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1 Background

Polysaccharides are the main constituents of the cell wall of plants. They are highly diverse, which suggests
that many enzymes participate in their synthesis, and estimations based on plant genomes and homology of
sequences reveal that a large number of protein families are indeed involved.

Determining gene function experimentally is laborious and time consuming, so when searching for genes that
perform a specific function it is useful to prioritise candidates according to some measure of “closeness”
to genes whose function is known. A promising way to prioritise is according to their localisation in cell
compartments, since cellular functions tend to be performed by proteins grouped within the same organelle.

In the laboratory a technique called LOPIT has been developed to localise in parallel all the proteins of a
plant sample. LOPIT translates the localisation problem into a classification of “traces” of proteins as they
migrate in a separation medium. The localisation of unknown proteins to their possible organelles can be
predicted through comparison with proteins of known localisation (Gold standards).

Data output from LOPIT consists of a collection of traces where each trace corresponds to the measurement
of abundance of a protein across 7 samples. Then, a typical data matrix contains around 1000 proteins (rows)
and 7 samples (columns).

Another way to prioritise candidates comes from the fact that proteins working together are in many cases
associated in larger functional aggregates or complexes. This kind of association can be inferred from a
second experimental technique called ProCoDeS. During ProCoDes proteins are also separated as in LOPIT,
but organelle membranes are previously eliminated so the co-migration of proteins is given mainly by the
physical attachment that exists between proteins. In ProCoDeS the similarity of traces suggests a physical
link between the proteins and hence it can reveal which proteins are in the same complex.

So far, the identification of protein complexes from the data has been done by fitting peaks to the traces and
then comparing the relative migration of these peaks. The structure of ProCoDeS data is similar to that of
LOPIT data.

2 Prior Work

2.1 Localisation Correlation Analysis

The assumption that co-localisation within the cell implies similar protein function is the basis of the analysis.
The LOPIT and ProCoDeS profiles provide information about possible localisation in the same organelle and
protein complex respectively. In order predict functionality candidate unknown proteins need to be compared
with known bait proteins.

The correlation of bait protein’s profile to the rest of detected proteins can be calculated and then an ordered
list of all pairwise comparisons produced. It is hoped that the proteins of similar function to the bait occur
at high correlation level, near the top of the list. Each of the thousand proteins will generate such a list
for each experiment, questions on how to combine lists across the same and different experiments must be
answered.

The correlation lists from two known bait proteins having the same function are not exactly the same, so
(Mutual) Ranks were used in order to unify multiple correlations lists, though there are issues with this
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approach. Fundamentally, the correlation analysis does not separate satisfactorily bait proteins of different
function. The analysis is limited since it fails to use any additional information about the profile covariance
structure of proteins within a known organelle or complex. The profiles are also points on a simplex, which
may add some bias to the correlation

2.2 Combining Experiments

Considering the pairwise correlation of protein profiles has been used to form (ranked) lists of likely candidate
proteins. One aim is to combine multiple experiments to form better candidate lists. The LOPIT and
ProCoDeS profiles distinguish organelles and complexes respectively. A combination of the two experiments
is to plot the correlation of all proteins against a bait for both experiments.

The most pressing issues are: the number of proteins with known organelle and complex is small, not all
proteins are present in both experiments. The scales of both experiments are expressed in arbitrary units
reflecting the abundance of each protein across the whole trace. However the scales represent different kind
of information and hence they are not directly comparable. The question arises about what region in the
“double correlation plot” contains the good candidates. It is difficult to quantify the combined information
and such plots do not extend to comparing many experiments together.

2.3 Principal Component Analysis and Clustering

Considering a single experiment initially, the data set consists of approximately one thousand profiles (vectors
of length four to seven). It is difficult to visualise high dimensional data, so initial exploratory analysis
to reduce the dimension has been done. Principal Component Analysis (PCA) is a dimension reduction
technique, it performs a coordinate rotation that aligns the transformed axes with the directions of maximum
variance. From first to last the axes of the transformed data account for decreasing observed variability. It
is common to plot the data projected onto the first two principal components.

The PCA plot gives evidence to the co-localisation assumption, known proteins are seen to cluster. Using the
principal components to form candidate lists can be based on the distance of a protein from the centroids of
known protein sets (organelle or complex). There are several distance metrics that can be considered. PCA is
a graphical technique, which is useful to present the profile vectors in a more understandable form. However,
since the dimension of the full profile is small (seven at most) there is no need to work with a reduced set of
dimensions for any statistical analysis (reduction is usually performed when there are hundreds of predictors).

Cluster Analysis can be used to group the proteins, and dendrograms used to illustrate the clustering based
on various metrics. However, given the large number of unknown proteins there are incorrectly grouped
known proteins on the dendrogram. Additionally, the number of clusters is unknown and predicted to be
much larger (in particular for the ProCoDeS) than the number of known groups; also the number of proteins
within each group is unknown. This is a significant issue for techniques such as k-means clustering, where
the number of clusters must be initially set.

3 Meeting discussion

3.1 Distance metrics in real space

LOPIT and ProCoDeS assays lead to a “profile” for each protein,

xi ∈
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w :
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

. (1)

Inference of protein function from such data is based on two premises: i) that two proteins with similar
profiles are likely to be co-localised in the cell/organelle; and ii) that co-localised proteins are likely to share
a common function.

There are many ways to measure the similarity (or difference) between two profiles (denoted below as a and
b); possible candidate metrics are:
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• Pearson (product-moment) correlation coefficient

1

n − 1

∑

(

ai − ā

sa

) (

bi − b̄

sb

)

∈ [−1, 1], (2)

where sa and sb are the standard deviations of the elements of a and b;

• Euclidean distance (L2-norm): m−1
∑m

i=1 (ai − bi)
2 ∈ R

+;

• Mean absolute differences (L1-norm): m−1
∑m

i=1 |ai − bi| ∈ R
+.

A procedure to find, amongst n candidates proteins, those that might be functionally linked to some bait
protein, indexed say by b, is to calculate the pairwise similarities, denoted (Si,b)i=1,..n, between the bait and
each of the other proteins, then order these and assign a rank to each candidate protein according to its
position in the ordered list. The rank is thus:

R(a, b) = 1 +

n
∑

i=1

I{Sa,b < Si,b}, (3)

where I is the indicator function, which equals 1 if its argument is true and 0 otherwise.

Rank R(a, b) has the advantage of being intuitive, plus one can use it with any choice of similarity metric, S.
However, is has two disadvantages: i) it is asymmetric in its arguments, i.e. in general R(a, b) 6= R(b, a); and
ii) it is calculated pairwise. Thus there is no clear way to generalise the method to determine likely candidate
proteins that belong to some “module”.

To overcome the asymmetry problem, the Arabidopsis thaliana trans-factor and cis-element prediction database
(http://atted.jp) uses “mutual rank”,

M(a, b) =
√

R(a, b) · R(b, a), (4)

which is the geometric mean of the ranks R(a, b) and R(b, a), and thus symmetric in its arguments. Calculating
(M(a, b))a=1...n,b=a...n and ordering the values according to size is a way to calculate the most probable links
amongst all the 1

2n(n − 1) pair of proteins.

One could potentially extend the idea of geometric averaging to obtain a single measure of similarity between
a protein and a bait module (i.e. a set of proteins B = {b1, . . . bp}):

N(a; B) = (R(a, b1) · R(a, b2) · · ·R(a, bp))
1/p

. (5)

We discussed this idea at length in the study group, but eventually decided that this was unlikely to be
an effective way to identify candidate proteins that belong to a module. This decision was partly because
the method of taking geometric averages of ranks has no theoretical foundation and it is thus difficult to
trust that the method will produce robust predictions. Furthermore because (5) is based on amalgamating
pairwise quantities, it neglects an important source of information, namely the structure of the dispersion of
the bait-module observations.

Instead of calculating and combining pairwise quantities, it is preferable to work directly with quantities that
measure distance from a single protein to a group of proteins. The simplest choice is Euclidean distance

dE(a; B) =
√

(a − b̄)T (a − b̄), (6)

where b̄ = p−1
∑p

i=1 bi is the centroid of the set B = {b1, . . . ,bp}. An alternative choice—which has
the advantage that it incorporates the structure of the dispersion of the observations—is the “Mahalanobis
distance”, defined as

dM (a; B) =
√

(a − b̄)T Σ−1(a − b̄), (7)

where b̄ is again the centroid, Σ is the covariance matrix of the set B, and Σ−1 denotes the matrix inverse
of Σ (or the generalised inverse if Σ is rank-deficient). The Euclidean and Mahalanobis distances are equal
only when Σ is the identity matrix, i.e. when the observations are isotropically dispersed. When the data
have non-isotropic dispersion, the Mahalanobis distance penalises an observation a if it is positioned relative
to the centroid in a direction in which the variance of b1, . . . ,bp is small; see Figure 1.
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Figure 1: Schematic illustrating Mahalanobis distance. The ellipses represent contours of density. The points
marked x1 and x2 have equal Euclidean distance to the centroid c, but x1 has a smaller Mahalanobis distance
to c than x2 does.

3.2 The unit-sum constraint and the possible need for other metrics

The techniques discussed in the above section are suitable for analysing data that lie in Euclidean space.
LOPIT and ProCoDeS traces, however, have the constraint (eqn (1)) that their elements are non-negative
and sum to one. A trace is thus a point on a subspace of Euclidean space called the m-dimensional simplex.
Data of this kind, which are common in some other fields (notably geology) are called “compositional data”,
and an individual observation, i.e. a trace in the present context, is called a “composition”.

The unit-sum constraint affects the covariance structure of the elements of a composition. This can lead to
spurious results if compositional data are analysed using standard techniques of multivariate analysis (see
Aitchison [4, 5, 6, 7]). In particular, for a vector of uncorrelated random variables, ((W1, . . . , Wm) such
that corr(Wi, Wj) = 0 for i 6= j), elements of the corresponding composition (X1, . . . , Xm) = (W1 + · · · +
Wm)−1(W1, . . . , Wm) are in general correlated on account of the scaling factor that appears in each element.
The problem is more acute when the composition contains fewer elements and, as Aitchison [6] pointed out,
most apparent for m = 2 since in this case

cov(X1, X2) = cov(X1, 1 − X1) = − var(X1) = − var(X2), (8)

and the correlation is

corr(X1, X2) =
cov(X1, X2)

√

var(X1) var(X2)
= −1. (9)

Hence we may need to be cautious when interpreting what Aitchison calls “crude” analyses, i.e. those that
are based on the covariances of compositional components calculated in the same way as if the observations
were lying in unconstrained real space.

Progress in this area has been made by recognising that a composition provides information about only
the relative sizes of its components, and that analysis should be based on studying ratios of components.
Aitchison [5] introduced the log-ratio transformation (a bijective mapping from the simplex onto a real
space) and suggested that standard multivariate techniques could be legitimately used on the transformed
observations; see [4] for a discussion of principal component analysis of compositional data.

We return to the question which is significant in defining both centrality and variability of data: how can we
best measure differences between compositions? See [1, 2, 3, 9, 10, 11] for a debate on the properties that a
difference measure should have. Commonly used is Aitchison’s simplicial distance [4],

dS(a,b) =

√

√

√

√

m
∑

i=1

{

ln
ai

g(a)
− ln

bi

g(b)

}2

, (10)

where g(·) denotes the geometric mean of the elements of its argument. A natural centroid based on this
metric is the point to which the sum across observations of simplicial distances is minimised. This point is

cen (x1, . . . ,xn) = (h1 + · · · + hn)
−1

(h1, . . . , hn) , (11)
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where hj is the geometric mean across observations of the jth component, i.e. hj = n−1 ((x1)j × · · · × (xn)j).
Usefully, with the transformation

y =

(

ln
x1

g(x)
, . . . , ln

xm

g(x)

)

, (12)

then dS(xi,xj) = dE(yi,yj) and cen (x1, . . . ,xn) = n−1
∑n

i=1 yi (see Mart́ın-Fernández et al. [8]); hence
after an initial data transformation (12) we can apply standard multivariate techniques to the transformed
observations.

4 Numerical tests

We tested several methods to see how well they performed in identifying co-localised proteins based on LOPIT
data. We tried the “crude” approach of working with plain compositional data, and the “log-ratio” approach
of first transforming the data using (12). For each of the crude and log-ratio approaches we implemented
both the Euclidean and Mahalanobis distances, meaning that we tried a total of four methods.

We used a “leave-one-out” test algorithm, summarised by the following pseudo-code (in which we assume we
have n proteins, of which j belong to group G).

- for protein i from 1 to n,

- if i belongs to G,

- calculate the centroid c (and, in the Mahalanobis case, the covariance matrix Σ) for the other
(j − 1) members of G,

- else

- calculate c (and, in the Mahalanobis case, Σ) for the j members of G,

- end

- calculate the distance d (= dE or dM ) of protein i from c,

- end

- rank proteins according to ascending size of d, and define first m to be the most likely candidate
members of G.

- plot receiver operator characteristic (ROC) curve (a plot of true positives versus false positives for all
values of 1 ≤ m ≤ n) .

We repeated this for each of the groups of known proteins; each group corresponds to a line on the ROC plots
(Figs 2–5). At the stage of plotting the ROC curves, we have two choices of how to deal with the unclassified
observations (of which there is a large number): we could treat them as false positives, or else omit them
from consideration altogether. The ROC curves in Figures 2–5 show results both ways.

4.1 Results

Figures 2 and 3 show ROC curves for protein membership of organelles, and Figures 4 and 5 are for protein
membership of complexes. In an ROC curve, if the number of true positives rises very quickly it shows that
the method can successfully predict which proteins are members of a particular group. In this regard, each of
the four methods shows good discriminatory power, even the “crude” methods that take no special account
of the unit-sum constraint.

To decide from ROC curves which method is best is subjective; one needs first to decide upon an appropriate
criterion based on the relative costs of missing true positives and of finding false positives. For example,
if missing true positives is more costly than finding false positives then an appropriate (scalar) measure of
performance might be the proportion of false positives at which we achieve 0.3 true positives (criterion A,
say). If vice versa, we might set this level at 0.7 (criterion B). There other ROC curve summaries too, such
as the area bounded by the ROC curve and the lines x = 0 and y = 1.

A broad summary of the performance of the methods based on Figures 2–5 is as follows. Considering first
criterion A and the organelle data (Figs 2 and 3), the best performance comes from using metric dM on
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Figure 2: ROC curves for organelle membership with all unknown observations classified as false positives,
using (upper-left) Euclidean distance, crude data; (upper-right) Mahalanobis distance, crude data; (lower-
left) Euclidean distance, log-ratio transformed data; (lower-right) Mahalanobis distance, log-ratio transformed
data.
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Figure 3: ROC curves for organelle membership based only on data for proteins whose group is known, using
(upper-left) Euclidean distance, crude data; (upper-right) Mahalanobis distance, crude data; (lower-left)
Euclidean distance, log-ratio transformed data; (lower-right) Mahalanobis distance, log-ratio transformed
data..
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Figure 4: ROC curves for complex membership with all unknown observations classified as false positives,
using (upper-left) Euclidean distance, crude data; (upper-right) Mahalanobis distance, crude data; (lower-
left) Euclidean distance, log-ratio transformed data; (lower-right) Mahalanobis distance, log-ratio transformed
data.
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Figure 5: ROC curves for complex membership based only on data for proteins whose group is known, using
(upper-left) Euclidean distance, crude data; (upper-right) Mahalanobis distance, crude data; (lower-left)
Euclidean distance, log-ratio transformed data; (lower-right) Mahalanobis distance, log-ratio transformed
data.
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either the crude or the log-ratio transformed data, the latter being slightly superior. For criterion A and
the complex data, metric dM is again the best, but with the crude method this time better than using the
log-ratio transformation. However, if we instead use criterion B, these conclusions are reversed: the crude
method using simple Euclidean distance dE appears best for both organelle and complex data.

5 Bayesian Analysis for LOPIT and ProCoDeS data

In a Bayesian framework, probabilities are random variables on [0, 1] that represent degrees of belief. An
advantage of this approach is that it allows us to specify prior beliefs then update them in light of experimental
data. This offers a natural way to combine data from experiments of different types (e.g. LOPIT and
ProCoDeS) and allows the user to weight the importance of each experiment.

In this section we construct an informative prior on the probability that a protein belongs to a particular
group and use Bayesian analysis to calculate the posterior distribution. Throughout, we denote the squared
Mahalanobis distance of x from the set Y by d2

M (x, Y ). This distance is defined

d2
M (x, Y ) = (x − ȳ)T Σ−1

Y (x − ȳ),

where ȳ is the centroid of the set Y and ΣY is the covariance matrix of the elements of the set Y .

Let θx,Y be the probability that x is in set Y . Suppose we have N proteins in the experiment, of which NY are
known to be in the set Y . We construct a prior on [0, 1] for θx,Y , such that p(0 ≤ θx,Y ≤ 0.5) = (N −NY )/N
and p(0.5 < θx,Y ≤ 1) = NY /N as shown in Figure 6

0.0 0.2 0.4 0.6 0.8 1.0

K
2

K
1

theta

p(
th

et
a)

K1=2(N−Ny)/N

K2=2Ny/N

Figure 6: The prior density for θx,Y

We are interested in the posterior distribution of θ, π(θx,Y |D), where the data, D, consists of the Mahalanobis
distance dM (x, Y ).

The relevant equation for the posterior distribution of θx,Y is

π(θx,Y |d2
M (x, Y ) = k) =

π(d2
M (x, Y ) = k|θx,Y )π(θx,Y )

∫ 1

0
π(d2

M (x, Y ) = k|θx,Y )π(θx,Y )dθx,Y

. (13)

For the likelihood, π(d2
M (x, Y ) = k|θx,Y ), we use a mixture model. If x ∈ Y , we assume that π(d2

M (x, Y ) =
k|θx,Y ) is an exponential distribution, and if x /∈ Y , we assume that π(d2

M (x, Y ) = k|θx,Y ) is a uniform
distribution on the interval [0, M ], where M = 2 maxx d2

M (x, Y ) and the maximum is taken over all of the
proteins in the experiment. Thus π(d2

M (x, Y ) = k|θx,Y ) = θf1(k) + (1 − θ)f2(k), where f1(k) = AY e−Ayk

and f2(k) = 1/M).
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Although we do not know the value of AY , we can use the maximum likelihood estimate, ÂY , which maximises
∏

x∈Y AY e−AY d2

M(x,Y ). Taking logs, we wish to maximise

g(AY ) = NY log AY − AY

∑

x∈Y

d2
M (x, Y ).

Differentiating and setting the result equal to zero yields

ÂY =
NY

∑

x∈Y d2
M (x, Y )

.

The normalising constant in equation (13) is given by

∫ 1

0

[

θx,Y ÂY e−ÂY k +
1 − θx,Y

M

]

π(θx,Y )dθx,Y = ÂY e−ÂY k
E(θx,Y ) +

1

M
−

1

M
E(θx,Y )

= E(θx,Y )

[

ÂY e−ÂY k −
1

M

]

+
1

M
,

where E(θx,Y ) is the prior expectation of θx,Y .

In fact, we can calculate E(θx,Y ) exactly.

E(θx,Y ) =

∫ 1

0

θx,Y π(θx,Y )dθx,Y

=

∫ 1/2

0

θx,Y 2
N − NY

N
dθx,Y +

∫ 1

1/2

θx,Y 2
NY

N
dθx,Y

= 2
N − NY

N

[

θ2
x,Y

2

]1/2

0

+ 2
NY

N

[

θ2
x,Y

2

]1

1/2

= 2
N − NY

N

1

8
+ 2

NY

N

3

8

=
1

4
+

NY

2N
.

Putting it all together we have

π(θx,Y |d2
M (x, Y ) = k) =

(θx,Y ÂY e−ÂY k + (1 − θx,Y )/M)π(θx,Y )
(

1
4 + NY

2N

)

(

ÂY e−ÂY k − 1
M

)

+ 1
M

.

We wish to calculate the posterior mean of θ conditional on the value d2
M (x, Y ), i.e. E(θx,Y |d2

M (x, Y ) = k).
After a little algebra we obtain

E(θx,Y |d2
M (x, Y ) = k) =

1

Ck
(C1ÂY e−ÂY k + C2),

where

Ck =

(

1

4
+

NY

2N

) (

ÂY e−ÂY k −
1

M

)

+
1

M

C1 =
1

2

NY

N
+

1

12

C2 =
1

6M

If we write D1 = 1/4 + NY /(2N) and D2 = 1/M(1 − D1), then we have

E(θx,Y |d2
M (x, Y ) = k) =

C1ÂY e−ÂY k + C2

D1ÂY e−ÂY k + D2

.
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We can show that with the constants defined as above, the derivative of this posterior mean function is always
negative, i.e. the posterior mean is a monotonically decreasing function of the Mahalanobis distance from a
particular protein to the set in question. Hence in the case of a single experiment, we obtain identical results
to those given in the non-Bayesian setting described above. This justifies choosing the prior as in figure
(6). As we stated earlier, one could go on to apply the Bayesian approach to integrate data from multiple
experiments.

6 Summary and directions for future work

We have discussed approaches for inferring function of proteins based on LOPIT data, and preliminary
numerical results show promising performance. The approach is based on the assumptions that proteins with
similar LOPIT profiles are co-localised, and that co-localised proteins are likely to have the same function.

In order to assess the likelihood of a protein belonging to a particular group, e.g. being expressed in a
particular organelle, we used two metrics (Euclidean and Mahalanobis) on both raw and log-ratio transformed
LOPIT data. We used ROC curves to show that all four methods had good discriminatory power.

We also formulated the problem in a Bayesian framework. We showed that by specifying an informative prior
on the basis of known group membership and using the posterior mean as a summary statistic, the Bayesian
analysis gives the same results as the non-Bayesian method. The approach, however, provides a natural way
to combine results from multiple experiments.

Areas for future work include the following:

• Implement the Bayesian method.

• Thoroughly explore other possible metrics (especially simplicial metrics) and systematically compare
their performance. Two metrics worthy of inclusion are:

- the Pearson correlation coefficient, the metric upon which the Arabidopsis thaliana trans-factor
and cis-element prediction database (http://atted.jp) is heavily based;

- variants of the Mahalanobis distance that employ a regularised covariance matrix. This could
potentially improve performance for groups where there is only a small number of known members,
especially where the number is smaller than the dimension m of LOPIT data (a case for which
here we have employed the generalised inverse).
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