Arabidopsis Research Roundup: December 9th.

This December 9th Arabidopsis Research Roundup includes four rather different studies. Firstly we include an excellent audio description from David Salt about a new type of GWAS analysis that his lab was involved in developing. This allowed identification of new genetic loci involved in molybdenum signalling. Secondly Isabelle Carre’s group from Warwick presents a study into the interactions that define the functioning of the circadian clock. Thirdly Mike Blatt leads a study that models stomatal opening and finally we include an investigation of the DOG1 gene, that includes a contribution from Fuquan Liu.

Forsberg SK, Andreatta ME, Huang XY, Danku J, Salt DE, Carlborg Ö (2015) The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance PLoS Genet. e1005648. http://dx.doi.org/10.1371/journal.pgen.1005648 Open Access.

Current GARNet Chairman David Salt (Aberdeen) is the UK lead on this collaboration with the lab of Orjan Carlborg from Uppsala in Sweden. The novelty of this paper is in the development of a new technique to measure Genome-Wide Association using the variance in SNP differences instead of using the mean. Professor Salt explained this vGWA technique in the attached audio-file, which is especially useful for people not so familiar with GWAS. Using this vGWA technique the authors were able to re-analyse an old dataset to gain additional understanding of how certain genetic loci are regulated to explain differences in the production of the essential nutrient molybdenum. Overall this paper introduces an analysis technique that can hopefully be used by other members of the community to analyse/re-analyse their data with increased rigour.

This is the 10minute audio file where David explains the paper:

Adams S, Manfield I, Stockley P, Carré IA (2015) Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions. PLoS One.10(12):e0143943. http://dx.doi.org/ 10.1371/journal.pone.0143943 Open Access

This collaboration between the Universities of Warwick and Leeds is led by Isabelle Carré and investigates the Arabidopsis circadian clock. They analysed the in vivo interactions of the LATE ELONGATED HYPOCOTYL (LHY) protein with promotors of other clock components. This uncovered a novel regulatory loop between LHY and the CIRCADIAN CLOCK ASSOCIATED-1 (CCA1) gene. Furthermore they show LHY acts as a repressor of all other clock components, clearly placing this protein as a key regulatory component of the Arabidopsis clock.

Minguet-Parramona C, Wang Y, Hills A, Vialet-Chabrand S, Griffiths H, Rogers S, Lawson T, Lew V, Blatt MR (2015) An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells. Plant Physiol. http://dx.doi.org/10.1104/pp.15.01607 Open Access

Mike Blatt is the corresponding author for this collaboration between Glasgow, Cambridge and Essex Universities. There are a good number of UK researchers who investigate the factors that regulate stomatal opening and this study looks at the role of calcium oscillations in this process. They have used the Arabidopsis OnGuard model that faithfully reproduces the optimum 10minute period of Ca2+ oscillation in guard cells. They used experimentally derived kinetics to describe the activity of ion transporters in the plasma membrane and tonoplast. Overall they discovered that the calcium oscillations are actually a by-product of the ion transport that determines stomatal aperature and not the overall controlling factor.

Cyrek M, Fedak H, Ciesielski A, Guo Y, Śliwa A, Brzeźniak L, Krzyczmonik K, Pietras Z, Liu F, Kaczanowski S, Swiezewski S (2015) Seed dormancy in Arabidopsis thaliana is controlled by alternative polyadenylation of DOG1 Plant Physiol. http://dx.doi.org/10.1104/pp.15.01483

Fuquan Liu (Queens, Belfast) is the UK contributor to this Polish-led study focused on the DOG1 gene, which is a key regulator of Arabidopsis seed dormancy. Previously it had been shown that the C-terminus of DOG1 is not conserved in many other plant species. The DOG1 transcript is alternatively polyadenylated and the authors show that Arabidopsis mutants that lack current 3’ RNA processing also show defects in seed dormancy. The shorter version of DOG1 is able to rescue the dog1 phenotype, which allows the authors to propose that DOG1 is a key regulator of seed dormancy and that the phenotypes of RNA processing mutants are linked to the incorrect processing of this specific mRNA species.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
Categories
September 2024
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Welcome , today is Wednesday, September 11, 2024