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Bambara groundnut is an under-utilised legume crop species which is grown primarily by subsistence

farmers in sub-Saharan Africa. Bambara groundnut is tolerant to drought, reasonably free of diseases and

pests, and adapted to poor soils; however, despite these advantageous traits, bambara groundnut is not

widely grown, and its limited use is thought to be due to low and unpredictable yields, lengthy cooking

and processing times, and the cultural perception that bambara groundnut is a ‘woman’s crop’. Improving

the yields and perception of under-utilised crops, such as bambara groundnut, could greatly improve future

food security in semi-arid environments.

Bambara groundnutexists as landraces, which are dynamic plant populations that have historical origin,

distinct identity and lack formal crop improvement; landraces are often locally adapted and associated

with traditional farming systems. Research at the Tropical Crop Research Unit at the University of

Nottingham focuses on two bambara groundnut landraces: S19-3 which originates in Namibia and is

adapted to hot and dry environments, and Uniswa red which originates in Swaziland and is adapted to

cold and wet environments. Within a landrace, there can be a range of genotypes, and the genetic diversity

can be determined using molecular genetics; initial analysis suggests that the Uniswa red landrace is

genetically more diverse than S19-3, and larger-scale investigations are underway to confirm these findings

and determine a quantitative measure of the diversity. Despite this genetic diversity, adaptive traits (such

as days to harvest) are likely to be reasonably fixed within a given landrace, due to adaptation to the

environment in which the landrace is regularly grown (and selected). In contrast, genes for agronomic

traits may be highly variable within a landrace.

It is currently not well understood how genetic diversity within a landrace affects the total yield on a field

scale, and this report discusses how the relationship can be investigated using statistical analysis and math-

ematical modelling. The study is motivated by the BAMLINK integrated research project (funded by the

European Union Framework 6) that is investigating the barriers to further uptake of bambara groundnut.

As part of the BAMLINK project, a field-scale model of bambara groundnut growth (BAMGRO) has been
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Figure 1: Box and whisker plots comparing the effects on total pod dry weight (grams per plant) of the

landrace and irrigation factors.

developed. This model has been calibrated for the Uniswa red landrace using physiological data collected

at the Tropical Crop Research Unit. The BAMGRO model is deterministic and on the field scale; however,

it would be hugely beneficial to extend the model to incorporate stochastic effects due to both genetic

diversity and environmental influences. The report is structured as follows. In section 1, we statistically

analyse the physiological data provided by the Tropical Crops Research Unit to assess whether the different

genetic diversities exhibited in the S19-3 and Uniswa red landraces lead to differences in the variations of

physiological traits. We then consider how to incorporate genetic diversity into a modelling framework. In

section 2, we mathematically model the growth of a single plant. We focus on two developmental stages

for simplicity; we take the start of the second phase to be determined by the genetically prescribed ‘pod

initiation’, and show how pod initiation affects the plant’s total yield. Finally in section 3, we use the

single plant model (from section 2) to model a field of N independent plants, and assess how variations in

‘podding initiation’ affect the yield on the field scale.

1 Statistical Analysis of Physiological data

We wish to investigate the relationship between physiological traits of different landraces under different

growing conditions. Our dataset consists of measurements for 40 plants of the total pod dry weight (i.e.

the response variable) for four combinations of two different factors (i.e. the input variables): the landrace,

either i) Uniswa red or ii) S19-3, and the irrigation conditions, either i) well irrigated or ii) drought

conditions. The data are summarised by the boxplots shown in figure 1.
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1.1 Linear models

Initially, consider the simple linear model

yi = β0 + βLxL + βIxI + ǫi, (1.1)

where i indexes each plant, yi is the total pod dry weight, xL and xI are indicator variable for the two

factors (such that xL equals one for Uniswa red and zero for S19-3, and xI equals one for plants that

are well irrigated and zero for those grown under drought conditions), and constants β0, βL, βI are to be

chosen to minimise the sum of the squares of the residuals εi.

The common assumption in linear modelling is that the residuals are normally distributed with common

variance, i.e. εi ∼ N(0, σ2). Under this assumption, fitting the model to the data gives the following results:

Estimate Std. Error t-value p-value

Intercept, β0 10.538 1.480 7.123 1.95e-08

Uniswa, βL -3.312 1.708 -1.939 0.0602

Irrigated, βI 26.004 1.708 15.221 <2e-16

The interpretation of the first column is that the mean total pod dry weight of an S19-3 plant under

drought conditions is 10.538; the mean is lower by −3.312 with Uniswa red and increases by 26.004 with

irrigation. The standard errors in the second column are estimates of the standard deviation of the sampling

distribution of the parameter estimates. The final two columns correspond to a t-test of the hypothesis

that the true value of each of the parameters estimated in the first column equals zero; small p-values are

evidence against this hypothesis. Hence there is strong evidence that β0 and βL are non-zero, and weak

evidence that βL is also non-zero. Thus irrigation leads to a significant increase in the mean total pod dry

weight, and using S19-3 over Uniswa red also leads to a (weakly) significant increase.

There are two disadvantages, however, of using a linear model of this type: (i) it is concerned only about

the effects of the two factors on the response (i.e mean total pod dry weight) so we can say nothing about

the effect of landrace on the variance of the response, and (ii) the tests require the residuals to be normally

distributed; see figure 2 for a qq plot of the residuals of (1.1).

One way to address (i) is to extend the model to incorporate a ‘random effect’ from the landraces, leading

to a so-called ‘mixed effects’ model,

yi = (βL1 + αL1)xL1 + (βL2 + αL2)xL2 + βIxI + ǫi, (1.2)

where {xL1, xL2} equals {1, 0} for Uniswa red and {0, 1} for S19-3, and αL1 ∼ N(0, σ2

L1
) and αL2 ∼

N(0, σ2

L2
). However, this model is difficult to analyse, and tests based on it still require that the residuals

are normally distributed.

1.2 Two-sample tests

A simpler approach is consider irrigated and drought conditions separately and perform two-sample tests

on the effects of landrace: we can use a t-test to test whether the responses have equal means (µU and µS),
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Figure 2: qq plot for the residuals of the simple linear model (1.1) showing deviation from normality.

and an F-test to test whether the variances (σU and σS) are equal. Standard tests that rely on asymptotic

null distributions still assume that residuals are normally distributed, but this problem can be avoided by

using a ‘non-parametric’ procedure called bootstrapping. Bootstrapping involves repeatedly resampling

from the samples in a way that mimics sampling under the null hypothesis; in this way, calculating the

test statistic for each resample provides an estimate of the distribution of the test statistic under the null

hypothesis.

The results are:

Condition Null & alternative hypotheses p-val (standard) p-val (bootstrap)

Irrigated H0 : µU = µS , H1 : µU < µS 0.129 0.131

Irrigated H0 : σU = σS , H1 : σU > σS 0.414 0.425

Drought H0 : µU = µS , H1 : µU < µS 0.053 0.075

Drought H0 : σU = σS , H1 : σU > σS 0.048 0.142

Note that the standard and bootstrap p-values are similar in the irrigated conditions, but are notably

different in drought conditions (in which the qq plots show that the data deviate more from the normal

distribution). Under irrigated conditions there is little evidence against different means and variances for

Uniswa red and S19-3. Under drought conditions there is weak evidence that the Uniswa red has a lesser

mean, and there is evidence, weaker still, that its variance is greater.

In summary, we used linear models (section 1.1) to show that irrigation increases the average total pod

weight, and that the Uniswa red landrace appears to have a smaller average pod weight than S19-3 (al-

though this evidence is weak). We then considered the irrigated and drought conditions separately using

a two-sample test (section 2.2) and found that under irrigated conditions, the average pod weight is not

significantly different betweeen the two landraces; however, under drought conditions, the Uniswa red lan-

drace appears to have a smaller average pod weight than S19-3, which is in agreement with the linear

analysis in section 1.1. This analysis confirms that the landraces have become adapted to their conditions
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— Uniswa red is normally grown in a wet environment, whereas S19-3 is grown in a dry one, therefore we

would expect S19-3 to perform better under drought conditions.

2 Mathematical model of the growth of a single plant

2.1 Model assumptions

We now use assumptions from the BAMGRO field-scale model together with qualitative understanding of

the physiological data to model the growth of a single plant and predict the temporal variations in the

plant’s leaf mass, L(t), and pod mass, P (t), where t denotes time in days.

The plant gains energy from sunlight through photosynthesis (as in the BAMGRO model), with the energy

input dependent on the mass of leaves. As the canopy forms, leaves overlap and therefore we prescribe a

saturating relationship between the mass of leaves and the rate of energy input and use a Michaelis-Menten

form, denoting the maximum rate of energy input by ki and the mass of leaves at which the energy input

is half this maximum by Kl. We assume that the plant uses energy for growth of leaves and pods, with

negligible energy used for plant maintenance or root growth. We consider two distinct developmental

phases: i) pre ‘pod initiation’, when the plant uses its energy to make leaves; and ii) post ‘pod initiation’,

when the plant uses its energy to make pods (and no leaf growth occurs). We denote the rates at which

the plant uses energy to make leaves and pods by kl and kp respectively, and suppose that the mass of

leaves and pods produced per unit energy are given by ml and mp respectively. We also suppose that

leaves decay, with a constant rate of decay, λ. We note that the model describes a fully-irrigated plant

that is not at a temperature extreme, as it does not include the impact of water and heat stress.

The time at which a plant switches between its developmental phases depends on the temperature. It is

generally supposed that plants are genetically programmed to move to a new developmental phase at a

prescribed thermal time. Thermal time, Th, is a cumulative measure of how much heat the plant has been

exposed to, and is related to time, t, via

dTh

dt
= Te(t) − B, for Te > B, (2.1a)

dTh

dt
= 0 for B > Te, (2.1b)

where Te(t) is the temperature and B is the base temperature above which thermal time increases (with

the rate of increase equal to the difference between the temperature and the base temperature). In the

model, we consider only two developmental stages and suppose that pods initiate at the prescribed thermal

time, Th = T ∗

h .

Thus, we can model the plant’s total energy by

dE

dt
= ki

L

L + Kl

− klEH(T ∗

h − Th) − kpEH(Th − T ∗

h ), (2.2)

where H denotes the Heaviside function. The first term on the right-hand side represents the energy input

from water and sunlight, the second term is the energy loss due to leaf growth when Th < T ∗

h and the third

term is the energy loss due to pod growth when Th > T ∗

h . The plant’s energy increases the leaf mass for
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Th < T ∗

h , and leaf mass reduces due to leaf decay, therefore

dL

dt
= klmlEH(T ∗

h − Th) − λL. (2.3)

Finally, for Th > T ∗

h , the plant’s energy increases the pod mass

dP

dt
= kpmpEH(Th − T ∗

h ). (2.4)

To summarise, the plant growth is described by four coupled ordinary differential equations, (2.1–2.4). We

suppose that the plant has initially no energy and no pods, that thermal time is zero and that the leaf

weight is 0.1Kl (note that due to the form of the equations, we must start with a nonzero leaf weight to

enable the plant to gain energy). Thus, the initial conditions are

Th = E = P = 0, L = 0.1Kl at t = 0. (2.5)

2.1.1 Nondimensionalisation

We nondimensionalise the model as follows

t =
1

kp

t̂, Th = T ∗

h T̂h, Te = BT̂e, (L,P ) = Kl(L̂, P̂ ), E =
ki

kp

Ê, (2.6)

where hats denote dimensionless variables. We consider the time scale based on the rate at which energy

is used to make pods during the second developmental stage. The pod-initiation thermal time, T ∗

h , is a

typical thermal time, and the base temperature, B, is a typical temperature. The mass of leaves and pods

are nondimensionalised using the leaf mass for which the energy adsorbtion is half of the maximum energy

adsorbtion, and finally, energy is nondimensionalised using the maximum possible energy during the second

developmental stage ki/kp. The model then depends on five dimensionless parameters, namely

B̄ =
B

kpT ∗

h

, k̄l =
kl

kp

, m̄l =
mlki

kpKl

, m̄p =
mpki

kpKl

, λ̄ =
λ

kp

. (2.7)

Nondimensionalising (and dropping the hats), the governing equations, (2.1–2.4), become

dTh

dt
= B̄(Te − 1)H(Te − 1), (2.8a)

dE

dt
=

L

L + 1
− k̄lEH(1 − Th) − EH(Th − 1), (2.8b)

dL

dt
= k̄lm̄lEH(1 − Th) − λ̄L, (2.8c)

dP

dt
= m̄pEH(Th − 1), (2.8d)

and the initial conditions, (2.5), become

Th = E = P = 0, L = 0.1 at t = 0. (2.9)
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S19-3 Uniswa red

Physiological data Mean T ∗

h 994.5 1184.1

S.d. of T ∗

h 87.38 107.55

Model results Mean final leaf mass 23.5 30.8

S.d. of final leaf mass 3.25 4.52

Mean final pod mass 62.5 52.8

S.d. of final pod mass 4.49 5.81

Table 1: Physiological data on the podding initiation thermal time, and the corresponding mean and

standard deviation of the leaf and pod mass distributions predicted by the model for a crop of N = 2000

plants.

2.1.2 Parameter estimates

Key parameters in the model are the pod initiation thermal time, T ∗

h , and the base temperature B. It is

thought that T ∗

h is genetically prescribed, and therefore can vary between landraces, and can vary between

plants in a given landrace (if there is a range of genotypes present). For both S19-3 and Uniswa red, the

physiological data (obtained at the Tropical Crops Research Unit) provides estimates for the mean and

standard deviation of T ∗

h (as shown in Table 1). The data suggest that pods initiate sooner for S19-3 than

for Uniswa red, which is possibly because the S19-3 landrace is adapted for the short growing season in

Namibia. In addition, the standard deviation is smaller for S19-3, which is likely to be due to the small

genetic variation in the S19-3 landrace. The base temperature, B, may also be genetically prescribed;

however, experimental data is not currently available, and therefore we estimate B = 10oC. Due to time

constraints during the study group, we were unable to estimate the rate or Michealis-Menten constants;

however, we can still consider the qualitative behaviour of the model results to gain understanding of the

mechanisms included. We set the dimensionless rate constants to unity (k̄l = m̄l = m̄p = λ̄ = 1), and

dimensional rate constant, kp = 1; these parameter estimates could be investigated in future work (see

section 5 for further details).

2.2 Results

Figures 3a,b show the temporal variations in energy, leaf mass and pod mass predicted by the model for a

plant from each landrace that is at a uniform temperature, Te(t) = 28oC, and with T ∗

h given by the mean

of the physiological data (see Table 1). For illustrative purposes, figure 3c shows the model results for a

plant with a much larger pod initiation time, T ∗

h = 500.

For Th < T ∗

h , the plant’s energy produces leaves; with more leaves the plant takes in more energy and

therefore the rate of leaf growth increases with time. Once Th > T ∗

h , leaves are no longer produced and

therefore leaf mass decreases due to leaf decay. During this time, Th > T ∗

h , the pod mass increases.

However, as the leaf mass reduces, the plant takes in less energy; we would expect the rate of increase of

podding mass reduces, although this effect does not appear to be significant before the harvesting time of

t = 120 days. The pod mass would eventually plateau when the leaf mass reaches zero. Comparing figures

3a-c, we find that with a smaller T ∗

h , the leaf mass is smaller when podding begins, and therefore the plant
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∗
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h = 1184.1
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Figure 3: Numerical solution of the energy, leaf weight and pod weight from the single-plant model,

for plants at a uniform temperature Te(t) = 28oC; a)landrace S19-3 with pod initiation thermal time

T ∗

h = 994.5; and b) landrace Uniswa red with with pod initiation thermal time T ∗

h = 1184.1.

has less energy which leads to a smaller rate of increase of pod mass. Thus, as S19-3 has a smaller T ∗

h than

Uniswa red, the pod mass increases more slowly; however, because pod initiation occurs earlier, the final

pod mass (at 120 days) is larger for S19-3 than that for Uniswa red.

3 From the plant to the field scale

We now use the single-plant model developed in section 2 to predict the yield from a field of N plants

of a given landrace. We suppose that the key difference between the plants is the genetically prescribed

podding-initiation thermal time, and that within each landrace this parameter is normally distributed with

the mean and standard deviation determined from the physiological data (see Table 1). Although genetic or

environmental variations of other parameters are also of interest, a more comprehensive analysis is beyond

the scope of this report.

For N = 2000 plants, figure 4 shows the frequency density of the leaf and pod masses predicted by the

model at the final ‘harvesting’ time of t = 120 days. Table 1 displays the mean and standard deviation

of these results. The final leaf mass and pod mass appear to be normally distributed. The Uniswa red

landrace has a larger pod-initiation-thermal-time standard deviation, and the model predicts that it will

have larger final leaf-mass and pod-mass standard deviations. This result is likely to be due to the linearity

of the model.

4 Summary

We have determined appropriate statistical techniques to elucidate the effects of genetic variation versus

environmental factors on physiological trait variation. The analysis showed that irrigation has a significant

effect on the mean yield. In addition, there is also weak evidence that the landrace affects the variance
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a) Leaf mass for S19-3
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b) Pod mass for S19-3
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c) Leaf mass for Uniswa red

30 40 50 60 70 80
0

100

200

300

400

500

600

Final pod mass

F
re

q
u
en

cy
d
en

si
ty

d) Pod mass for Uniswa red

Figure 4: Histograms of the final leaf mass and pod mass at the ‘harvesting time’ of 120 days for N = 2000

plants from each landrace where, for each plant, the pod initiation thermal time is randomly chosen from

a normal distribution (with mean and standard deviation detailed in Table 1). The plants are at a uniform

temperature Te(t) = 28oC. a) the leaf mass for landrace S19-3; b)the pod mass for landrace S19-3; c) the

leaf mass for landrace Uniswa red; and d) the pod mass for landrace Uniswa red.
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of the yield under drought conditions. However, the analysis was based on only ten observations in each

group; we would be able to make stronger conclustions with a larger sample size.

A deterministic model has been developed that describes the growth of a single plant, assuming that the

plant’s energy is used to produce leaves and pods. A key parameter in the model is the pod initiation

thermal time, which determines when the plant switches from producing leaves to producing pods. The

model solutions show similar behaviour to the experimental results from the Tropical Crops Research Unit.

The model predicts that because Uniswa red has a later pod initiation than S19-3, the rate of pod growth

is faster for Uniswa red however, the final pod mass (at 120 days) is still smaller.

The single plant model has been extended to the crop scale by simulating N independent plants. We have

linked this to the available experimental data by simulating the two different landraces via the thermal

time to pod initiation. By considering normally distributed pod initiation thermal times, we have included

the possible effects of genetic variation amongst the plants within a landrace. The model is linear, so as

expected, the model solutions show that genetic variation leads to variations in the final leaf and pod mass

of the crop.

5 Future work

In this report, we focussed our statistical analysis on a small subset of the bambara groundnut data

to illustrate the potential for using statistics to understand the relationships between the input factors

(i.e. landrace and irrigation conditions) and the output factors (i.e. crop yield). It would clearly be

beneficial to perform more comprehensive analysis of the full data set to understand the influence of other

input factors, such as thermal time.

The mathematical models predict qualitatively correct behaviour; however, many of the parameters used

are not based on experimental data. A key challenge is to parameterise model using experimental data

from the Tropical Crops Research Unit and from the literature. To determine variation on the field-scale,

we would also need to understand which of the parameters may be genetically determined (and therefore

vary between plants), or are affected by the environment (and may therefore vary temporally). As pod

initiation depends on thermal time, it would be particularly interesting to obtain experimental estimates of

the base temperature, B, and data on whether this parameter varies between landraces, and plants within

a given landrace.

The single-plant model could be improved and extended by incorporating more biological phenomena.

We currently only consider two developmental stages; however, in practise the plant may have as many

as seven developmental stages, and the growth in each stage would be described by different dominant

behaviour. It would be beneficial to assess the importance of including additional stages in the model.

In addition, we focus here on development in response to the plants’ accumulated thermal time; however,

in an extended model we could also consider the role of the photoperiod (i.e. the amount of time that a

plant is exposed to light) on the pod-formation dynamics, as demonstrated in the BAMGRO model. In

another model extension, we could also include variation in the water supply and extreme temperatures,

and incorporate terms to represent water and heat stresses. In this report, we have simplified the biology

by only considering the plants’ energy to be used for pod and leaf growth. In practise, some energy will

be used for maintanance and root growth, and it would be interesting to see how this would affect the
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model results, especially if we were to consider variations in the water supply, as the amount of water taken

up by the plant would depend on the root architecture. When considering the crop scale (section 3), we

suppose that each plant grows independently; it would be interesting to extend the model to incorporate

competition for resources such as light and water.
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