Arabidopsis Research Roundup: August 1st

Tags: No Tags
Comments: No Comments
Published on: August 1, 2017

This weeks Arabidopsis Research Roundup has a tools-focus as it includes three papers that highlight new tools that are available to the plant science community. Silke Robatzek (TSL) leads research that has developed software for analysis of subcellular fluorescent markers whilst in a broadly similar area Mark Fricker (University of Oxford) is part of an international collaboration that characterises a tool that allows for analysis of intracellular ATP concentrations. Thirdly Phillip White (JHI) leads a consortium that has developed computer-assisted software to aid automated phenotyping. In the fourth paper Silke Robatzek again features as co-corresponding author with Richard Morris (JIC) in a study that mixes plant biology and computational analysis to model stomatal dynamics. Finally Christine Raines (University of Essex) leads research that has overexpressed a member of the photosynthetic apparatus that surprisingly results in plants with larger biomass and seed yield.


Faulkner C, Zhou J, Evrard A, Bourdais G, MacLean D, Häweker H, Eckes P, Robatzek S (2017) An automated quantitative image analysis tool for the identification of microtubule patterns in plants. Traffic. http:/​/​dx.​doi.​org/10.1111/tra.12505 Open Access

This research from The Sainsbury lab, Norwich and John Innes Centre includes Silke Robatzek as corresponding author as well as new faculty member Christine Faulkner as lead author. This paper documents the development of CellArchitect, which is an image analysis tool to track the movement of subcellular microtubule markers obtained using con-focal microscopy. They validated CellArchifect by treating with a variety of chemicals that alter microtubule dynamics. In addition they show that this software can be used to track actin or ER markers and as such should have broad utility for cell biology researchers particularly those that are undertaking often laborious chemical biology screens.


De Col V,, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM, Bassi A, Lim BL,, Zancani M, Meyer AJ,, Costa A, Wagner S, Schwarzländer M (2017) ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. Elife. http:/​/​dx.​doi.​org/10.7554/eLife.26770 Open Access

Mark Fricker (University of Oxford) is part of this international collaboration that have used a novel technique for visualizing ATP levels using a fluorescent biosensor in vitro, within isolated mitochondria and within intact seedlings. They demonstrate differing ATP concentrations within tissues, highlighting root hair cells. Induced hypoxia shows that there is significant plasticity in the cellular ATP concentrations and that these can be successful monitored using the biosensor tool.


Dupuy LX, Wright G, Thompson JA, Taylor A, Dekeyser S, White CP, Thomas WTB, Nightingale M, Hammond JP, Graham NS, Thomas CL, Broadley MR, White PJ (2017) Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline. Plant Methods.

http:/​/​dx.​doi.​org/10.1186/s13007-017-0207-1 Open Access

Phillip White (James Hutton Institute) and collaborators at the University of Nottingham have developed this computer-assisted pipeline designed to facilitate the phenotyping of plant roots. This can be scaled up for plants of different sizes and thus has broad utility. This software rapidly extracts root traits from image data, a process that can be a bottleneck in the screening process. This software complements parallel attempts that have developed automated platforms for sample preparation and handling.


Woolfenden HC, Bourdais G, Kopischke M, Miedes E, Molina A, Robatzek S, Morris RJ (2017) A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant J. http:/​/​dx.​doi.​org/10.1111/tpj.13640 Open Access

Richard Morris (John Innes Centre) and Silke Robatzek (The Sainsbury lab, Norwich) are the corresponding authors on this study in which they collaborate with Spanish colleagues. They investigate how different attributes of guard cell walls are responsible for the opening and closing of stomata. By considering the cell wall as a composite of a pectin rich matrix embedded within cellulose microfibrils they predict the movements that are responsible for stomatal dynamics. They validate their predictions using Arabidopsis mutants and they to show that stomatal opening/closing is brought about by a mix of hoop reinforcement and strain-stiffening resulting in anisotrophic growth.


Simkin AJ, McAusland L, Lawson T, Raines CA (2017) Over-expression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol.

http:/​/​dx.​doi.​org/10.1104/pp.17.00622 Open Access

GARNet committee member Christine Raines (University of Essex) leads this study in which they have generated plants that overexpress the Rieske FeS protein (PetC), which is a component of the cytochrome b6f (cyt b6f) complex. These plants show equivalent increases in both proteins within the cytochrome b6f complex and more surprisingly within members of PSI and PSII. The mechanisms that explain these changes are currently unknown but these plants offer an exciting tool in order to study multiple aspects of photosynthetic biology. Perhaps more importantly these plants show increased biomass and seed yield indicating that manipulation of these proteins in crop plants might be important for developing higher yielding varieties.

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
Categories
August 2017
M T W T F S S
 123456
78910111213
14151617181920
21222324252627
28293031  

Welcome , today is Friday, March 29, 2024