casson SA (2020) HY5 is not integral to light mediated stomatal development in Arabidopsis. PLoS One. doi: 10.1371/journal.pone.0222480 Open Access

Nick Zoulias is first author on this study from the Casson lab at University of Sheffield. ELONGATED HYPOCOTYL 5 (HY5) is a key regulator of light-mediated development yet in this study the authors show that the HY5-signaling cascade does not play a role in stomatal development. This key finding shows that phytochrome and cryptochrome signaling in guard cells is transmitted via non-HY5 signaling components.


Galindo-Trigo S, Grand TM, Voigt CA, Smith LM (2020) A malectin domain kinesin functions in pollen and seed development in Arabidopsis. J Exp Bot doi: 10.1093/jxb/eraa023
This research from the Smith lab at the University of Sheffield is led by Sergio Galindo-Trigo. They show that MALECTIN DOMAIN KINESIN 2 (MDKIN2) is involved in pollen, embryo and endosperm development. Malectin domains bind polysaccharides and peptides when found extracellularly in receptor-like kinases so this might suggest that in dividing tissues MDKIN2 plays a role during the physical division of cells.


Shahzad Z, Eaglesfield R, Carr C, Amtmann A (2020) Cryptic variation in RNA-directed DNA-methylation controls lateral root development when auxin signalling is perturbed. Nat Commun. doi: 10.1038/s41467-019-13927-3 Open Access

Zaigham Shahzad at the University of Glasgow is the first author in this study that looks at the relationship between potassium deficiency and lateral root formation. This effect is mediated via the impact of CLSY1, a key component of the RNA-directed DNA-methylation machinery, on the transcriptional repression of the AuxIAA protein IAA27. Interestingly this system appears to act as a backup to the auxin-dependent proteolysis pathway that is primarily responsible for the control of IAA27 activity.


Sager R, Wang X, Hill K, Yoo BC, Caplan J, Nedo A, Tran T, Bennett MJ, Lee JY (2020) Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. Nat Commun. doi: 10.1038/s41467-019-14226-7.

This US study is led by Ross Sager and includes co-authors from the University of Nottingham. This research links the role of auxin in lateral root formation with plasmodesmata development through control of the plasmodesmal regulator PDLP5. They present a model wherein molecules required for lateral root emergence transit through plasmodesmata following an inductive auxin signal.


Till CJ, Vicente J, Zhang H, Oszvald M, Deery MJ, Pastor V, Lilley KS, Ray RV, Theodoulou FL, Holdsworth MJ (2019) The Arabidopsis thaliana N-recognin E3 ligase PROTEOLYSIS1 influences the immune response. Plant Direct. doi: 10.1002/pld3.194 Open Access

Christopher Till, Jorge Vicente and Hongtao Zhangis are co-first authors on this research led from the University of Nottingham and Rothamsted Research that involves use of quantitative proteomics to define the role of the N-recognin E3 ligase PROTEOLYSIS (PRT)1 during the plant immune response.


Poon JSY, Le Fevre RE, Carr JP, Hanke DE, Murphy AM (2019) Inositol hexakisphosphate biosynthesis underpins PAMP-triggered immunity to Pseudomonas syringae pv. tomato in Arabidopsis thaliana but is dispensable for establishment of systemic acquired resistance. Mol Plant Pathol. doi: 10.1111/mpp.12902
This research from the University of Cambridge is led by Jacquelyne Poon and Alex Murphy and looks at the role of the phytic acid (inositol hexakisphosphate, InsP6) biosynthesis in dividing tissues during the plant immune response. They characterize Arabidopsis plants with mutations in biosynthetic enzymes to show that there are multiple mechanisms of basal resistance that are dependent upon InsP6.


Amiruddin N, Chan PL, Azizi N, Morris PE, Chan KL, Ong PW, Rosli R, Masura SS, Murphy DJ, Sambanthamurthi R, Haslam RP, Chye ML, Harwood JL, Low EL (2019) Characterisation of Oil Palm Acyl-CoA-Binding Proteins and Correlation of their Gene Expression with Oil Synthesis. Plant Cell Physiol. doi: 10.1093/pcp/pcz237.
Nadzirah Amiruddin is lead author on this Malaysian-led research that includes collaborators from the University of South Wales, Rothamsted Research and Cardiff University. This paper looks at the expression of Acyl-CoA-binding proteins (ACBPs) in oil palm; providing important information about the role of this protein family during oil synthesis in the world’s most important oil crop.


Wang L, Sun J, Lin L, Fu Y, Alenius H, Lindsey K, Chen C (2019) Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. Ecotoxicol Environ Saf. doi: 10.1016/j.ecoenv.2019.110072.

This Chinese-study is led by Likai Wang and includes Keith Lindsey from Durham University as a co-author. They look at the effect of silver nanoparticles (AgNPs) on growth of Arabidopsis. AgNPs are taken up by roots and have opposing effects at either 50 mg L-1 or 100mg mg L-1. This is an important preliminary study to understand how plant growth might be altered if AgNP’s are used as a delivery mechanism.


Naramoto S, Jones VAS, Trozzi N, Sato M, Toyooka K, Shimamura M, Ishida S, Nishitani K, Ishizaki K, Nishihama R, Kohchi T, Dolan L, Kyozuka J (2019) A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLoS Biol. 2019 doi: 10.1371/journal.pbio.3000560 Open Access

This Japanese study is led by Satoshi Naramoto and Junko Kyozuka and includes co-authors from the University of Oxford. They performed a mutant screen in the liverwort Marchantia polymorpha to identify the LATERAL ORGAN SUPRESSOR 1 (MpLOS1) gene, which regulates meristem maintenance and lateral organ development. Remarkably they showed this gene is also functions in the control of lateral organ development in rice, therefore demonstrating convergent evolution across plant lineages in the control of lateral organs.


Del Pozo A, Méndez-Espinoza AM, Romero-Bravo S, Garriga M, Estrada F, Alcaíno M, Camargo-Rodriguez AV, Corke FMK, Doonan JH, Lobos GA (2020) Genotypic variations in leaf and whole-plant water use efficiencies are closely related in bread wheat genotypes under well-watered and water-limited conditions during grain filling. Sci Rep. doi: 10.1038/s41598-019-57116-0 Open Access

Alejandro del Pozo leads this Chilean study that includes co-authors from Aberystwyth and NIAB. This large-scale glasshouse experiment looked at the effect of water deficit on the growth of 14 bread wheat genotypes. Measurement of multiple parameters revealed that plants face limitations to the assimilation process during grain filling due to natural senesce and water stress.

GARNet Research Roundup: November 1st 2019

This edition of the GARNet Research Roundup begins with a pan-UK study that has identified a gene involved in starch granule formation in polyploid wheat. Second is a study from Canterbury that identifies Arabidopsis QTLs involved in alternative splicing. Third is research from Cambridge that investigates the role of the nuclear circadian oscillator on sub-cellular calcium fluctuations. The fourth paper describes the development of a computer-vision tool designed for automated measurements of wheat spikes in the field. The fifth paper is a Korean-led study that has identified a transcription factor involved in pollen development and includes co-authors from Leicester. Last is a study from the University of Warwick that has looked into light-regulated gene expression during bulb initiation in onion.


Chia T, Chirico M, King R, Ramirez-Gonzalez R, Saccomanno B, Seung D, Simmonds J, Trick M, Uauy C, Verhoeven T, Trafford K (2019) A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. J Exp Bot. doi: 10.1093/jxb/erz405
Open Access

Tansy Chia is lead author on this study that brings together three of the UKs major plant breeding research centres; NIAB, Rothamsted and the JIC. They take advantage of the new genomic tools and mutant populations available in wheat to characterize the complex role of the BGC1 (B-GRANULE CONTENT 1) gene during formation of B-type starch granules.


Khokhar W, Hassan MA, Reddy ASN, Chaudhary S, Jabre I, Byrne LJ, Syed NH (2019) Genome-Wide Identification of Splicing Quantitative Trait Loci (sQTLs) in Diverse Ecotypes of Arabidopsis thaliana Front Plant Sci. doi: 10.3389/fpls.2019.01160
Open Access

This work from Canterbury Christ Church University is led by Waqas Khokhar and Naeem Syed. They analysed 666 diverse Arabidopsis ecotypes to look for splicing quantitative trait loci (sQTLs)] that alter rates of alternative splicing. They identified a number of trans-sQTLs hotspots that align with known functional SNPs. This study provides the first sQTL resource across diverse ecotypes that can be used to compliment other available genome and transcriptome datasets.


Martí Ruiz MC, Jung HJ, Webb AAR (2019) Circadian gating of dark-induced increases in chloroplast- and cytosolic-free calcium in Arabidopsis. New Phytol. doi: 10.1111/nph.16280

María Carmen Martí Ruiz is lead author on this research undertaken in Alex Webb’s lab in Cambridge. They have looked at the role of the circadian clock in the control of calcium fluctuations in both cytoplasm and chloroplast stroma. They show the extent these changes are dependent on a nuclear-encoded circadian oscillator, adding a new role in sub-cellular Ca2+ signaling to the circadian machinery.


Sadeghi-Tehran P, Virlet N, Ampe EM, Reyns P, Hawkesford MJ (2019) DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks. Front Plant Sci. doi: 10.3389/fpls.2019.01176
Open Access

Pouria Sadeghi-Tehran leads this theorectical study from Rothamsted Research that has developed an automated ‘DeepCount’ system for quantifying wheat spikes in the field. They use a deep convolutional neural network to test their program on field images and compare this method to other automated systems based on edge detection techniques and morphological analysis. Overall they show that this method has potential toward development of a portable and smartphone-assisted wheat-ear counting systems, that will have the associated benefits of counting accuracy and reduced labour.

https://www.frontiersin.org/articles/10.3389/fpls.2019.01176/full

Oh SA, Hoai TNT, Park HJ, Zhao M, Twell D, Honys D, Park SK (2019) MYB81, a microspore-specific GAMYB transcription factor, promotes pollen mitosis I and cell lineage formation in Arabidopsis. Plant J. doi: 10.1111/tpj.14564

Mingmin Zhao and David Twell are co-authors on this project led by Sung‐Aeong Oh and Korean colleagues. After screening pollen cell patterning mutants they have identified a role for the GAMYB transcription factor MYB81 during a narrow window prior to pollen mitosis I. They demonstrate that this protein is essential for establishing the male cell lineage in Arabidopsis pollen.


Rashid MHA, Cheng W, Thomas B (2019) Temporal and Spatial Expression of Arabidopsis Gene Homologs Control Daylength Adaptation and Bulb Formation in Onion (Allium cepa L.). Sci Rep. doi: 10.1038/s41598-019-51262-1 Open Access

This collaboration between the University of Warwick and Bangladesh Agricultural University is led by Harun Ar Rashid. They look at genetic regulation of light-dependent onion bulb initiation by growing plants under short and long days and testing the expression of known regulators of flowering time; AcFT, Ac LFY and AcGA3ox1. They also performed tissue-specific analysis to demonstrate differences in expression patterns that begin to suggest how these genes are involved in bulb initiation.

https://www.nature.com/articles/s41598-019-51262-1

GARNet Research Roundup: October 17th 2019

This edition of the GARNet Research Roundup includes a superb selection of papers by scientists from across the UK. First is work from the Spoel lab in Edinburgh that characterizes the fine-tuning of NPR1 activity during the plant immune response. Second is work from SLCU and the University of Helsinki that is an extensive investigation into the molecular basis of cambial development. Next is research from Nottingham that looks at the importance of soil macro-structures during the growth of wheat roots.

Fourth are three papers that highlight the breadth of research occurring at the John Innes Centre. The first paper is from Enrico Coen’s lab that applies their expertise in computational modeling to leaf development in the carnivorous plant Utricularia gibba. Second is work from Saskia Hogenhout’s lab that looks at immunity to infection by Phytoplasma pathogens. Last is work from Lars Ostergaard’s lab that characterises the role of Auxin Binding promoter elements in floral development.

The seventh paper from Bristol and Glasgow looks at shade avoidance signaling via PIF5, COP1 and UVR8 whilst the eighth paper, which is from Rothamsted, demonstrates how metabolic engineering in Arabidopsis seeds can result in a high proportion of human milk fat substitute. The next paper is from the University of Durham and investigates how the composition of the Arabidopsis cell wall impacts freezing tolerance. The first author of this paper, Dr Paige Panter discusses the paper on the GARNet community podcast.

The tenth paper is from Julia Davies’s lab at the University of Cambridge and introduces an uncharacterised response to extracellular ATP signals in Arabidopsis roots. The next paper is from Mike Blatt’s group at University of Glasgow and characterises a new interaction between vesicular transport and ion channels. The penultimate entry includes co-authors from the JIC on a Chinese-led study that demonstrates improved seed vigour in wheat through overexpression of a NAC transcription factor. Finally are two methods papers taken from a special journal issue on ‘Plant Meiosis’.


Skelly MJ, Furniss JJ, Grey HL, Wong KW, Spoel SH (2019) Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. Elife. doi: 10.7554/eLife.47005
Open Access

Michael Skelly is lead author on this paper from the lab of current GARNet chair Steven Spoel. In it they investigate the mechanisms that fine-tune the function of NPR1, a key player in the plant immune response. Progressive ubiquitination of NPR1 by an E3 ligase causes both its interaction with target genes and its subsequent degradation by an E4 ligase. This latter occurrence is opposed by the deubiquitinase activity of UBP6/7, setting up a complex regulatory environment that allows the plant to rapidly response to pathogen attack.


Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damén T, Joung JG, Yun JY, Lee JH, Ragni L, Barbier de Reuille P, Ahnert SE, Lee JY, Mähönen AP, Helariutta Y (2019) Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat Plants. doi: 10.1038/s41477-019-0522-9

This pan-European-Korean collaboration has Jing Zhang from the University of Helsinki and the Sainsbury Laboratory, University of Cambridge as first author. They use cambium cell-specific transcript profiling and follow-on network analysis to discover 62 new transcription factors involved in cambial development in Arabidopsis. This information was used to engineer plants with increased radial growth through ectopic cambial activity as well as to generate plants with no cambial activity. This understanding provides a platform for possible future improvements in production of woody biomass.


Atkinson JA, Hawkesford MJ, Whalley WR, Zhou H, Mooney SJ (2019) Soil strength influences wheat root interactions with soil macropores. Plant Cell Environ. doi: 10.1111/pce.13659
This work is led from the University of Nottingham by John Atkinson and Sacha Mooney. They use X-ray Computed Tomography to investigate a trait called trematotropism, which applies to the ability of deep rooting plants to search out macropores and avoid densely packed soil. They show root colonisation of macropores is an important adaptive trait and that strategies should be put in place to increase these structures within the natural soil environment.


Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E (2019) Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol. doi: 10.1371/journal.pbio.3000427
Open Access

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000427

Karen Lee, Claire Bushell and Yohei Koide are co-first authors on this work led by Enrico Coen at the John Innes Centre and Minlong Cui at the Zhejiang Agriculture and Forestry University in China. This study uses 3D imaging, cellular and clonal analysis, combined with computational modelling to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. They identify growth ansiotrophies that result in the final leave shape that develops from an initial near-spherical form. These processes have some similarities to the polar growth seen in Arabidopsis leaves. Overall they show that ‘simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies’.


Pecher P, Moro G, Canale MC, Capdevielle S, Singh A, MacLean A, Sugio A, Kuo CH, Lopes JRS, Hogenhout SA (2019) Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize. PLoS Pathog. doi: 10.1371/journal.ppat.1008035
Open Access

This work from Saskia Hogenhout’s lab at the John Innes Centre is led by Pascal Pecher and Gabriele Moro. They look at the effect of SAP11 effectors from Phytoplasma species that infect either Arabidopsis or maize. They demonstrate that although both related versions of SAP11 destabilise plant TCP transcription factors, their modes of action have significant differences. Please look out for Saskia discussing this paper on the GARNet Community podcast next week.


Kuhn A, Runciman B, Tasker-Brown W, Østergaard L 92019) Two Auxin Response Elements Fine-Tune PINOID Expression During Gynoecium Development in Arabidopsis thaliana. Biomolecules. doi: 10.3390/biom9100526
Open Access

Andre Kuhn is first author of this research from Lars Østergaard’s lab at the John Innes Centre. They functional characterise two Auxin-responsive Elements (AuxRE) within the promotor of the PINOID gene, which are bound by the ETITIN/ARF3 Auxin Response Factor. Alteration of this AuxRE causes phenotypic changes during flower development demonstrating that even with a complex regulatory environment, small changes to cis-elements can have significant developmental consequences.


Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, Jenkins GI, Franklin KA (2019) UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun. doi: 10.1038/s41467-019-12369-1
Open Access

Ashutosh Sharma is first author of this UK-Spanish-Germany collaboration led by Keara Franklin at University of Bristol. They have characterised the interaction between three significant molecular players that function during the shade avoidance response in Arabidopsis; PIF5, UVR8 and COP1. In shaded conditions, UVR8 indirectly promotes rapid degradation of PIF5 through their interactions with the E3 ubiquitin ligase COP1.


van Erp H, Bryant FM, Martin-Moreno J, Michaelson LV, Bhutada G, Eastmond PJ (2019) Engineering the stereoisomeric structure of seed oil to mimic human milk fat. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907915116

Open Access

Harrie Van Arp and Peter Eastmond at Rothamsted Research lead this extremely translational study in which they have modified the metabolic pathway for triacylglycerol (TAG) biosynthesis. By modifying the location of one biosynthesis enzyme and removing the activity of another, the fats produced in these Arabidopsis seeds are enriched to contain TAGs that are similar to those found in human milk. They propose that this technology could be used to develop a source of plant-derived human milk fat substitute.


Panter PE, Kent O, Dale M, Smith SJ, Skipsey M, Thorlby G, Cummins I, Ramsay N, Begum RA, Sanhueza D, Fry SC, Knight MR, Knight H (2019) MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. New Phytol. doi: 10.1111/nph.16209

Paige Panter led this work as part of her PhD at the University of Durham in the lab of Heather Knight. They characterise the role of the MUR1 protein in the control of cell wall fucosylation and how this contributes to plant freezing tolerance. Paige discusses this paper and the long history of MUR1 on the GARNet Community podcast. Please check it out!


Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM (2019) Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. Front Plant Sci. doi: 10.3389/fpls.2019.01064.

Open Access

The UK-French collaboration is led by Limin Wang from Julia Davies’s lab in Cambridge. They use patch clamp electrophysiology to identify previously uncharacterized channel conductances that respond to extracellular ATP across the root elongation zone epidermal plasma membrane.


Waghmare S, Lefoulon C, Zhang B, Lileikyte E, Donald NA, Blatt MR (2019) K+ channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. doi: 10.1104/pp.19.00919

Open Access

This work from Mike Blatt’s lab in Glasgow is led by Sakharam Waghmare. They look at the interaction between SNARE proteins, which are involved in vesicular fusion and K+ channels, which help control turgor pressure during cell expansion. Through combining analysis of protein-protein interactions and electrophysiological measurement they have found that this interaction requires the activity of the regulatory protein SEC11.


Li W, He X, Chen Y, Jing Y, Shen C, Yang J, Teng W, Zhao X, Hu W, Hu M, Li H, Miller AJ, Tong Y (2019) A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytol. doi: 10.1111/nph.16234
Wenjing Li is first author of this Chinese study that includes Yi Chen and Anthony Miller from the John Innes Centre as co-authors. This research shows that seed vigour and nitrate accumulation in wheat is regulated by the TaNAC2 transcriptions factor through its control of the TaNRT2.5 nitrate transporter. The authors suggest that both genes could be used as potential future targets to increase grain yield and nitrogen use efficiency.


The Special Issue of Methods in Molecular Biology on Plant Meiosis includes papers from the University of Cambridge, led by Christophe Lambing and the James Hutton Institute, led by Benoit Darrier.

Lambing C, Choi K, Blackwell AR, Henderson IR (2019) Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_16
Darrier B, Arrieta M, Mittmann SU, Sourdille P, Ramsay L, Waugh R, Colas I (2019) Following the Formation of Synaptonemal Complex Formation in Wheat and Barley by High-Resolution Microscopy. Methods Mol Biol. doi: 10.1007/978-1-4939-9818-0_15

GARNet Research Roundup: September 24th 2019

Due to a significant delay this GARNet Research Roundup is a bumper overview of recent(ish) publications across discovery-led plant science, which have at least one contributor from a UK institution.

These can be (very) loosely separated into the following categories:

Circadian Clock: Greenwood et al, PloS Biology. Belbin et al, Nature Communications.

Environmental responses: Rodríguez-Celma et al, PNAS. Walker and Bennett, Nature Plants. Conn et al, PLoS Comput Biology. de Jong et al,PLoS Genetics. Molina-Contreras et al,The Plant Cell.

Defence signaling: Van de Weyer et al, Cell.Hurst et al, Scientific Reports. Xiao et al, Nature. Wong et al, PNAS.

Cell Biology: Miller et al, The Plant Cell. Coudert et al, Current Biology. Burgess et al,The Plant Cell. Harrington et al, BMC Plant Biology.

Metabolism: Jia et al, J Biol Chem. Perdomo et al, Biochem J. Gurrieri et al, Frontiers in Plant Science. Mucha et al, The Plant Cell. Atkinson et al, JXBot.

Cell Wall Composition: Wightman et al, Micron. Milhinhos et al, PNAS.

Signaling: Hartman et al, Nature Communications. Dittrich et al, Nature Plants. Villaécija-Aguilar et al, PLoS Genetics


Greenwood M, Domijan M, Gould PD, Hall AJW, Locke JCW (2019) Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biol. 17(8):e3000407. doi: 10.1371/journal.pbio.300040 Open Access

Lead author is Mark Greenwood. UK contribution from The Sainsbury lab University of Cambridge, University of Liverpool and Earlham Institute. Using a mixture of experimental and modeling this paper shows that individual organs have circadian clocks that runs at different speeds.


Belbin FE, Hall GJ, Jackson AB, Schanschieff FE, Archibald G, Formstone C, Dodd AN (2019) Plant circadian rhythms regulate the effectiveness of a glyphosate-based herbicide. Nat Commun. 2019 Aug 16;10(1):3704. doi: 10.1038/s41467-019-11709-5 Open Access

Lead author is Fiona Belbin. UK contribution from University of Bristol and Syngenta Jealott’s Hill. Activity of the circadian clock determines that the plant response to the herbicide glyphosate is lessened at dusk, promoting the idea of agricultural chronotherapy. Fiona discusses this paper on the GARNet Community Podcast.


Rodríguez-Celma J, Connorton JM, Kruse I, Green RT, Franceschetti M, Chen YT, Cui Y, Ling HQ, Yeh KC, Balk J (2019) Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1907971116 Open Access

Lead author is Jorge Rodríguez-Celma. UK contribution from John Innes Centre, University of East Anglia.The Arabidopsis E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2 target the FIT transcription factor for degradation, altering the plant response to harmful level of iron.


Walker CH, Bennett T (2019) A distributive ‘50% rule’ determines floral initiation rates in the Brassicaceae. Nat Plants. doi: 10.1038/s41477-019-0503-z
Lead author Catriona Walker. UK contribution from the University of Leeds. The authors introduce the 50%-rule that defines the relationshop between the total number of flowers the number of secondary inflorescences


Conn A, Chandrasekhar A, Rongen MV, Leyser O, Chory J, Navlakha S (2019) Network trade-offs and homeostasis in Arabidopsis shoot architectures. PLoS Comput Biol. doi: 10.1371/journal.pcbi.100732 Open Access

Lead author is Adam Conn. UK contribution from Sainsbury Laboratory, University of Cambridge. This study performed 3D scanning of 152 Arabidopsis shoot architectures to investigate how plants make trade-offs between competing objectives.


de Jong M, Tavares H, Pasam RK, Butler R, Ward S, George G, Melnyk CW, Challis R, Kover PX, Leyser O (2019) Natural variation in Arabidopsis shoot branching plasticity in response to nitrate supply affects fitness. PLoS Genet. doi: 10.1371/journal.pgen.1008366 Open Access

Lead author is Maaike de Jong. UK contribution from the Sainsbury Laboratory, University of Cambridge, the University of York and the University of Bath. This study looks at phenotypic plasticity of shoot branching in Arabidopsis diversity panels grown until different nitrate concentrations.


Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, Morelli L, Roig-Villanova I, Jenkins H, Hallab A, Gan X, Gómez-Cadenas A, Tsiantis M, Rodriguez-Concepcion M, Martinez-Garcia JF (2019) Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell. doi: 10.1105/tpc.19.00275 Open Access

Lead author is Maria Jose Molina-Contreras. UK contribution from the University of Oxford. The authors looks at the response to different light conditions and how they contribute to phenotypic determination in Cardamine and Arabidopsis seedlings.


Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F (2019) A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell. doi: 10.1016/j.cell.2019.07.038 Open Access

Lead author is Anna-Lena Van de Weyer. UK contribution from The Sainsbury Laboratory, Norwich. Using sequence enrichment and long-read sequencing the authors present the pan-NLRome constructed from 40 Arabidopsis accessions.


Hurst CH, Wright KM, Turnbull D, Leslie K, Jones S, Hemsley PA (2019) Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does not necessarily impact upon function. Sci Rep. doi: 10.1038/s41598-019-49302-x Open Access

Lead author is Charlotte Hurst. UK contribution from the James Hutton Institute and the University of Dundee. They look at the functional role of post-translational modification S-acylation with a focus on the plant pathogen perceiving receptor-like kinase FLS2.


Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai J (2019) Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature. doi: 10.1038/s41586-019-1409-7
Lead author is Yu Xiao. UK contribution from The Sainsbury Laboratory, Norwich. This study investigates how RAPID ALKALINIZATION FACTOR (RALF) peptides induce receptor complex formation to regulate immune signaling.


Wong JEMM, Nadzieja M, Madsen LH, Bücherl CA, Dam S, Sandal NN, Couto D, Derbyshire P, Uldum-Berentsen M, Schroeder S, Schwämmle V, Nogueira FCS, Asmussen MH, Thirup S, Radutoiu S, Blaise M, Andersen KR, Menke FLH, Zipfel C, Stougaard J (2019). A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1815425116
Open Access

Lead author is Jaslyn Wong. UK contribution from The Sainsbury Laboratory, University of East Anglia. This work was conducted in the legume Lotus and after a proteomic screen, the authors identified NFR5-interacting cytoplasmic kinase 4 that is involved in control of Nod factor perception.


Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan MW (2019) Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size and crop yield in Brassica napus. Plant Cell. doi: 10.1105/tpc.18.00577
Open Access

Lead author in Charlotte Miller. UK contribution from the John Innes Centre. Activity of the Brassica napus HECT E3 ligase gene BnaUPL3 controls seed weight per pod through degradation of LEC2, a master transcriptional regulator of seed maturation and reveals a potential target for crop improvement


Coudert Y, Novák O, Harrison CJ (2019) A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants. Curr Biol. 2019 Aug 19;29(16):2743-2750.e5. doi: 10.1016/j.cub.2019.06.083

Lead author is Yoan Coudert. UK contribution from the University of Cambridge and University of Bristol. Class I KNOX gene activity is shown to be necessary for axis extension from an intercalary region of determinate moss shoots, in part through promotion of cytokinin biosynthesis.


Burgess SJ, Reyna-Llorens I, Stevenson SR, Singh P, Jaeger K, Hibberd JM (2019) Genome-wide transcription factor binding in leaves from C3 and C4 grasses Plant Cell.  doi: 10.1105/tpc.19.00078 Open Access

Lead author is Steven Burgess. UK contribution from University of Cambridge, The Sainsbury lab University of Cambridge, University of Leeds The authors use DNaseI-SEQ to assess the similarities and differences in transcription factor binding sites in the leaves across a set of four C3 and C4 grasses.


Harrington SA, Overend LE, Cobo N, Borrill P, Uauy C (2019) Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biol. doi: 10.1186/s12870-019-2022-
Lead author is Sophie Harrington. UK contributions from the John Innes Centre and University of Birmingham. The authors used a wheat TILLING resource to investigate mutrant allele with the NAC domain of the NAM-A1 transcription factor and their contribution to phenotypes in lab and field.


Jia Y, Burbidge CA, Sweetman C, Schutz E, Soole K, Jenkins C, Hancock RD, Bruning JB, Ford CM (2019) An aldo-keto reductase with 2-keto- L-gulonate reductase activity functions in L-tartaric acid biosynthesis from vitamin C in Vitis vinifera. J Biol Chem. doi: 10.1074/jbc.RA119.010196 Open Access

Lead author Yong Jia. UK contribution from the James Hutton Institute. This work conducted in grape reveals the mechanism by which an aldo-keto reductase functions in tartaric acid biosynthesis.


Perdomo JA, Degen GE, Worrall D, Carmo-Silva E (2019) Rubisco activation by wheat Rubisco activase isoform 2β is insensitive to inhibition by ADP. Biochem J. doi: 10.1042/BCJ2019011 Open Access

Lead author is Juan Alejandro Perdomo. UK contribution from Lancaster University. They show through analysis of site-directed mutations across three isoforms of wheat Rubisco activase that these isoforms have different sensitivities to ADP.


Gurrieri L, Distefano L, Pirone C, Horrer D, Seung D, Zaffagnini M, Rouhier N, Trost P, Santelia D, Sparla F (2019) The Thioredoxin-Regulated α-Amylase 3 of Arabidopsis thaliana Is a Target of S-Glutathionylation. Front Plant Sci. doi: 10.3389/fpls.2019.00993 Open Access

Lead author is Libero Gurrieri. UK contribution from John Innes Centre. The chloroplastic α-Amylases, AtAMY3 is post-translationally modified by S-glutathionylation in response to oxidative stress.


Mucha S, Heinzlmeir S, Kriechbaumer V, Strickland B, Kirchhelle C, Choudhary M, Kowalski N, Eichmann R, Hueckelhoven R, Grill E, Kuster B, Glawischnig E (2019) The formation of a camalexin-biosynthetic metabolon. Plant Cell. doi: 10.1105/tpc.19.00403 Open Access

Lead author is Stefanie Mucha. UK contribution from Oxford Brookes University and University of Warwick. The authors performed two independent untargeted co-immunoprecipitations to identify components involved in biosynthesis of the antifungal phytoalexin camalexin.


Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ (2019) The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. J Exp Bot. doi: 10.1093/jxb/erz275
Open Access

Lead author is Nicky Atkinson. UK contribution from the University of Edinburgh. This study uses Arabidopsis-Chlamydomonas to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1).


Wightman R, Busse-Wicher M, Dupree P (2019) Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron. doi: 10.1016/j.micron.2019.102733
Lead author Raymond Wightman. UK contribution from the Sainsbury Laboratory, University of Cambridge and the University of Cambridge. This study uses applies a novelmethod of correlative FLIM-confocal-Raman imaging to analyse lignin composition in Arabidopsis stems.


Milhinhos A, Vera-Sirera F, Blanco-Touriñán N, Mari-Carmona C, Carrió-Seguí À, Forment J, Champion C, Thamm A, Urbez C, Prescott H, Agustí J (2019) SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1807863116
Lead author is Ana Milhinho. UK contribution from the University of Oxford. The authors used GWAS in Arabidopsis to identify the SOBIR1/EVR as an important regulator of the control of secondary growth in xylem fibers.


Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW, Visser EJW, Bailey-Serres J, Theodoulou FL, Hebelstrup KH, Gibbs DJ, Holdsworth MJ, Sasidharan R, Voesenek LACJ (2019) Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun. doi: 10.1038/s41467-019-12045-4 Open Access

Lead author is Sjon Hartman. UK contribution from the University of Nottingham, Rothamsted Research and the University of Birmingham. This multinational collaboration looks into the relationship of how ethylene mediated nitric-oxide signaling responds to environmental signals.


Dittrich M, Mueller HM, Bauer H, Peirats-Llobet M, Rodriguez PL, Geilfus CM, Carpentier SC, Al Rasheid KAS, Kollist H, Merilo E, Herrmann J, Müller T, Ache P, Hetherington AM, Hedrich R (2019) The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants. doi: 10.1038/s41477-019-0490-0
Lead author Marcus Dittrich. UK contribution from the University of Bristol. This work looks at the role of ABA signaling in stomatal responses and that the multiple ABA receptors can be modulated differentially in a stimulus-specific manner.


Villaécija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmid C, Dawid C, Bennett T, Gutjahr C (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet. doi: 10.1371/journal.pgen.1008327 Open Access

Lead author Jose Antonio Villaécija-Aguilar. UK contribution from the University of Leeds and The Sainsbury lab, University of Cambridge. This demonstrates that KAI2 signalling through SMAX1/SMXL2 , is an important new regulator of root hair and root development in Arabidopsis.

«page 1 of 3

Follow Me
TwitterRSS
GARNetweets
Categories
September 2020
M T W T F S S
 123456
78910111213
14151617181920
21222324252627
282930  

Welcome , today is Saturday, September 19, 2020