Zaigham Shahzad on the GARNet Community podcast

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: February 5, 2020

Zaigham Shahzad who works with Anna Amtmann at the University of Glasgow chats to GARNet about a paper published in Nature Communications entitled ‘Cryptic variation in RNA-directed DNA-methylation controls lateral root development when auxin signalling is perturbed‘.

COST Programmes support Training and Collaboration: Get involved!!

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: February 4, 2020

Take home Message: COST Activities are open for everyone*

Since its inception, the European COST programme has operated according to one main instrument, the COST Action.

COST Actions are organised by a range of networking tools, such as meetings, conferences, workshops, short-term scientific missions, training schools, publications and dissemination activities. Funding supports COST Action networking tools but does not provide support for research projects (aside from within STSMs).


A COST Action is open to all:

– researchers, policy makers and innovators

– across all fields of science and technology (including trans-, and interdisciplinary, new and emerging fields)

– Most type of institution (academia, public institutions, SME/industry, NGO, European/international organisations, etc.)

– all career stages (both young and experienced)

COST Actions provide funding for meetings that bring together researchers from around Europe and the world. These face-to-face meetings reduce barriers to form important collaborative relationships.


The other main instruments that COST Actions use to support training are

1) Training Schools are up-to week-long events that offer instruction in a relevant topic for the Cost Action. These are usually fully supported by the Cost Action.

2) Short Term Scientific Missions (STSMs) provide funding for a participating (usually early career) researcher to perform research in a different country for up to 3months. This period of research is supported with a maximum of ~€2500.

Both Training schools and STSMs represent essentially FREE support to train the next generation of researchers. These are particularly useful for countries where the research infrastructure is being developed.

Importantly researchers in ANY MEMBER COUNTRY are eligible to participate in training schools or STSMs as well as to apply to attend Action conferences. Most researchers will be unaware of these opportunities but they are a real option to support your own or your lab member’s research.


CA16212: Impact of Nuclear Domains On Gene Expression and Plant Traits (INDEPTH) Active until 27/11/2021

https://www.brookes.ac.uk/indepth/

CA18111 – Genome editing in plants – a technology with transformative potential (PlantEd) Active until 24/4/2023

https://plantgenomeediting.eu/

CA15223 – Modifying plants to produce interfering RNA Active until 26/10/2020

https://iplanta.univpm.it/

CA16110 – Control of Human Pathogenic Micro-organisms in Plant Production Systems Active until 5/3/2021

https://huplantcontrol.igzev.de/

CA16107 – EuroXanth: Integrating science on Xanthomonadaceae for integrated plant disease management in Europe Active until 15/3/2021


CA18201 – An integrated approach to conservation of threatened plants for the 21st Century Active until 14/10/2023

https://www.cost.eu/actions/CA18201/#tabs|Name:overview

*- Currently UK researchers are only eligible until the end of 2020 depending on pending Brexit negotiations. We remain confident that these will be successgfully resolved.

GARNet Research Roundup: Jan 24th 2020

The first GARNet Research Roundup of 2020 begins with a study from the University of Dundee at the James Hutton Institute in which they have adapted nanopore direct sequencing to analyse the Arabidopsis mRNA methylome. The second study is also from Dundee and is an analysis of alternative splicing in C4 sugarcane.

The next two papers look at the control of stomatal development. In the first, researchers from Bristol investigate the integration of temperature and light-induced signals whilst the second paper is from Sheffield and looks at the role, or lack thereof, of the HY5 protein. The fifth paper is also from Sheffield and looks at the role of the MALECTIN DOMAIN KINESIN 2 protein in dividing tissues.

The next two papers investigate the control of lateral root formation. Firstly researchers from Glasgow look at how potassium signaling integrates with both the mechanisms of RNA-directed DNA-methylation and the auxin response. The other paper looks at how auxin signaling integrates with the plasmodesmata development and includes co-authors from the University of Nottingham.

The eighth paper is led from Nottingham and looks at the role of the PROTEOLYSIS (PRT)1 during the plant immune response whilst the next paper, which is from the University of Cambridge, also looks at plant immunity, specifically at how the biosynthesis of phytic acid impacts this response.

The remaining four papers include UK-based co-authors from University of South Wales, Rothamsted and Cardiff, Durham, Oxford and Aberystwyth in international research teams led from Malaysian (the expression of Acyl-CoA-binding proteins in oil palm), China (the effect of silver nanoparticles on plant growth), Japan (convergent evolution of lateral organ formation) and Chile (the factors that influence grain filling in wheat) respectively.


Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJ, Barton GJ, Simpson GG (2020) Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modification. Elife. doi: 10.7554/eLife.49658 Open Access

Matt Parker, Kasia Knop, Anya Sherwood and Nicholas Schurch are co-first authors on this study from the University of Dundee at the James Hutton Institute in which they perform direct RNA sequencing using a nanopore sequencer. They used this technical advance to analyse the mRNA (m6A) methylome and reveal a contribution to the control of the circadian clock. Future use of this technique will undoubtedly allow for an improved annotation of the Arabidopsis genome (and others).

https://elifesciences.org/articles/49658

Dantas LLB, Calixto CPG, Dourado MM, Carneiro MS, Brown JWS, Hotta CT (2019) Alternative Splicing of Circadian Clock Genes Correlates With Temperature in Field-Grown Sugarcane. Front Plant Sci. doi: 10.3389/fpls.2019.01614 Open Access

This study is led from Brazil with Luiza Dantas as first author and includes co-authors from the University of Dundee at the James Hutton Institute. They investigate the level of alternative splicing (AS) in commercial sugarcane, which is an important C4 crop. Tissue samples were collected in winter and summer and this analysis reveals temperature- and organ-dependent differences in the levels of AS across a set of genes under circadian control.


Kostaki KI, Coupel-Ledru A, Bonnell VC, Gustavsson M, Sun P, Mclaughlin FJ, Fraser DP, McLachlan DH, Hetherington AM, Dodd AN, Franklin KA (2020). Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. doi: 10.1104/pp.19.01528 Open Access

Kalliopi-Ioanna Kostaki is first author on this study from the University of Bristol that begins to unpick the mechanisms that integrate light and temperature signals in the control of stomatal development. These signals converge on phototropin photoreceptors and multiple members of the 14-3-3 protein family. This work also reveals a currently uncharacterised pathway that controls temperature regulation of guard cell movement.


Zoulias N, Brown J, Rowe J, Casson SA (2020) HY5 is not integral to light mediated stomatal development in Arabidopsis. PLoS One. doi: 10.1371/journal.pone.0222480 Open Access

Nick Zoulias is first author on this study from the Casson lab at University of Sheffield. ELONGATED HYPOCOTYL 5 (HY5) is a key regulator of light-mediated development yet in this study the authors show that the HY5-signaling cascade does not play a role in stomatal development. This key finding shows that phytochrome and cryptochrome signaling in guard cells is transmitted via non-HY5 signaling components.


Galindo-Trigo S, Grand TM, Voigt CA, Smith LM (2020) A malectin domain kinesin functions in pollen and seed development in Arabidopsis. J Exp Bot doi: 10.1093/jxb/eraa023
This research from the Smith lab at the University of Sheffield is led by Sergio Galindo-Trigo. They show that MALECTIN DOMAIN KINESIN 2 (MDKIN2) is involved in pollen, embryo and endosperm development. Malectin domains bind polysaccharides and peptides when found extracellularly in receptor-like kinases so this might suggest that in dividing tissues MDKIN2 plays a role during the physical division of cells.


Shahzad Z, Eaglesfield R, Carr C, Amtmann A (2020) Cryptic variation in RNA-directed DNA-methylation controls lateral root development when auxin signalling is perturbed. Nat Commun. doi: 10.1038/s41467-019-13927-3 Open Access

Zaigham Shahzad at the University of Glasgow is the first author in this study that looks at the relationship between potassium deficiency and lateral root formation. This effect is mediated via the impact of CLSY1, a key component of the RNA-directed DNA-methylation machinery, on the transcriptional repression of the AuxIAA protein IAA27. Interestingly this system appears to act as a backup to the auxin-dependent proteolysis pathway that is primarily responsible for the control of IAA27 activity.


Sager R, Wang X, Hill K, Yoo BC, Caplan J, Nedo A, Tran T, Bennett MJ, Lee JY (2020) Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. Nat Commun. doi: 10.1038/s41467-019-14226-7.

This US study is led by Ross Sager and includes co-authors from the University of Nottingham. This research links the role of auxin in lateral root formation with plasmodesmata development through control of the plasmodesmal regulator PDLP5. They present a model wherein molecules required for lateral root emergence transit through plasmodesmata following an inductive auxin signal.


Till CJ, Vicente J, Zhang H, Oszvald M, Deery MJ, Pastor V, Lilley KS, Ray RV, Theodoulou FL, Holdsworth MJ (2019) The Arabidopsis thaliana N-recognin E3 ligase PROTEOLYSIS1 influences the immune response. Plant Direct. doi: 10.1002/pld3.194 Open Access

Christopher Till, Jorge Vicente and Hongtao Zhangis are co-first authors on this research led from the University of Nottingham and Rothamsted Research that involves use of quantitative proteomics to define the role of the N-recognin E3 ligase PROTEOLYSIS (PRT)1 during the plant immune response.


Poon JSY, Le Fevre RE, Carr JP, Hanke DE, Murphy AM (2019) Inositol hexakisphosphate biosynthesis underpins PAMP-triggered immunity to Pseudomonas syringae pv. tomato in Arabidopsis thaliana but is dispensable for establishment of systemic acquired resistance. Mol Plant Pathol. doi: 10.1111/mpp.12902
This research from the University of Cambridge is led by Jacquelyne Poon and Alex Murphy and looks at the role of the phytic acid (inositol hexakisphosphate, InsP6) biosynthesis in dividing tissues during the plant immune response. They characterize Arabidopsis plants with mutations in biosynthetic enzymes to show that there are multiple mechanisms of basal resistance that are dependent upon InsP6.


Amiruddin N, Chan PL, Azizi N, Morris PE, Chan KL, Ong PW, Rosli R, Masura SS, Murphy DJ, Sambanthamurthi R, Haslam RP, Chye ML, Harwood JL, Low EL (2019) Characterisation of Oil Palm Acyl-CoA-Binding Proteins and Correlation of their Gene Expression with Oil Synthesis. Plant Cell Physiol. doi: 10.1093/pcp/pcz237.
Nadzirah Amiruddin is lead author on this Malaysian-led research that includes collaborators from the University of South Wales, Rothamsted Research and Cardiff University. This paper looks at the expression of Acyl-CoA-binding proteins (ACBPs) in oil palm; providing important information about the role of this protein family during oil synthesis in the world’s most important oil crop.


Wang L, Sun J, Lin L, Fu Y, Alenius H, Lindsey K, Chen C (2019) Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. Ecotoxicol Environ Saf. doi: 10.1016/j.ecoenv.2019.110072.

This Chinese-study is led by Likai Wang and includes Keith Lindsey from Durham University as a co-author. They look at the effect of silver nanoparticles (AgNPs) on growth of Arabidopsis. AgNPs are taken up by roots and have opposing effects at either 50 mg L-1 or 100mg mg L-1. This is an important preliminary study to understand how plant growth might be altered if AgNP’s are used as a delivery mechanism.


Naramoto S, Jones VAS, Trozzi N, Sato M, Toyooka K, Shimamura M, Ishida S, Nishitani K, Ishizaki K, Nishihama R, Kohchi T, Dolan L, Kyozuka J (2019) A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLoS Biol. 2019 doi: 10.1371/journal.pbio.3000560 Open Access

This Japanese study is led by Satoshi Naramoto and Junko Kyozuka and includes co-authors from the University of Oxford. They performed a mutant screen in the liverwort Marchantia polymorpha to identify the LATERAL ORGAN SUPRESSOR 1 (MpLOS1) gene, which regulates meristem maintenance and lateral organ development. Remarkably they showed this gene is also functions in the control of lateral organ development in rice, therefore demonstrating convergent evolution across plant lineages in the control of lateral organs.


Del Pozo A, Méndez-Espinoza AM, Romero-Bravo S, Garriga M, Estrada F, Alcaíno M, Camargo-Rodriguez AV, Corke FMK, Doonan JH, Lobos GA (2020) Genotypic variations in leaf and whole-plant water use efficiencies are closely related in bread wheat genotypes under well-watered and water-limited conditions during grain filling. Sci Rep. doi: 10.1038/s41598-019-57116-0 Open Access

Alejandro del Pozo leads this Chilean study that includes co-authors from Aberystwyth and NIAB. This large-scale glasshouse experiment looked at the effect of water deficit on the growth of 14 bread wheat genotypes. Measurement of multiple parameters revealed that plants face limitations to the assimilation process during grain filling due to natural senesce and water stress.

BRIGIT looking out for Xylella

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: January 14, 2020

Taken from the John Innes Centre

Dame Helen Mirren has helped renew efforts to keep plant disease Xylella fastidiosa out of the UK in 2020 – the UN’s International Year of Plant Health – narrating a new animation that warns of the devastation it causes, including the death of millions of olive trees in Europe.

This video has been put together by the BRIGIT project that is lead from the John Innes Centre

Advice to help prevent the introduction of Xylella includes:

  1. Source new plants carefully, where possible purchase plants grown in the UK
  2. Propagate your own plants from seeds or cuttings
  3. Check plants for signs of disease before purchase and monitor the health of new plants
  4. Never bring plants back with you from abroad

For more information check out the BRIGIT Webpage.

UK Early Career Rice Researchers Meeting

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: January 13, 2020

On 27th/28th February we will be holding the inaugural UK Rice Consortium meeting for Early Career Researchers. This short meeting will be focussed on providing a forum for all postdocs and PhD students involved in rice research projects to come together and exchange ideas and experience on working with rice in the UK.

Download Meeting Schedule


The meeting will be very much led by the researchers themselves, providing them the opportunity to both network (find out about the range of rice research being performed across the country) but with a focus on the nuts-and-bolts of rice research in the lab and field.

The aim is to generate and share knowledge on fundamental yet essential topics for those working at the coal-face of rice research, such as: how to grow and maintain rice; obtaining rice lines and transgenics; genomic resources available and how to access them; the challenges (and opportunities) of working with overseas collaborators, plus other topics raised by the participants themselves. By coming together and sharing best practice and experience, we hope to instigate a network of early career researchers who can help each other to advance rice research in the UK, ensuring that we can contribute most effectively to the global research efforts on this vital crop.

The meeting will consist primarily of short talks by participants plus wide-ranging discussion and networking opportunities, setting the agenda for early career researchers and their contribution to the UK rice research consortium.


We realise the timescale is tight, so if you could actively promote this meeting to all postdocs and PhD students working on rice projects in your group/institute, that would be greatly appreciated. We are, of course, very happy to have more senior researchers attend and chip in with their ideas/suggestions (and the sessions will be moderated by academics at Sheffield), but the meeting is very much focussed on early career researchers and giving them a voice.

For registration, go to:

https://onlineshop.shef.ac.uk/conferences-and-events/faculty-of-science/animal-and-plant-sciences/uk-rice-research-network-february-2020

Registration costs are £150 (including overnight accommodation and evening meal), or £50 for day rate.

Contact for meeting enquiries: J.beasley@sheffield.ac.uk

GARNet Research Roundup: December 23rd 2019

The final GARNet Research Roundup of 2019 begins with three studies from the John Innes Centre. Firstly Steve Penfield’s group conducts a field-experiment that monitors FLC levels in winter oilseed rape. Second is a study from the Zilberman lab looking at the relationship between Histone H1 and DNA methylation.

Third is work from the Yant lab in JIC/Nottingham that investigates adaptive gene flow between Arabidopsis arenosa and Arabidopsis lyrata.

The next two papers are led from the Etchells lab in Durham, the first has developed a vascular-localised transcriptional network and the second is a methods paper for image analysis.

The sixth paper includes co-authors from Southampton and investigates nuclear-chloroplast signaling in Arabidopsis mediated by the GUN1 protein.

The next two papers include members of the current GARNet advisory committee. Yoselin Benitez-Alfonso from the University of Leeds is an author on a paper that models plasmodesma geometry whilst members of the Kaiserli lab in Glasgow are involved in a study that investigates the factors involved in auxin-dependent thermomorphogenesis.

The Dupree lab in Cambridge leads the next research paper that looks at the detailed composition of the cell wall in the softwood Spruce.

The next two papers are from the Sainsbury lab, Norwich. Firstly the Kamoun lab looks at the molecular code of a plant NLR immune receptors whilst in the second paper members of the Zipfel lab are co-authors on a study that looks at defence-related protease activity from a fungal pathogen of strawberry.

The twelfth paper is from Ian Graham’s lab at the University of York and looks at the role of light signaling during seed development.

Sue Armstrong from Birmingham is a co-author on the next paper in which researchers present a genetic map of the field cress Lepidium campestre.

The final two papers include researchers from Royal Holloway University of London and look at the role of different transcription factors during embryo or root meristem development.


O’Neill CM, Lu X, Calderwood A, Tudor EH, Robinson P, Wells R, Morris R, Penfield S (2019) Vernalization and Floral Transition in Autumn Drive Winter Annual Life History in Oilseed Rape. Curr Biol. doi: 10.1016/j.cub.2019.10.051
Open Access

Carmel O’Neill is first author on the research from the Morris and Penfield labs at the John Innes Centre. This paper describes experiments that monitored FLC levels in field-growth winter oilseed rape. Surprisingly they shows that decline of FLC during October in relatively mild-temperatures of 10-15C reduce FLC levels, leading to floral transition prior to the colder winter temperatures. This work shows the importance of field experiments to understand real-world mechanisms that control crop development.


Choi J, Lyons DB, Kim MY, Moore JD, Zilberman D (2019) DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Mol Cell. doi: 10.1016/j.molcel.2019.10.011
This research from the Zilberman lab at the John Innes Centre is led by Jaemyoung Choi and looks at the relationship between histone H1 and the DNA methylation machinery during the maintenance of transcriptional homeostasis.

https://www.sciencedirect.com/science/article/abs/pii/S1097276519307890?via%3Dihub

Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, Bohutínská M, Higgins JD, Schmickl R, Yant L (2019) Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun. doi: 10.1038/s41467-019-13159-5
Open Access

Sarah Marburger from Levi Yant’s lab at the John Innes Centre/University of Nottingham leads this research that includes co-authors from Leicester, Edinburgh and the Czech Republic. They look at the effect of whole-genome duplication on gene flow between Arabidopsis arenosa and Arabidopsis lyrata.


Smit M, McGregor S, Sun H, Gough C, Bågman AM, Soyars CL, Kroon JTM, Gaudinier A, Williams CJ, Yang X, Nimchuk ZL, Weijers D, Turner SR, Brady SM, Etchells P (2019) A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis. Plant Cell. doi: 10.1105/tpc.19.00562
Open Access

This large-scale systems-biology paper is a UK-US-China-Dutch collaboration led by Margot Smit at Wageningen, Shauni McGregor and Peter Etchells at Durham University. They have developed a detailed transcriptional network based on the vascular-localised PHLOEM INTERCALATED WITH XYLEM (PXY) receptor kinase.

http://www.plantcell.org/content/early/2019/12/05/tpc.19.00562.long

Bagdassarian KS, Connor KA, Jermyn IH, Etchells JP (2019) Versatile method for quantifying and analyzing morphological differences in experimentally obtained images. Plant Signal Behav. doi: 10.1080/15592324.2019.1693092
This paper from Peter Etchells lab in Durham is led by Kristine Bagdassarian and introduces a bespoke method for inspecting the differences between the morphologies of several plant mutants at the cellular level.


Shimizu T, Kacprzak SM, Mochizuki N, Nagatani A, Watanabe S, Shimada T, Tanaka K, Hayashi Y, Arai M, Leister D, Okamoto H, Terry MJ, Masuda T (2019) The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1911251116

Open Access

Sylwia M. Kacprzak and Matthew Terry from the University of Southampton are co-authors on this Japanese-led study that looks at the interaction between nuclear and chloroplast genomes as controlled by role that the GUN1 protein plays in control of tetrapyrrole metabolism.

https://www.sciencedirect.com/science/article/abs/pii/S1097276519307890?via%3Dihub

Deinum EE, Mulder BM, Benitez-Alfonso Y (2019) From plasmodesma geometry to effective symplasmic permeability through biophysical modelling. Elife. doi: 10.7554/eLife.49000
Open Access

Eva Deinum is lead author of this study that includes GARNet Committee member Yoselin Benitez-Alfonso as co-author. They have applied biophysical modeling to calculate effective symplasmic permeability for the transport of molecules through plasmodesmata. The resulting open-source model has been refined through experimental observations.

Dr Deinum will be leading a GARNet-supported workshop on this multilevel model during the July 2020 EMBO workshop on ‘Intercellular communication and plasmodesmata in plant development and disease’.


van der Woude LC, Perrella G, Snoek BL, van Hoogdalem M, Novák O, van Verk MC, van Kooten HN, Zorn LE, Tonckens R, Dongus JA, Praat M, Stouten EA, Proveniers MCG, Vellutini E, Patitaki E, Shapulatov U, Kohlen W, Balasubramanian S, Ljung K, van der Krol AR, Smeekens S, Kaiserli E, van Zanten M (2019) HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1911694116

This wide collaboration is led by Lennard van der Woude at Utrecht University and includes Giorgio Perrella and Eirini Kaiserli from Glasgow as co-authors. This research looks at the complex relationship between thermomorphogenesis, auxin and light signaling, histone deacylation and the regulation of histone variant H2A.Z.


Terrett OM, Lyczakowski JJ, Yu L, Iuga D, Franks WT, Brown SP, Dupree R, Dupree P (2019) Molecular architecture of softwood revealed by solid-state NMR. Nat Commun. doi: 10.1038/s41467-019-12979-9

Open Access

This research from the Dupree lab in Cambridge is led by Olivier Terrett and uses solid-state NMR to analyse the cell wall composition of the softwood spruce, in part through comparison with Arabidopsis cell walls. This information is an essential requirement to build experimental strategies for the biorefining of particular wood-types.


Adachi H, Contreras M, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A, Win J, Kamoun S (2019) An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. Elife. doi: 10.7554/eLife.49956

Open Access

Hiroaki Adachi leads this study from lab of Sophien Kamoun at the Sainsbury lab, Norwich. In this research they interrogate the molecular code of a plant NLR immune receptor to identify the minimal functional motifs that are required to induce hypersensitive cell death in response to a plant pathogen.

https://elifesciences.org/articles/49956

Caro MDP, Holton N, Conti G, Venturuzzi AL, Martínez-Zamora MG, Zipfel C, Asurmendi S, Díaz-Ricci JC (2019) The fungal subtilase AsES elicits a PTI-like defence response in Arabidopsis thaliana plants independently of its enzymatic activity. Mol Plant Pathol. doi: 10.1111/mpp.12881
Open Access

Nicolas Holton and Cyril Zipfel from the Sainsbury Lab in Norwich are co-authors on this Argentinian-led study with María del Pilar Caro as both first and corresponding author. They characterize the proteolytic role of the elicitor subtilisin (AsES) from strawberry fungal pathogen Acremonium strictum during an immune response.


Barros-Galvão T, Dave A, Gilday AD, Harvey D, Vaistij FE, Graham IA (2019) ABA INSENSITIVE4 promotes rather than represses PHYA-dependent seed germination in Arabidopsis thaliana. New Phytol. doi: 10.1111/nph.16363
Open Access

Thiago Barros-Galvão and Ian Graham at the University of Leeds lead this research that investigates the role of phytochrome A (PHYA) and PHYB signaling during seed development in Arabidopsis.

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16363

Desta ZA, Kolano B, Shamim Z, Armstrong SJ, Rewers M, Sliwinska E, Kushwaha SK, Parkin IAP, Ortiz R, de Koning DJ (2019) Field cress genome mapping: Integrating linkage and comparative maps with cytogenetic analysis for rDNA carrying chromosomes. Sci Rep. doi: 10.1038/s41598-019-53320-0

Open Access

This Swedish led study has Zeratsion Abera Desta as lead author and includes Sue Armstrong from the University of Birmingham as a co-author. They have produced an early genome map of field cress (Lepidium campestre), which is a potential oilseed plant. They show that diploid Lepidium campestre has 16 chromosomes.


Leviczky T, Molnár E, Papdi C, Őszi E, Horváth GV, Vizler C, Nagy V, Pauk J, Bögre L, Magyar Z (2019) E2FA and E2FB transcription factors coordinate cell proliferation with seed maturation. Development. doi: 10.1242/dev.179333
Open Access

Tünde Leviczky is first author on this Hungarian-led study that includes co-authors from Royal Hollaway University of London. This work characterises the role of the E2F transcription factors and the RETINOBLASTOMA-RELATED repressor protein during Arabidopsis embryo development.

https://dev.biologists.org/content/146/22/dev179333.long

Lokdarshi A, Papdi C, Pettko-Szandtner A, Dorokhov S, Scheres B, Magyar Z, von Arnim AG, Bogre L, Horváth B (2019) ErbB-3 BINDING PROTEIN 1 Regulates Translation and Counteracts RETINOBLASTOMA RELATED to Maintain the Root Meristem. Plant Physiol. doi: 10.1104/pp.19.0080
This UK-US-Hungary collaboration includes Ansul Lokdarshi and Csaba Papdi as co-first authors and Laszlo Bogre and Beatrix Horvath from Royal Hollaway University of London as corresponding authors. They assessed the role of the ErbB-3 BINDING PROTEIN 1 transcription factor during Arabidopsis root meristem development

GARNet grants for Monogram2020

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: December 19, 2019

GARNet are delighted to be able to support early career researchers to attend the Monogram2020 meeting at the University of Dundee.

https://ics.hutton.ac.uk/monogram20/

We are able to provide £200 to each successful applicant to help with meeting costs. We hope to support attendance of at least 6 applicants.

Please return the application form to geraint@garnetcommunity.org.uk by 5pm on February 7th 2020.

Download the application form here.

Eligibility: At the time of the meeting the applicant must a UK-based early career researcher (student, postdoc or technical staff) who is within 10 years of graduating from their undergraduate degree. The applicant must present a poster or talk at the Monogram meeting. Researchers whose work lies at the intersection between model organisms and crop plants will be given preference. A maximum of two awards will be made to applicants working with the same supervisor.

Successful applicants will be asked to provide a 500-word summary about their experiences at the Monogram meeting for publication in the GARNish newsletter or on the GARNet blog. Applicants will be provided with the bursary once evidence is provided of meeting registration and poster abstract submission.

David Seung talks to GARNet

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: December 4, 2019

David Seung who is a new group leader the John Innes Centre talks to GARNet about a paper in Plant Physiology entitled ‘Natural polymorphisms in Arabidopsis result in wide variation or loss of the amylose component of starch‘. This fascinating paper attempts to begin to answer a key question in plant science: Why do they produce amylose?

«page 6 of 67»

Follow Me
TwitterRSS
GARNetweets
Categories
October 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

Welcome , today is Wednesday, October 29, 2025