Arabidopsis Research Roundup: February 22nd 2018

Tags: No Tags
Comments: No Comments
Published on: February 22, 2018

This edition of the Arabidopsis Research roundup beings with a study from SLCU that provides a molecular context to the changes that occur at graft junctions. Second is a study from Edinburgh that reports on the findings of a citizen science plant phenotyping project. Third are two studies from the John Innes Centre that follow-on from previous studies. These characterise the molecular response to seasonal transitions and the factors that control floral development.

The fifth paper is led by Chris Hawes at Oxford Brookes and characterises a novel sub-group of ER localized reticulon proteins. The next paper from the University of Sheffield looks at the whole plant response to changing global carbon dioxide concentrations. The seventh paper from Bristol and York also broadly looks at CO2 but this time at the molecular factors that control stomatal closure in response to both ABA and CO2 signals. Christine Foyer (Leeds) is a co-author on the penultimate paper that characterises the role of ascorbic acid in hormone signaling whilst the final paper from Julian Hibberd at the University of Cambridge analyses a regulatory element that contributes to the evolutionary transition to C4 photosynthesis.


Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I, Meyerowitz EM (2018) Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1718263115 Open Access
This research was led by Charles Melynk during this time working with Elliot Meyerowitz at SLCU. Grafting is an important classic and contemporary technique in plant biology and this study investigates the gene expression changes that occur on either side of a graft junction. They show asymmetry changes in gene expression on either side of a graft that include an increase in vascular initiation but only in grafted tissues and not in those that are cut and then separated. This study provides an exciting insight into the molecular changes that occur during tissue grafting.


Giuffrida MV, Chen F, Scharr H, Tsaftaris SA (2018) Citizen crowds and experts: observer variability in image-based plant phenotyping. Plant Methods. doi: 10.1186/s13007-018-0278-7 Open Access

This UK, German and Italian study is led by Sotirios Tsaftaris at the University of Edinburgh and reports on a fascinating citizen science study that evaluated the ability of experts and non-experts to use plant phenotyping software. They demonstrate that non-experts can be effectively involved in plant phenotyping annotation tasks given enough statistical power and if the study is suitably designed.


Hepworth J, Antoniou-Kourounioti RL, Bloomer RH, Selga C, Berggren K, Cox D, Collier Harris BR, Irwin JA, Holm S, Säll T,Howard M, Dean C (2018) Absence of warmth permits epigenetic memory of winter in Arabidopsis. Nat Commun. doi: 10.1038/s41467-018-03065-7 Open Access

Caroline Dean and Martin Howard (John Innes Centre) lead this study that further characterise the relationship between the VERNALIZATION INSENSITIVE3 (VIN3) an FLOWERING LOCUS C (FLC) genes in two separate thermosensory processes that monitor long term temperature changes. They suggest that the regulatory strategies currently employed by plants might become less effective as the climate becomes more variable and will have a knock-on effect on plant growth and productivity.


Simonini S, Stephenson P, Østergaard L (2018) A molecular framework controlling style morphology in Brassicaceae. Development. doi: 10.1242/dev.158105 Open Access
Lars Ostergaard (John Innes Centre) leads this study that characterises how the activity of five transcription factors (TF) integrate with auxin signaling in the control of gynoecium development. The auxin response factor ETTIN is a central controller of this relationship across members of the Brassicaceae and that variation in an ETTIN sub-domain effects TF affinities, interaction strength and gynoecium morphology


Kriechbaumer V, Maneta-Peyret L, Fouillen L, Botchway SW, Upson J, Hughes L, Richardson J, Kittelmann M, Moreau P, Hawes C

The odd one out: Arabidopsis reticulon 20 does not bend ER membranes but has a role in lipid regulation. Sci Rep. doi: 10.1038/s41598-018-20840-0

This study is led by Chris Hawes (Oxford Brookes) and continues his labs work on the plant ER. They are working on a subgroup of reticulons, which are ER membrane proteins, that have an extended N-terminal domain. Three members of this subgroup show different localisation patterns that indicates that along their sequences are similar they might play different cellular roles.


Williams A, Pétriacq P, Schwarzenbacher RE, Beerling DJ, Ton J (2018) Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity. New Phytol. doi: 10.1111/nph.15018 Open Access
This article from the University of Sheffield uses Arabidopsis to investigate the impact that changing climatic CO2 concentrations might have on plant immunity. The authors performed a global analysis on the response to sub-ambient and elevated CO2 and found that both changes causes alterations to salicyclic acid or jasmonic acid response pathways. However these responses are not always opposite, revealing new insights in the response to changing CO2 concentrations.


 

Isner JC, Begum A, Nuehse T, Hetherington AM, Maathuis FJM (2018) KIN7 Kinase Regulates the Vacuolar TPK1 K+ Channel during Stomatal Closure. Curr Biol. doi: 10.1016/j.cub.2017.12.046.

This is collaborative work between the Universities of York and Bristol and analyses factors that control stomatal closure. They show the TPK1 vacuolar K+ channel is important for ABA and CO2 mediated closure and that the function of this protein is regulated by the KIN7 receptor-like kinase. These activities result in potassium release from the vacuole leading to osmotic changes that contribute to stomatal closure.


Caviglia M, Mazorra Morales LM, Concellón A, Gergoff Grozeff GE, Wilson M, Foyer CH, Bartoli CG (2018) Ethylene signaling triggered by low concentrations of ascorbic acid regulates biomass accumulation in Arabidopsis thaliana. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2018.01.032

Christine Foyer (University of Leeds) is a co-author on this research showing that a defect in ascorbic acid production leads to elevated levels of the hormone ethylene as well as having a wider impact on the control of growth-mediating hormone signalling. This result indicates that the cellular redox buffer AA is a significant contributor to hormone signalling pathways.


Reyna-Llorens I, Burgess SJ, Reeves G, Singh P, Stevenson SR, Williams BP, Stanley S, Hibberd JM (2018) Ancient duons may underpin spatial patterning of gene expression in C4 leaves.Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1720576115

Julian Hibberd (University of Cambridge) is the corresponding author on this study that is part of his labs overarching aim of discovering what is necessary to transfer C4 photosynthesis into C3 plants. As part of this work they are searching for master regulator sequences that have allowed for the multiple independent evolution of C4 photosynthesis. They have identified a regulatory duon that is a pair of cis-elements located in coding sequences of genes preferentially expressed in bundle sheath cells of C4 leaves and are also present in C3 plants and algae. Therefore they discuss how C4 plants have co-opted these regulatory elements and how it might be exploited in future molecular engineering projects.

Arabidopsis Research Roundup: February 12th

This weeks Arabidopsis Research Roundup begins with a study from SLCU that investigates the interaction between nitrate and cytokinin signaling in the shoot meristem. Next is research from Sheffield that studies changes to the macromolecular composition of the photosynthetic apparatus following the transition from dark to light. Third are three papers that include University of Edinburgh faculty members as co-authors; Gary Loake is involved in a global study on NO signaling, Karen Halliday is included on a study into the relationship between clock components and the PIF-mediated hypocotyl elongation and Naomi Nakayama contributes to the development of a model that explains PIN protein localisation. Cyril Zipfel (TSL) is a co-author on the fifth paper, which introduces a new signaling component in the defence response and whilst the penultimate paper includes Denis Murphy (University of South Wales) and investigates the effect of dioxins on seed development. The final paper documents research from Manchester and Nottingham that uses a cress endosperm as a model to test the elastic properties of thin biological membranes.


Landrein B, Formosa-Jordan P, Malivert A,, Schuster C, Melnyk CW,, Yang W, Turnbull C, Meyerowitz EM, Locke JCW,, Jönsson H (2018) Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. PNAS doi: 10.1073/pnas.1718670115.

Open Access

http://www.pnas.org/content/early/2018/01/22/1718670115

Henrik Jonsson and James Locke (SLCU) are corresponding authors on this investigation into the relationship between nitrate and cytokinin signalling in the Arabidopsis shoot meristem (SAM). They show that nitrate availability determines the size of the SAM, which is controlled by the transport of cytokinin precursors from the root to the shoot. A discussion about this paper with lead author Benoit Landrien and Professor Jonsson is available on the GARNet YouTube and iTunes channels.


Wood WHJ, MacGregor-Chatwin C, Barnett SFH, Mayneord GE, Huang X, Hobbs JK, Hunter CN, Johnson MP (2018) Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nature Plants. doi: 10.1038/s41477-017-0092-7

Open with this link

This research in this manuscript has come from the University of Sheffield with Matthew Johnson as the corresponding author. They have used atomic force microscopy (AFM) to investigate how the transition from dark to light affects the macromolecular architecture of the photosynthetic apparatus within the thylakoid membrane. This transition does not alter the antenna size of either photosystem yet increases the number of thylakoid grana. Overall these changes serve to regulate the balance between light harvesting, CO2 fixation and enabling the protection of PSII activity from the destructive effects of non-photochemical quenching.


Imran QM, Hussain A, Lee SU, Mun BG, Falak N, Loake GJ, Yun BW (2018) Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Sci Rep. doi: 10.1038/s41598-017-18850-5.

https://www.nature.com/articles/s41598-017-18850-5

Open Access

Gary Loake (University of Edinburgh) is a contributor to this Korean-led manuscript that has performed expression analysis on plants treated with S-nitrosocysteine (CySNO). They have identified many novel NO-responsive transcription factors and were able to confirm the role of three random TFs in this response following analysis of loss of function mutants. This paper provides new insights into the molecular components that contribute to NO signalling during plant defence and immunity.


Martín G, Rovira A, Veciana N, Soy J, Toledo-Ortiz G, Gommers CMM, Boix M, Henriques R, Minguet EG, Alabadí D, Halliday KJ, Leivar P, Monte E Circadian Waves of Transcriptional Repression Shape PIF-Regulated Photoperiod-Responsive Growth in Arabidopsis. Curr Biol. doi: 10.1016/j.cub.2017.12.021

Karen Halliday (University of Ediburgh) is a co-author on this Spanish-led study that investigates how the expression of PHYTOCHROME-INTERACTING FACTORS (PIFs) genes is controlled. The activity of PIFs are responsible for determining the rate of hypocotyl elongation in different light conditions and this paper demonstrates that PSEUDO-RESPONSE REGULATORS PRR9/7/5 proteins act antagonistically to the PIFs by interacting at the promotor of the CDF5 transcription factor. This provides a mechanism to explain the circadian-controlled regulation of hypocotyl cell elongation.


Hernandez V, Barrio RA, Benítez M, Nakayama N, Romero-Arias JR, Villarreal Lujan C (2018) A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN). Phys Biol. doi: 10.1088/1478-3975/aaac99

Naomi Nakayama (University of Edinburgh) is a co-author on this Mexican-led study that proposes a physico-genetic model that explains the localization of PIN auxin transporter proteins to the Arabidopsis plasma membrane. This model confirms experimental observations and allows the prediction that mechanical forces can predominate over molecular components.


www.cell.com/molecular-cell/fulltext/S1097-2765(17)30983-8

Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L, Zhang X, Yu F, Xie Q, Chen S, Zipfel C, Monaghan J, Zhou JM (2018) A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Mol Cell. doi: 10.1016/j.molcel.2017.12.026

This Chinese-led paper includes Cyril Zipfel (TSL) as a co-author and identifies the U-box proteins PUB25 and PUB26 as E3 ligases for the cytoplasmic kinase BIK1, which is a key rate limiting component of the plant defence response. This multi-protein regulatory module provides another level of complexity to our understanding of the molecular factors involved in plant immunity.


Hanano A, Almousally I, Shaban M, Murphy DJ (2018) Exposure of Arabidopsis Plants to Dioxin Results in a Wrinkled Seed Phenotype that is likely due to 20S Proteasomal Degradation of WRI1. J Exp Bot. doi: 10.1093/jxb/ery027

Denis Murphy (University of South Wales) is a co-author on this Syrian-led study that uses Arabidopsis seeds to test the negative effects of dioxins. Seeds treated with dioxins have a wrinked phenotype that corresponds to changes in the expression of genes related to lipid and carbohydrate metabolism. Overall this study reveals a novel set of genetic changes effects caused by dioxins that explain the profound effects on seed development.


S. P. Pearce, J. R. King, T. Steinbrecher, G. Leubner-Metzger, N. M. Everitt, M. J. Holdsworth (2018) Finite indentation of highly curved elastic shells Proceedings of the Royal Society A doi: 10.1098/rspa.2017.0482

Open Access

Plant scientist Mike Holdsworth (University of Nottingham) is a co-author on this paper that has used the endosperm from garden cress (Lepidium sativum) as the experimental model to define the elastic properties of a thin biological surface. Indentation experiments have been classically used to measure these properties and then develop mathematically models that explain their characteristics. These models rely on an assumed flat surface whereas in reality any surface will often be curved. By obtaining measurements from identations studies on the cress endosperm they are able to better refine the models that explain the properties of the membrane in this context.

GARNet Gene Editing Workshop!

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: February 12, 2018

GARNet with support from the Bristol Centre for Agricultural Innovation and New Phytologist are organising a Gene Editing Workshop that will take place at the University of Bristol on March 26th-27th 2018.

This workshop is designed to encourage interactions and discussion about the use of CRISPR-Cas9 gene editing in plant systems.

We are encouraging ECRs to attend the meeting and are providing nine opportunities for talks by people who have submitted abstracts. We are also hosting extended poster sessions.

The workshop has three main plenary sessions that will look at the technical aspects of using GE in different plant species. In addition we are hosting a session with a extended opportunity for debate regarding the policy decisions that surround use of this technology.

The full workshop schedule is here: https://garnet-ge-workshop.weebly.com/schedule.html

Monday 26th March
Opening Plenary: Stefan Jansson (Umea): Cooking (and eating) the first gene-edited meal!

Session I: Gene Editing in Dicots
Session II: Gene Editing in Monocots

Keynote Plenary: Ben Davies: Transgenic Core Head, Wellcome Trust Centre for Human Genetics, University of Oxford.

Tuesday 27th March

Session III: Gene Editing and Global Regulatory Landscape
Session IV: Novel uses of gene editing technologies

Registration for this workshop is now open and only costs £65 for ECRs.
https://garnet-ge-workshop.weebly.com/registration.html

As we are keeping the meeting small there is only space for 100 delegates!
Please register early to avoid disappointment.

We have arranged options for budget hotel accommodation for delegates in Bristol so please take advantage of these offers here:
https://garnet-ge-workshop.weebly.com/accomodation-and-transport.html

The abstract submission deadline to be considered for talks and posters is March 1st.

Please send your abstracts to the GARNet coordinator Geraint Parry at geraint@garnetcommunity.org.uk

Thanks to the High Value Chemical from Plants network for providing additional support.

Henrik Jonsson and Benoit Landrien talk to GARNet

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: February 7, 2018

Henrik Jonsson and Benoit Landrien discuss their new PNAS paper entitled ‘Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins‘.
Grafting image taken from Charles Melynk

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
Categories
February 2018
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728  

Welcome , today is Tuesday, March 19, 2024