Arabidopsis Research Roundup: August 14th

Tags: No Tags
Comments: No Comments
Published on: August 14, 2017

This weeks UK Arabidopsis Research Roundup includes a study from the lab of GARNet Chairman Steven Spoel that describes their work on the control of ROS signaling. The other two papers looks at different aspects of photosynthetic control. Firstly Giles Johnson (University of Manchester) investigates the proteomic changes that occur during dynamic acclimation. Finally Alex Webb’s lab (University of Cambridge) investigate how the products of photosynthesis feed into ethylene-dependent control of the circadian clock.


Kneeshaw S, Keyani R, Delorme-Hinoux V, Imrie L, Loake GJ, Le Bihan T, Reichheld JP, Spoel SH (2017) Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes.

PNAS https://doi.org/10.1073/pnas.1703344114 Open Access

GARNet Chairman Steven Spoel (University of Edinburgh) leads this Franco-UK collaboration that investigated the role of the pathogen-induced oxidoreductase Nucleoredoxin 1 (NRX1) during the response to oxidative stress. They show that NRX1 targets a range of enzymes that are responsible for scavenging damaging cellular H2O2 and subsequently protect these enzymes from damage. This unexpected regulatory mechanism demonstrates a key role for NRX1 in protecting plants from the oxidative stress, which is an important component of the plants defence response.

Steven discussed this paper below. This audio is also on GARNet YouTube and iTunes channels.


Miller MAE, O’Cualain R, Selley J, Knight D, Karim MF, Hubbard SJ, Johnson GN (2017) Dynamic Acclimation to High Light in Arabidopsis thaliana Involves Widespread Reengineering of the Leaf Proteome Front Plant Sci. https://doi.org/10.3389/fpls.2017.01239 Open Access

Giles Johnson leads this collaborations between two departments from the University of Manchester that has looked at changes to the leaf proteome that occur under differing light conditions. Transferring leaves from low to high light conditions causes a process called dynamic acclimation, which is perturbed in gpt2 mutants. Proteomic analysis of wildtype and gpt2 leaves reveals that a similar number of proteins are changed during dynamic acclimation but the identify of these is altered, with a reduced abundance of proteins involved in photosynthesis. Interestingly gpt2 showed an increase in the number of proteins involved in the stress response.

In 2016 Giles talked to GARNet about a different paper that looks at cold acclimation in Arabidopsis.


Haydon MJ, Mielczarek O, Frank A, Román Á, Webb AA (2017) Sucrose and ethylene signaling interact to modulate the circadian clock. Plant Physiol. https://doi.org/10.1104/pp.17.00592 Open Access

Alex Webb (University of Cambridge) collaborates with Mike Laydon (previously at York, now at the University of Melbourne) on this study that links photosynthesis with circadian and hormone signalling. Previous work showed that GIGANTEA (GI) is necessary to maintain sucrose-dependent circadian oscillations in the dark. This extension of that work demonstrates that sucrose stabilises GI by altering the activity of the ZEITLUPE (ZTL) F-box protein, which is surprisingly dependent on the key ethylene signalling intermediate CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1). Over recent times the role of ethylene on control of the circadian clock has been overlooked but this study shows that the hormone can shorten the circadian period through the activity of sucrose and GI. This study integrates another signal into our understanding of the exquisite regulatory relationships that control clock function.


Please subscribe to the GARNet iTunes channel!



No Comments - Leave a comment

Leave a Reply


Welcome , today is Friday, April 19, 2024