GARNet Research Roundup: July 16th

This week’s GARNet research roundup begins with a set of papers looking at aspects of the plant defence response with a focus on the cell wall. Firstly work from Mike Deeks’ lab in Exeter assesses the role of FORMIN4 during pre-invasion cell wall apposition. Secondly Sara Pose and Paul Knox (Leeds) are involved with a study looking at how altered cell wall lignin composition alters the defense response. Finally Joe McKenna and Cyril Zipfel are co-authors on a Norwegian-led study that looks at the influence of plant cell wall integrity maintenance in immune signalling.

Relatedly is a study from the Devoto lab at RHUL looks at the role of the defence hormone methyl jasmonate in Arabidopsis cell culture.

Next are two papers that research different aspects of the plant ER. Verena Kriechbaumer (Oxford Brookes) looks at plant ER-localised Lunapark proteins whilst a study from the University of Warwick provides a preliminary structural analysis of the RTNLB13 reticulon protein.

The seventh and eight papers are involved with the plant response to different growth conditions. Research from University of Nottingham looks at the response of the cortical cell layer of the root meristem to low phosphate conditions whilst work from University of Southampton investigates the relationship between nitrate and copper signaling.

The next paper is from Emily Flashman’s lab at the University of Oxford and looks at the role of plant cysteine oxidases as oxygen sensors whilst the tenth paper features John Doonan (Aberystwyth University) as a co-author and investigates how a histone acetyltransferase affects trichome development.

Finally is a paper from Pierre Baudal and Kirsten Bomblies (John Innes Centre) that uses Arabidopsis arenosa as a model to investigate the emergence of novel flowering time alleles in populations that have colonised along railway corridors.


Sassmann S, Rodrigues C, Milne SW, Nenninger A, Allwood E, Littlejohn GR, Talbot NJ, Soeller C, Davies B, Hussey PJ, Deeks MJ (2018) An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants. Curr Biol. doi: 10.1016/j.cub.2018.05.014

https://www.sciencedirect.com/science/article/pii/S096098221830616X?via%3Dihub

Open Access

Stefan Sassmann is the lead author of this paper from Mike Deeks’s lab in Exeter. They investigate the role of the membrane-integrated FORMIN4 protein in the process of cell wall apposition, which occurs as part of the plant immune response and is dependent on actin dynamics. FORMIN4 is stably localised apart from the active traffic of the endomembrane system and removing its function compromises the defense response, presumably by altering actin distribution at sites of cell wall apposition. This work demonstrates that FORMIN4 acts as a key component of the pre-invasion defense response.


Gallego-Giraldo L, Posé S, Pattathil S, Peralta AG, Hahn MG, Ayre BG, Sunuwar J, Hernandez J, Patel M, Shah J, Rao X, Knox JP, Dixon RA (2018) Elicitors and defense gene induction in plants with altered lignin compositions. New Phytol. doi: 10.1111/nph.15258

Open Access

Sara Pose and Paul Knox (University of Leeds) are co-authors on this US-led study that investigates how lignin composition can influence the defence response. Plants with the same lignin content but changed lignin compositions show altered expression in genes involved with different arms of the defense response. This indicates that cell wall lignin composition plays a significant role in the plants ability to response to different sources of pathogen attack.


Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal. doi: 10.1126/scisignal.aao3070

Joe McKenna (Imperial College, now Oxford Brookes University) and Cyril Zipfel (The Sainsbury Laboratory, Norwich) are co-authors on this Norwegian-led study that looks at the plant cell wall integrity maintenance mechanism and how it responses to the challenges of growth, development and environmental stresses. They identified a set of receptor-like kinases that are key for the responses elicted by cell wall damage (CWD). Conversely they showed that the components of the pattern-triggered immunity (PTI) signaling pathway repress responses to CWD. This study provides insights into how cell wall responses interact with downstream gene expression changes following pathogen challenge.


Bömer M, O’Brien JA, Pérez-Salamó I, Krasauskas J, Finch P, Briones A, Daudi A, Souda P, Tsui TL, Whitelegge JP, Paul Bolwell G, Devoto A (2018) COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in Arabidopsis. Ann Bot. doi: 10.1093/aob/mcy109

Open Access

Moritz Bömer works with Alessandra Devoto at Royal Holloway University of London and leads this research that looks at the effect of MeJA treatment on growth and gene expression in Arabidopsis cell culture. They demonstrate that both MeJA treatment or COI1 overexpression causes changes in the abundance of proteins involved in cell wall loosening as well as altered levels of primary metabolites alanine, serine and succinic acid. This work demonstrates a close link between hormone signaling, the defence response and the metabolic profile of Arabidopsis cells.

Dr Devoto and her academic colleagues at RHUL are profiled in the latest GARNish newsletter available for download from the GARNet website.


Kriechbaumer V, Breeze E, Pain C, Tolmie F, Frigerio L, Hawes C (2018) Arabidopsis Lunapark proteins are involved in ER cisternae formation. New Phytol. doi: 10.1111/nph.15228

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15228

Open Access

Verena Kriechbaumer from Oxford Brookes University leads this research that investigates the in planta function of novel ER network-shaping proteins called Lunaparks (LNP). They show that these proteins localise to the entire ER network in Arabidopsis. They use confocal microscopy to show that altering the level of LNP gene expression changes ER morphology, possibly by regulating the formation of ER cisternae.


Chow M, Sklepari M, Frigerio L, Dixon AM (2018) Bacterial expression, purification and biophysical characterization of the smallest plant reticulon isoform, RTNLB13 Protein Expr Purif. doi: 10.1016/j.pep.2018.06.015

Open Access

Michael Chow worked with Lorenzo Frigerio and Ann Dixon at the University of Warwick to provide a preliminary structure and topology analysis of the plant RTNLB13 reticulon protein. This ER-associated integral membrane protein was expressed in bacteria and then a variety of analysis techniques were used to suggest that RTNLB13 has a high level of self-association and protein-membrane interactions.


Janes G, von Wangenheim D, Cowling S, Kerr I, Band L, French AP, Bishopp A (2018) Cellular Patterning of Arabidopsis Roots Under Low Phosphate Conditions Front Plant Sci. doi: 10.3389/fpls.2018.00735

https://www.frontiersin.org/articles/10.3389/fpls.2018.00735/full

Open Access

George Janes works with Anthony Bishopp at the University of Nottingham and leads this study that looks at root meristem development under low phosphate conditions. They show that in phosphate-limiting conditions the cortex layer of the root meristem contains almost double the number of cells, which results in a greater number of root hair-forming epidermal cells. As this change can occur within 24hrs the rapidity of the response represents a significant adaptation to a changing root environment.


Hippler FWR, Mattos-Jr D, Boaretto RM, Williams LE (2018) Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression J Plant Physiol. doi: 10.1016/j.jplph.2018.06.005

https://www.sciencedirect.com/science/article/pii/S0176161718302888

Open Access

Franz Hippler (University of Southampton) leads this UK-Brazil collaboration showing that growth of Arabidopsis plants in excess copper conditions causes a downregulation in nitrate uptake. This is due to both direct and indirect changes on the gene expression of nitrate transporters as well as a reduction in transcript level of the plasma membrane proton pump, AHA2. This effect was altered when copper levels were reduced demonstrating that copper toxicity acts at the level of nitrate transport and homeostasis.


White MD, Kamps JJAG, East S, Taylor Kearney LJ, Flashman E (2018) The Plant Cysteine Oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors J Biol Chem.

doi: 10.1074/jbc.RA118.003496

Open Access

Mark White is the lead author on this work from the lab of Emily Flashman at the University of Oxford in which they look at the role of plant cysteine oxidases (PCOs) as oxygen sensors. They assessed the kinetics of each of AtPCO1 to AtPCO5 proteins and show that the most catalytically competent isoform is AtPCO4, in terms of both responding to O2, and oxidizing hypoxic responsive proteins. This work validates an O2-sensing role for the PCOs and provides evidence for functional differences between members of this enzyme family.


Kotak J, Saisana M, Gegas V, Pechlivani N, Kaldis A, Papoutsoglou P, Makris A, Burns J, Kendig AL, Sheikh M, Kuschner CE, Whitney G, Caiola H, Doonan JH, Vlachonasios KE, McCain ER, Hark AT (2018) The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis. Planta. doi: 10.1007/s00425-018-2923-9 Open Access

John Doonan (Aberystwyth University) is a co-author on this manuscript led by Jenna Kotak and Amy Herd in the USA. They investigate plants that have mutations in the histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b. These genes have been previously demonstrated as being involved in endoreduplication and trichome branching. They show that these mutants have alterations in the number and patterning of trichome-branches and that ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.


Baduel P, Hunter B, Yeola S, Bomblies K. Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa (2018) PLoS Genet.

doi: 10.1371/journal.pgen.1007510 Open Access

Pierre Baduel and Kirsten Bomblies (John Innes Centre) lead this work that was conducted prior to Kirsten’s move to Norwich. In this study they follow the colonization of populations of Arabidopsis arenosa along mountain railway corridors. They demonstrate that selective pressure has occurred on novel alleles of flowering time genes and discuss the implications for ruderal communities linked to railways as allele conduits linked to local adaptations.

Leave a Reply


 © 2024 - Weeding the Gems