Meeting Report: ICAR2017 in St Louis.

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: August 4, 2017

Thanks to Janina Tamborski from The Sainsbury Lab in Norwich for providing this excellent meeting report!


The most exciting (and to some the scariest) part of a large scientific conference such as the International Conference on Arabidopsis Research (ICAR) is finding the right opportunity to talk to leading scientists. Sometimes it is all about thinking on your feet, as was the case for me when my colleague knocked my drink out of my hand, resulting in a soda fountain that splashed all bystanders. Luckily one of them was Wolfgang Busch, who I had been meaning to talk to after his exciting seminar but previously lacked an opportunity to approach. After I apologised, we had a very productive discussion, proving that you can make lemonade when life gives you lemons (or a lemonade fountain).

The 28th ICAR 2017 was held at the Hyatt and Donald Danforth Plant Science Center in St. Louis. With four keynote speakers, nine plenary, nine concurrent and two poster sessions, as well as six community organised workshops, it brought together many of the best scientists in Arabidopsis research. In addition to the five-day scientific program, there were also two career workshops for early career scientists that featured panellists from both academia and industry. The mixers afterwards offered career ideas and the opportunity to further expand ones’ professional network.

Image from @huotbethany

The four keynote speakers represented the wide range of topics pursued in Arabidopsis research: Sabeeha Merchant talked about a day in the life of Chlamydomonas, Mary Lou Guerinot about ionomics and gene discovery, Keiko Torii shared her latest breakthroughs in synthetic biology and Sheng Yang He wanted to achieve understanding of the disease-climate-microbiome triangle. Keiko Torii (Washington University) amazed the audience with her interdisciplinary approaches that arose from her close collaboration with researchers at the Institute of Transformative Bio-Molecules at Nagoya University. By engineering the auxin receptor TIR1 and creating a synthetic auxin ligand, she was able to show that the acid growth response is mediated by the TIR1 pathway. This is a prime example of how synthetic biology approaches can help us find answers to questions that have proven poorly tractable in genetics. Together with her screen of chemicals that influence stomatal patterning, her research promises to yield exciting results for us to watch out for in the future.


Of particular interest to me were the great talks on how Arabidopsis interacts with and manipulates its environment. Paul Schulze-Lefert’s (MPI Cologne) work focussed on the microbiome of Arabidopsis and in particular on the endophyte C. tofildiae and its ability to promote growth and reproductive success of Arabidopsis under phosphate-limiting conditions. A successful interaction requires the host to have a functioning phosphate starvation response system and the ability to suppress its innate immunity. Cara Haney (The University of British Columbia) identified 93 genes and 63 operons in P. fluorescens that are required for survival on Col-0. She furthermore compared bacterial strains that trigger Induced Systemic Resistance (ISR) or Induced Systemic Susceptibility (ISS) that are 98% identical in their 16S RNA. Her lab identified a gene cluster that differs in ISS strains and she proposed that the production of spermidine through polyamine synthases is responsible for ISS.

Niko Geldner (University of Lausanne) showed advances in understanding transport in the root and how the mutually exclusive localisation of lignin and suberin creates an active zone of uptake. Research from his group demonstrated that patchy transporter expression in roots correlates with the position of passage cells, forming a funnel-like pattern of cells to enable nutrient uptake in mature roots. Ute Kraemer (Ruhr University Bochum) unveiled how Arabidopsis thalianas’ relative A. halleri, who can thrive on metalliferous soils, prevents cadmium accumulation and poisoning of the seeds. This cadmium tolerance is associated with a sequence polymorphism in HMA2 that leads to an early stop codon and renders the protein non-functional. Gregory Vert uncovered how the metal transporter IRT1 controls its own stability through recruitment of CIPK23 after excess metal conditions. CIPK23 consequently phosphorylates the E3 ligase IDF1 that mediates IRT1s K63 ubiquitination and leads to its endocytosis and degradation in the vacuole.


I particularly enjoyed the session “Novel Approaches”, which showcased exciting tools from hormone biosensors (Alexander Jones, SLCU) to two-photon excitation microscopy (Minako Ueda, Nagoya University) and genome editing techniques (Dan Voytas, Minnesota Center of Genome Engineering). As a cell biologist, I could not help but be amazed by the images shown by Minako Ueda that showed cytoskeleton dynamics in the zygote in astonishing detail thanks to the high resolution achieved through two-photon excitation imaging.

Image from @huotbethany

The meeting was rounded off by the last keynote speaker Sheng Yang He (Michigan State University) who managed to convey complex immune resistance and susceptibility concepts in an accessible manner. He discussed his recent publication that showed that bacterial effectors promote pathogenicity by transforming the air-filled apoplast into an aqueous environment for bacteria to flourish. His elegant approach to engineer the common host target COI1 to break the evolutionary dilemma of salicylic acid signalling was a case-study in the success of rational design in synthetic biology.


The 29th ICAR2018 will be held from the 25-29 June in Turku, Finland. I am excited to see how Arabidopsis continues to evolve. I hope to see the changes made at ICAR2017 continue, including the shift in hormone research from auxin-dominated to a focus on other hormones, in particular the brassinosteroids. Synthetic biology approaches were emerging in all disciplines and ranged from novel biosensors to receptor engineering. For the first time there was also an exciting session on translational biology that I would like to see again next year. I cannot wait to see what the conference in Turku next year has to offer.



No Comments - Leave a comment

Leave a Reply


Close Print