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Abstract

Understanding the processes which underlie pollen release is key to

efficient production of hybrid crops. Pollen is produced in compart-

ments termed locules, which reside within the anther. Surrounding

the locules are two cell layers: an outer epidermis and an inner en-

dothecium. During pollen development, endothecial cells undergo sec-

ondary thickening – a process bywhich cell walls are lined by a helical

arrangement of lignin fibres, strengthening the layer and providing a

natural resistance to bending. Pollen release occurs as a result of an

anther dehiscence process, during which the anther wall splits, ex-

posing the pollen to the environment. A number of processes have

been proposed to drive this process. In this report, we examine one

such process: that in which anther dehiscence is driven by dehydra-

tion of the epidermis, which results in contraction of this layer and an

associated change to the preferred curvature of the locule. We extend

an existing bilayer model to incorporate expansion and contraction

of both cell layers, and use cell-scale models to determine the asso-

ciated parameters in terms of experimentally measurable quantities.

We present brief experimental validation of this hypothesis, in which

the response of lily anthers to external hydration/dehydration is ob-

served, and use the associated biomechanical model to explain the

observed changes in the anther’s configuration.
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1 Introduction

Plant reproduction and the formation of viable gametes (reproductive cells) is critical

to fertilisation and seed formation, and is thus essential to the production of most of

the food that we eat. It plays a critical role in breeding systems and in the production

of hybrid crops which, although difficult and costly to generate, frequently out-yield

inbred lines by 20–30%. The combination of population growth, climate change and

the reduction of available agricultural land mean that it is essential that we develop

sustainable, effective agricultural systems that give increased yield but are less dam-

aging to the environment. Achieving these goals requires a deeper understanding of

plant reproduction, particularly the formation and release of pollen, that will enable

the development of strategies to aid hybrid development and thus food security.

Pollen is formed within specialised organs, stamen, in the flower (figure 1). These

are comprised of a wider upper region that forms the anther, containing the pollen,

and a stalked region, the filament, containing the vascular bundles (transport system

in higher plants), which extends to maximise dispersion of the pollen. The timing

of pollen release is highly controlled to maximise the chances of fertilisation and is

regulated partly by the developing pollen grains and partly by the developingmaternal

anther. Figure 1 illustrates a cross-section of the anther. Prior to opening, pollen is

contained within four compartments termed locules. Locules are situated in pairs; the

region between the two locules is termed the septum, themost external point of which is

termed the stomium. Anther dehiscence (opening of the anther to allow pollen release)

is associatedwith a number of biomechanical changes within the septum and stomium.

The anther comprises four maternal cell layers: the outer epidermis, the endothecium,

the middle cell layer, and the tapetum. Within the locule are the inner sporogenous

cells which will form the pollen.

Anther dehiscence involves a series of steps, including differentiation of the cellular

layers in the anther, formation of secondary thickening of cell walls within the endothe-

cium, enzymatic digestion of septum and stomium cell walls, differential expansion,

dehydration and pollen swelling (Bonner & Dickinson, 1989; Keijzer, 1987; Scott et al.,

2004). These processes cause the cells of the septum and stomium to be weakened

and generate various mechanical tensions within the anther, resulting in breakage and

opening. Many mutants have been identified which fail to release their pollen (dehis-

cence mutants) due to defects in these various stages. Preliminary biological models

have been developed to explain the processes and forces involved in anther opening;

however, no mathematical modelling of this process has been carried out and we cur-

rently do not know what are the critical aspects and physical features of this important

1



Figure 1: Left: Structure of the flower and anther. Right: Diagram of a cross-section

through the anther, showing the four cell layers of the anther – the outer epidermis,

the endothecium, the middle cell layer and the tapetum. Inside each locule reside mi-

crospores (visible at this stage as tetrads), that will eventually form the mature pollen.

Figure taken fromWilson et al. (2011).

developmental stage.

1.1 Degeneration and breakage of the septum and stomium

Anther dehiscence is thought to involve cell-wall-degrading enzymes which break

down the pectin in the cell walls. Several hydrolytic enzymes and proteins linked to

cell wall loosening are thought to be involved, including polygalacturonases (PGs),

-1,4- glucanases, and expansins. These enzymes are likely to be regulated by plant

hormones (including jasmonic acid (JA), ethylene and abscisic acid (ABA)).

Initially degeneration of the septum occurs, generating a bilocular anther, which is fol-

lowed by stomium cell breakage and then retraction of the anther and pollen release

(figure 2). The importance of a functional stomium for dehiscence has been demon-

strated by failure of tobacco dehiscence after specific cell ablation of the stomium. Prior

to dehiscence the stomium undergoes cell death and splitting, this does not appear to

require viable pollen to be present since splitting is still seen in male sterile lines with-

out viable pollen. This breakage appears to be due to weakening of the septum and

stomium due to enzymatic digestion, combined with expansion of the pollen and an-

ther wall.

The anther septum and stomium breakdown is also thought to be via a process related

to programmed cell death (PCD). There have been a number of reports of dehiscence

mutants resulting from changes to endothecium and stomium degeneration, which

result in endothecium degeneration and indirectly inhibit breakage of the stomium,

although the pollen appears normal.
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1.2 Endothecial secondary thickening

After meiosis and formation of the immature pollen, the endothecium undergoes selec-

tive deposition of secondary thickening whilst the stomium and septum do not. This

localised thickening is critical for subsequent anther opening. Endothecium develop-

ment is coordinated with pollen maturation and the degeneration of the anther tape-

tum and middle layer.

The process of pollen development in Arabidopsis thaliana has been separated into 15

stages based on anther development. In the Arabidopsis anther, the endothecium is

first established during anther stage 5. It undergoes expansion during anther stages 6–

10 and develops secondary cell wall thickening during anther stage 11, at which point

bar-like ligno-cellulose fibrous bands are deposited. Endothecium secondary thicken-

ing appears to be essential for providing the mechanical force for anther dehiscence.

This has been demonstrated experimentally with Arabidopsis male sterile mutants,

for example myb26 (Dawson et al., 1999) and the NAC secondary wall thickening pro-

moting factor1 (nst1)nst2 double mutant (Mitsuda et al., 2007). In the myb26 mutant,

anther development appears normal up to anther stage 11; however, during the later

stages, the lingo-cellulosic wall thickenings seen in the wild type anther endothecium

wall, do not form. Degradation of the septum and formation of stomium take place

normally; however, the endothecial cells fail to expand, then collapse and the subse-

quent shrinkage of the anther walls does not occur, resulting in failure of pollen release

(Dawson et al., 1999).

1.3 Opening the anther

Observations of dehiscence in Gasteria verrucosa suggest that as pollen wall formation

occurs, the epidermal and endothecial cells lose some of their starch, which may affect

the osmotic potential within the cell, leading to water flow and changes in hydrostatic

pressure. These cells then start tangential and radial expansion, which is followed by

endothecial secondary thickening (Keijzer, 1987). However, the stomium and septum

do not undergo secondary thickening. The septum undergoes enzymatic lysis, reduc-

ing the adhesion between neighbouring cells, alongside the mechanical swelling of

the bordering epidermal cells, facilitating stomium opening (Keijzer, 1987). Tangential

swelling of the epidermis and endothecium increases the circumference of the locule

wall; however, because the endothecium walls have secondary thickening, the inner

locule wall dimensions are fixed. The combination of outer enlargement and inner

fixed dimensions causes the locule wall to bend inwards causing disruptions to the
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stomium cells (figure 2). The stomium cells are then mechanically broken by inward

bending of the adjacent locule walls. The swelling of the pollen grains has also been

proposed as a factor in generating the force required for final locule rupture in rice

(figure 2).

1.4 Dehydration of the anther wall

The final stages of anther dehiscence involve the dehydration of the endothecium and

epidermal cells, which cause the locule to bend outwards (figure 2). It has been sug-

gested that this occurs, at least in part, as a consequence of evaporation but is more

likely due to active removal of water from the anther. Observations of the water status

of tomato anthers revealed differential regions of anther dehydration. Conversion of

starch to sugar may create variations in the osmotic potential within the anther tissues,

providing a mechanism for selective dehydration (regions of low osmotic potential de-

hydrate more readily). This has been supported by data on localised sucrose transport

around the anther tissues (Stadler et al., 1999).

It has also been suggested that movement of potassium ions from the anther locule,

prior to dehiscence, into the pollen grains may play a role in attracting water from the

surrounding regions, causing the swelling of the endothecium and pollen prior to an-

ther opening. This swelling of the pollen may be partly responsible for stomium rup-

ture. Water translocation frequently occurs via plasmodesmata connections between

adjacent cells; however, a large gene family encoding aquaporin proteins have been

shown to mediate the passive movement of water between cells. Some aquaporins

have been identified specifically within the anther: these will influence cell wall per-

meability and water movement in the anther. It therefore seems likely that an active

process of selected dehydration is occurring within the anther that acts to provide the

final force for anther opening (figure 2).

1.5 The aims of this study

In this studywe develop amathematical model that focuses upon the role of epidermal

and endothecial dehydration in driving anther dehiscence, neglecting the effects of

changes in locule pressure. To validate this proposed mechanism, proof of principle

experiments were carried out in which Lily anthers were hydrated under amicroscope,

and changes in shape were recorded. Two stages of Lily anthers that had already split

at the septum and stomium were used: i) those which were already fully open, and ii)

those which were close to opening but not yet fully open. Younger anthers that had not
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Figure 2: Image taken fromWilson et al. (2011), showing previously postulated biome-

chanical mechanisms which may contribute to anther dehiscence. (A) Microspore re-

lease, the tapetum starts to breakdown and the endothecium expands and secondary

thickening is deposited. As the pollen expands there is a postulated outward pressure

(B, red arrows) exerted from the inside of the locule on the anther, which increases in

size. However, the bands of secondary thickening in the endothecium restrict expan-

sion causing increased tension (D, green arrows). (B) Enzymatic lysis of the stomium

combined with the pressure from the expansion of the pollen causes the septum to

break to form a single locule (C,D). At this point the anther walls begin to dehydrate

due to evaporation and active water transport (D, blue arrows) causing the shrinkage

of the epidermal cells, resulting in an increased tension on the stomium.
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Figure 3: Lily anther closing based on hydration status. (A) Fully opened anther. (B)

Anther with water droplet, showing start of closing. (C) Approximately 15 mins after

water treatment anther is actively closing. (D) Approximately 30 mins after water

treatment anther is almost fully closed.

split at the stomium did not appear to be under pressure, since when cut they did not

burst open and release their locule contents.

Anthers that were fully open had a small amount of water placed onto their surface

(figure 3), these anthers then rapidly started to re-close and over a period of approxi-

mately 30 mins closed completely (figure 3D). However, if sections were cut through

the anther and then placed in the water droplets the resultant movement and closure

of the anther was extremely rapid (5–10 secs). This increased speed may have been

due to greater hydration of the epidermal and anther wall tissues, since the anther is

an extremely hydrophobic surface.

Anthers that were near to opening but were not fully open, when left on a microscope

slide in the light, progressively opened as they dehydrated.

These preliminary results justify our model assumption, that hydration is a key mech-

anism in driving anther dehiscence. While locule pressure does not seem sufficient to

drive dehiscence independently, we still incorporate a locule pressure in our model for

completeness. Our model demonstrates the importance of secondary thickening in en-

dothecial cells in enabling contractile forces arising from dehydration to be converted

into bending forces that promote anther opening.
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Figure 4: Lily anther that was closed, which started to open as it dehydrated on the

slide under the microscope light.

2 The model

We formulate a two-dimensional model for a cross-section of the anther under the as-

sumption of plane strain. We assume that anther dehiscence is primarily driven by de-

hydration of the epidermis and endothecium, which causes contraction of the cells in

these layers. Focusing upon the situation in which the two cell layers are fully adhered,

we consider a mechanism by which differences in the rates of expansion/contraction

of these layers may induce a change in the preferred curvature of the composite struc-

ture, stimulating bending which ultimately enables the anther to open. We adapt the

bilayer model of Nelson et al. (2011) to describe these changes in preferred curvature as

a function of the turgor pressure of the epidermal cell layer. Since the cells of the en-

dothecium are surrounded by lignin fibres arranged into a tight helix, we assume that

this layer has a natural resistance to bending. By comparison, we assume that the bend-

ing resistance of the epidermis is negligible; dehydration of the epidermis generates an

in-plane tension F+∗

T therein, transmitting a force to the endothecium which induces

bending. Throughout the forthcoming discussion, stars distinguish dimensional quan-

tities from their dimensionless counterparts. Terms with ‘+’ superscripts refer to the

epidermis, while those with ‘−’ superscripts refer to the endothecium.

We examine configurations belonging to three distinct cases. Firstly, we consider an in-

tact septumwhich provides a restoring force F∗sep, holding the stomium in place. Keep-

ing all hydration parameters fixed, we initially examine solutions for decreasing F∗sep

to model degradation of the septum. We identify the state in which F∗sep = 0 with

the septum breaking. In our second case, the septum is absent and we drive geomet-

ric changes through changes to the preferred length of the epidermis, resulting from

dehydration thereof. The third case is that which follows breaking of the stomium, al-

lowing the anther to open. In this case, we allow the epidermis to further dehydrate,
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Figure 5: Geometry of the anther segment under consideration, and associated coor-

dinate systems. The composite layer comprises epidermal and endothecial cell layers,

which we assume to always remain tangential and adjacent to one another.

gradually changing the resulting preferred configuration from concave to convex. We

describe these three cases, and the corresponding boundary conditions, more fully in

section 2.1. We begin, however, with a discussion of the equations which govern the

biomechanics of the anther segment.

Assuming symmetry about the septum, we restrict attention to one locule. Further-

more, as a first approximation, we assume the lower half of this locule to be rigid and

present solely a model for the upper half. We denote by L∗0 the undeformed arclength

of the bilayer. The angle of inclination of the composite to the horizontal is denoted

by θ(s∗), where s∗ is a measure of arclength. We also describe the geometric configu-

ration of the bilayer in terms of Cartesian coordinates x∗ and y∗, respectively oriented

horizontally and vertically and related to θ(s∗) via:

d x∗

d s∗
= cos θ,

d y∗

d s∗
= sin θ. (1)

The curvature of the bilayer, κ∗, is given by

κ∗ =
d θ

d s∗
(2)

We denote tangential and normal stress resultants (per unit length) in the endothecium

by F−∗

T and F−∗

N respectively; variations in these stress resultants generate a bending

moment (per unit length) M∗. Between the endothecium and the epidermis act a fric-

tional stress Q∗ and normal reaction R∗, as shown in figure 6. We also incorporate a

locule pressure p∗, measured relative to atmospheric pressure, which acts to deform

the composite structure from below.
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We denote tangential and normal unit vectors by t̂ and n̂, which are defined according

to:

t̂ = (cos θ, sin θ) , n̂ = (sin θ,− cos θ) , (3)

and related via
d t̂

d s∗
= −κ∗n̂,

d n̂

d s∗
= κ∗ t̂. (4)

Balancing forces upon an arbitrary endothecial element of length d s∗ (as shown in

figure 6), we have

(

F−∗

T t̂
)

∣

∣

∣

∣

s∗+d s∗
−

(

F−∗

T t̂
)

∣

∣

∣

∣

s∗
+

(

F−∗

N n̂
)

∣

∣

∣

∣

s∗+d s∗
−

(

F−∗

N n̂
)

∣

∣

∣

∣

s∗
−Q∗ d s∗ t̂+(R∗ − p∗) d s∗n̂ = 0.

(5)

Taylor expanding those terms evaluated at s∗ + d s∗, truncating terms of O
(

d s∗2
)

and

noting (4), the tangential and normal components of (5) give

d F−∗

T

d s∗
+ F−∗

N κ∗ −Q∗ = 0,
d F−∗

N

d s∗
− F−∗

T κ∗ + R∗ − p∗ = 0. (6)

A balance of moments upon the same element, assuming that the contribution of FT is

O
(

d s∗2
)

, gives
dM∗

d s∗
− F−∗

N + Q∗h∗ = 0, (7)

to leading order, where 2h∗ is the thickness of the endothecium. The Q∗h∗ term in

(7) was not included in the analysis of Nelson et al. (2011); we estimate its magnitude

below.

Taking a discrete representation of the upper cell layer, and assuming θ is slowly vary-

ing between adjacent cells, Nelson et al. (2011) derived the following expressions for

Q∗ and R∗:

Q∗ = −
d F+∗

T

d s∗
, R∗ = −κ∗F+∗

T . (8)

Introducing the composite in-plane tension F∗ = F−∗

T + F+∗

T , (6–8) give

d F∗

d s∗
= −κ∗F−∗

N ,
d F−∗

N

d s∗
= κ∗F∗ + p∗,

dM∗

d s∗
= F−∗

N + h∗
d F+∗

T

d s∗
. (9)

We prescribe the following constitutive assumptions, governing the extensions of the

cell layers:

F±∗

T = k−∗
(

λ±
− λ±

0

)

, (10)

in which λ± are the in-plane stretches of the two layers, λ±

0 are dimensionless vari-

ables which describe the resting lengths of the layers, and k±∗ are extensional stiffness

parameters. In the endothecium, we consider these quantities to be evaluated on the

9



x̂

ŷ
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Figure 6: Distribution of forces (per unit length) along an element of the substrate,

the resultant stresses and bending moments. Clockwise arrows indicate bending mo-

ments acting the negative ẑ-direction.

centreline. Endothecial secondary thickening is incorporated into the model via an in-

crease in k−∗. Assuming that the frictional force, Q∗, is sufficient for perfect adhesion,

and taking κ∗h∗ ≪ 1, we set λ ≡ λ+ = λ− so that the net in-plane tension is given by

F∗ =
(

k+∗ + k−∗
)

λ −
(

k+∗λ+
0 + k−∗λ−

0

)

. (11)

In (11), the first term represents the composite extensibility while the second is influ-

enced by hydration of both cell layers.

We now require a constitutive assumption relating bending moments to curvatures.

We assume

M∗ = D∗ (κ∗ − κ̃∗0) , (12)

where D∗ is the endothecial resistance to bending and κ̃∗0 represents the preferred cur-

vature of the endothecium in the absence of the epidermis; we assume κ̃∗0 is spatially

uniform.

Substitution of (10) and (12) into (9c) gives

d κ∗

d s∗
=
F−∗

N

D∗
+
d κ∗0
d s∗
, (13)

where κ∗0 = κ̃∗0 + h∗k+∗
(

λ − λ+
0

)

/D∗ can be interpreted as an effective preferred curva-

ture of the composite layer, incorporating the contraction/expansion of the epidermis.

We can represent epidermal dehydration by a reduction in λ+
0 , causing κ∗0 to increase.
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It is convenient to rewrite the governing equations in terms of the Lagrangian arc-

length variable s̃∗, related to s∗ via:

d s∗

d s̃∗
= λ. (14)

We nondimensionalise the problem by scaling lengths against the resting length of the

composite (L∗0), curvatures against 1/L
∗
0, stress resultants against k

−∗ and locule pres-

sure against k−∗/L∗0 . Denoting N = F−∗

N /k
−∗, equations (9a,b), (13), (1) and (2) then

become

d F

d s̃
= −λκN,

dN

d s̃
= λκF+ λp,

d κ

d s̃
= αλN + Φ

d

d s̃

(

λ − λ+
0

)

, (15a)

d θ

d s̃
= λκ,

d x

d s̃
= λ cos θ,

d y

d s̃
= λ sin θ, (15b)

with F given by

F = (1+ β) λ −
(

λ−

0 + βλ+
0

)

. (16)

The above system is dependent upon three dimensionless parameters: α = k−∗L∗20 /D
∗,

which captures the endothecial resistance to extension relative to its resistance to bend-

ing; β = k+∗/k−∗, which captures the stiffness of the epidermis relative to that of the

endothecium; and Φ = αβh∗/L∗0, which captures the extent to which hydration of the

epidermis generates changes in the preferred curvature of the endothecium.

2.1 Boundary conditions

We solve (15–16) subject to boundary conditions which describe three distinct cases

(see figure 7). In all of these cases, we clamp the bilayer at s̃ = 0 as follows:

θ =
π

2
, x = −x0, y = 0 on s̃ = 0, (17)

where x0 = x∗0/L
∗
0 is the locule width scaled against the natural length of the anther

segment.

The first stage of the anther dehiscence process is that in which the septum is intact,

providing a restoring force Fsep to keep the stomium in place. In this so-called “case I”,

we set:

Case I: x = 0, Fsep = 2F sin θ − 2N cos θ, κ = κ̃0 + Φ
(

λ − λ+
0

)

on s̃ = 1,

(18)

in which the final boundary condition forces the bending moment at the symmetry

boundary to vanish. We assume that as the septum degrades, Fsep gradually decreases

from some initial positive value, until Fsep = 0 when the septum ‘breaks’. Throughout
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case I, we keep all mechanical properties fixed. In particular we neglect dehydration in

case I, fixing λ+
0 .

We label the intermediate case in which the septum has broken but the stomium re-

mains intact as “case II”. Throughout case II, we have Fsep = 0 and we require

Case II: x = 0, 2F sin θ − 2N cos θ = 0, κ = κ̃0 + Φ
(

λ − λ+
0

)

on s̃ = 1.

(19)

Changes to the anther’s configuration are now driven by dehydration of the epidermis;

we gradually decrease λ+
0 from its initial positive value (which may be determined

experimentally as a function of the turgor pressure, see section 2.2.1). As λ+
0 decreases,

and the preferred curvature evolves, we monitor the horizontal force exerted upon the

symmetry boundary, given by

Fcontact = 2F cos θ + 2N sin θ. (20)

Once this force decays to zero, we enter “case III” in which the boundary at s̃ = 1moves

away from the symmetry line, mimicking the opening of the anther. We continue to re-

duce λ+
0 and the anther continues to open. Thus, the locule pressure is released and we

set p = 0. In case III, all forces upon the boundary vanish and the preferred curvature

is attained. Thus, we impose

Case III: F = 0, N = 0, κ = κ̃0 + Φ
(

λ − λ+
0

)

on s̃ = 1. (21)

2.2 Parameter estimation

In table 1, we summarise the dimensional parameters in the model. It should be pos-

sible to source estimates for L∗0, x
∗
0 , p

∗, κ̃∗0 and h
∗ from the literature. In the following

simulations, we shall assume, for simplicity, that the endothecium is naturally flat and

set κ̃∗0 = 0. We use the model to the investigate the influence of the locule pressure on

the dynamics. In addition, we set x∗0 = 2L∗0/π for convenience.

We estimate the remaining parameters via a cell-scale model of the endothecium.

2.2.1 Cell-scale model of the epidermis

We can determine the epidermal parameters, k+∗ and λ+
0 , in terms of cell-scale param-

eters by balancing forces in an arbitrary epidermal cell. Treating each epidermal cell as

a rectangular box of height H∗, with elastic walls extending due to turgor pressure (per

unit length) p+∗, the in-plane stress resultant (per unit length) is given by

F+∗

T = 2E+∗
(

λ+
− 1

)

− p+∗H∗. (22)
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s̃ = 0

s̃ = 1

(a) Case I: Septum intact

s̃ = 0

s̃ = 1

(b) Case II: After septum breaks

s̃ = 0

s̃ = 1

(c) Case III: Anther opens

Figure 7: The three cases considered here. Red dotted lines illustrate the line of sym-

metry at the septum. Black dotted lines demark the upper half of the locule, which we

model here.

for epidermal Young’s modulus E+∗. Comparing (22) with (10), we have k+∗ = 2E+∗

and

λ+
0 = 1+ p+∗

(

H∗/k+∗
)

≡ 1+ P+. (23)

We, therefore, consider solutions for a reference state with λ+
0 > 1 and allow epidermal

dehydration to reduce the turgor pressure P+, so that λ+
0 gradually tends to unity.

2.2.2 Cell-scale model of the endothecium

In contrast to the epidermis, the endothecial cell walls have secondary thickeningwhich

comprises stiff lignin fibres which form a helical spring around the cell. These fibres

cause the endothecium to resist bending. We assuming that the lignin fibres provide

the dominant mechanical contribution to the endothecial cells, and that the remainder

of the cell wall does not contribute to the bending or extensional stiffnesses. Denoting

13



Parameter Description Value

L∗0 Natural length of the segment of bilayer

x∗0 Width of the locule 2L∗0/π

p∗ Locule pressure

κ̃∗0 Natural curvature of the endothecium ≈ 0

h∗ Half the endothecium thickness 2.5µm

D∗ Bending stiffness of endothecium see (26)

k+∗ Extensional stiffness of epidermis see §2.2.1

k−∗ Extensional stiffness of endothecium see §2.2.2

λ+
0 Natural length of epidermis see §2.2.1

λ−

0 Natural length of endothecium see §2.2.2

Table 1: Parameter values in the tissue-scale model.

the extensional stiffness of the helical spring by k∗f , and regarding a typical endothe-

cial cell as an extensible rectangular box as in 2.2.1, a force balance upon a typical cell

suggests that

F∗T = 2k∗f (λ − 1) − 2h∗p−∗, (24)

where p−∗ is the turgor pressure of the endothecial cell, and E−∗ is the stiffness of

the endothecial cell wall in the absence of the lignin fibres. Comparing (24) with (10),

we see that macro-scale parameters may be given in terms of cell-scale quantities as

follows:

k−∗ = 2k∗f , λ−

0 =
k∗f + h

∗p∗

k∗f
. (25)

The cell-scale parameters which determine D∗, k−∗ and λ−

0 are summarised in table 2.

Again, appropriate estimates of parameters would need to be sourced from the litera-

ture or future experiments. However, we can deploy the results of previous studies of

helices to estimate the relative sizes of these parameters. We denote the Young’s mod-

ulus of the lignin fibres by E∗f , their Poisson ratio by ν f , and their radius by R
∗
f . The

calculation of Costello (1977) then gives the bending stiffness of the helical spring as

D∗
cell =

E∗fπR
∗4
f sinγ

2(2+ ν f cos2 γ)
, (26)

where γ is the pitch angle. The endothecial cells are approximately 10− 20µm long

with approximately 5 turns of the helix per cell; we calculate the pitch angle to be in

the region of γ = 7− 14◦. In addition, let us denote the extensional stiffness of the

14



Parameter Description Value

p+∗ Turgor pressure of epidermal cells

H∗ Height of epidermal cells

E+∗ Stiffness of epidermal cell walls

R∗f Radius of lignin fibres 25nm

k∗f Stiffness of lignin fibres see (27)

E∗f Young’s modulus of lignin fibres

ν Poisson ratio of lignin fibres ≈ 1

γ Pitch angle of lignin helical spring 7− 14◦

Table 2: Parameter values in the cell-scale models of the epidermis and endothecium.

helical spring by k∗cell. From Love (1944), we have

k∗cell =
E∗fπR

∗4
f sinγ

4h∗2

(

cos2 γ

1+ ν f
+ sin2 γ

)

. (27)

The quantities D∗
cell and k

∗
cell represent the bending stiffness and extensional stiffness

of a single endothecial cell. We expect these values to contribute to the expressions for

similar macroscopic quantities for sheets of endothecial cells. From (26) and (27), we

expect that
k−∗h∗

D∗
∼
k∗cellh

∗

D∗
cell

∼ 1. (28)

The above suggests that endothecial secondary thickening results in a high resistance

to stretching and a low resistance to bending, potentially allowing shrinkage of the

epidermis to bend the composite structure.

2.2.3 Dimensionless parameter groupings

After nondimensionalisation, themodel depends on the dimensionless parameter group-

ings summarised in table 3. We expect the epidermal resistance to extension to be less

than that of the endothecium, β ≪ 1 and the endothecial resistance to extension to be

much greater than its resistance to bending, α ≫ 1. The formula for the parameter

grouping Φ can be rearranged to give

Φ = β
k−∗L∗0h

∗

D∗
∼ β
L∗0
h∗
, (29)

in which the latter expression follows from (28). Since β ≪ 1 and h∗ ≪ L∗0, we conclude

that it is appropriate to let Φ = O(1).
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Parameter Description Formula

x0 Ratio of locule width to natural length of anther segment x∗0/L
∗
0

α Ratio between endothecial resistance to extension k−∗L∗20 /D
∗

and resistance to bending

β Ratio of epidermal to endothecial resistance to extension k+∗/k−∗

Φ Ratio of resistance of epidermal extension αβh∗/L∗0

to endothecial bending

Table 3: The dimensionless parameter groupings that govern the model dynamics.

2.3 The limit α ≫ 1

Suppose α ≫ 1, Φ = O(1) and β is at most O(1). We can then rescale dependent

variables according to

N = N̂/α, F = F̂/α, p = p̂/α, (30)

reducing (15a) to

d F̂

d s̃
= −λκN̂,

d N̂

d s̃
= λκF̂ + λ p̂,

d κ

d s̃
= λN̂ + Φ

d

d s̃

(

λ − λ+
0

)

, (31)

with F̂ given by

F̂

α
= (1+ β) λ −

(

λ−

0 + βλ+
0

)

. (32)

To leading order in α−1, we have

λ =
λ−

0 + βλ+
0

1+ β
. (33)

It follows that

λ − λ+
0 =

λ−

0 + βλ+
0 − (1+ β) λ+

0

1+ β
=

λ−

0 − λ+
0

1+ β
. (34)

Thus, provided that λ+
0 and λ−

0 are spatially uniform, (31) implies that (in terms of

Eulerian coordinates)

κ
d κ

d s
= −

d F̂

d s
=⇒

1

2
κ2 + F̂ = C, (35)

for some constant C. Thus, (31) implies that

d2 κ

d s2
= κ

(

C−
1

2
κ2

)

+ p, (36)

and the problem reduces to that of a classical Euler–Bernoulli beam. Configurations are

determined entirely by the length of the composite structure, appearing in the bound-

ary conditions which are now applied at s = 0 and s = (λ−

0 + βλ+
0 )/(1+ β).
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3 Results

Here, we examine solutions to (15–21) determined using the MATLAB boundary value

solver bvp4
. Figure 8 illustrates the sequence of configurations attained in cases I–
III, for α = 1000, β = 0.01, Φ = 1, λ−

0 = 1, κ̃0 = 0, x0 = 2/π and p = 0, while

figure 9 illustrates corresponding stresses and strains. In panel (a), case I solutions

are illustrated for λ+
0 = 3.5 and Fsep decreasing in uniform steps of size 0.0001 from

an initial value of 0.0011, representing degradation of the septum independently of

dehydration in the epidermis. As Fsep decreases to zero (as indicated by the arrow),

the configuration slowly lifts until Fsep = 0, when we make the transition to case II.

In case II (panel (b)), dehydration of the epidermis generates changes in the preferred

configuration, with λ+
0 decreasing from 3.5 (as shown by the arrows). As λ+

0 decreases,

we monitor the contact force given by (20). For λ+
0 = 2.5, the contact force vanishes

and we enter case III, in which the anther opens (panel (c)). Configurations are now

simply arcs of circles; the composite is stress free as illustrated by figure 9(g,h).

Simulations for small but non-zero locule pressure p show that the geometry of config-

urations is little changed from those of figure 8. Figure 10 illustrates case II and case III

solutions for p = 0.01. In case II, since there are now two mechanisms driving the de-

hiscence process (epidermal dehydration and locule pressure), the anther can open for

larger λ+
0 . However, as soon as the anther opens a little, the locule pressure is released

(p = 0) and the anther would briefly close once more, into a configuration which is

not well-described by our current model. Continued dehydration of the epidermis ul-

timately results in the anther opening once more, for λ+
0 ≃ 2.5 for the parameter choice

of figure 8.

4 Discussion

A key conclusion of our model is that the turgor pressure of the epidermal cells affects

the resting length of the epidermis, which in turn affects the preferred curvature of

the composite bilayer. We predict how changes in the preferred curvature affect the

force on the stomium and cause the anther to open. We could gain further insight

into these conclusions by manipulating the epidermal turgor pressures experimentally.

The cell turgor pressure depends upon the difference in osmotic potential across the

cell membrane, such that increasing the osmotic potential in the medium surrounding

the anther will cause water to flow out of the tissue reducing the epidermal turgor

pressures. The model could therefore be used to predict how the anther would open in
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Figure 8: Configurations attained for α = 1000, β = 0.01, Φ = 1, λ−

0 = 1, κ̃0 = 0,

x0 = 2/π and p = 0. (a) Solutions for case I (septum intact), with λ+
0 = 3.5, and Fsep

decreasing from 0.0011 to 0 as marked by the arrow. (b) Solutions for case II (septum

broken), as dehydration causes λ+
0 to decrease from 3.5 to 2.5 (at which point the

contact force vanishes. (c) Solutions for case III (anther opening), for λ+
0 decreasing

from 2.5 to 0.
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Figure 9: Stresses and strains corresponding to the profiles of figure 8. (a,b,c) Case I –

septum intact. (d,e,f) Case II – septum broken. (g,h,i) Case III – anther opening.
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Figure 10: Case II configurations attained for α = 1000, β = 0.01, Φ = 1, λ−

0 = 1,

κ̃0 = 0, x0 = 2/π, p = 0.01 and λ+
0 decreasing from 5 to 4.69. For λ+

0 = 4.69 the

contact force at the stomium vanishes, the anther starts to open and the locule pressure

as released (p = 0). In the absence of locule pressure the anther may briefly close (not

pictured). The anther will open once more as λ0 is reduced to 2.5 – here we show case

III solutions for λ0 decreasing from 2.5 to 0.5. Arrows indicate decreasing λ+
0 .

response to an increase in the osmotic potential of the medium, and these predictions

could be validated experimentally using a similar procedure as described in §1.5 .

The model partially explains the behaviour of the myb26 mutants, for which endothe-

cial secondary thickening does not occur. In our model, this is equivalent to letting

R∗f → 0 so that D
∗ ≪ 1. The endothecial bending resistance being small suggests that

the configuration of this layer is easily disrupted, potentially resulting in the ‘collaps-

ing’ of the locule observed experimentally. This behaviour is seen to prevent anther

opening. A target for future modelling lies in explaining the behaviour of the myb26

mutant more carefully, with particular regard to the shrinkage of the endothecium ob-

served in vitro, which is not explained by our current model.
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