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Summary 
 
Germination is defined as the protrusion of the embryonic radicle through the 
seed coat layers (endosperm and testa). As the radicle elongates, the testa 
ruptures, followed by rupture of the endosperm. Arabidopsis seeds exhibit a 
two-step germination process with sequential rupture of the testa and 
endosperm. 
 
We are interested in exploring the physical process of germination. Whilst 
much effort has previously been placed on genetic networks, a mathematical 
approach for furthering the understanding of the physical/mechanical 
properties of germination has not yet been described.  
 
The Mathematics in Plant Sciences Study Group helped us to develop a 
better understanding of the problem. Several different mathematical models 
were generated for radicle growth and endosperm stretching. These models 
were developed on multiscale dimensions – looking at the organ, tissue and 
cellular levels. 
 
The outcomes of the study group have heightened our interest in the 
mechanical aspects of germination, and we are currently progressing with a 
grant proposal – a collaboration between the Schools of Biosciences and 
Engineering at the University of Nottingham, and a group from the 
Department of Biology at the University of Freiburg, Germany.  
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1 Introduction

Arabidopsis thaliana is a member of the mustard family (Brassicaceae), and propagates through
seed production. One Arabidopsis plant can produce many hundreds of thousands of seeds
through the course of one flowering cycle.

Arabidopsis seeds are extremely small — a dry seed weighs around 15 ng and is approximately
spherical with a diameter of 200 µm. The seed is almost entirely composed of the embryo,
which is filled with lipid and protein reserves to fuel germination and establishment prior to
photosynthesis. Surrounding the embryo is a single-cell layer of endosperm (also of zygotic
origin), covered by the dead, maternally derived testa (seed coat) (see Figure 1). These two
tissues envelop the embryo, including the radicle which will later form the root of the plant [1].

Germination is defined as the protrusion of the radicle through both layers (endosperm and
testa) [2]. As the radicle elongates, the testa ruptures, followed by rupture of the endosperm.
Arabidopsis seeds exhibit a two-step germination process, with sequential testa and endosperm
rupture (see Figure 2) [3].

The testa is metabolically inactive in the mature seed. The function of the endosperm is not
wholly understood, although abscisic acid (ABA), a phytohormone known to negatively control
germination, has been shown to be synthesised within this tissue [4].

The transition from a dry seed to a seedling is triphasic according to uptake of water. Phase
I is imbibition — the physical process of water uptake into the dry seed. During imbibition,
the seed swells to an ellipsoid with a length of around 350 µm and diameter of around 250
µm. During phase II there is a plateau in water uptake. A further increase in water uptake at
phase III signals the end of germination and the start of post-germinative growth. Phase III is
concurrent with the elongation of the embryonic axis and protrusion of the radicle through the
seed coat [2]. Although it is widely accepted that radicle extension occurs via cell elongation,
there are conflicting reports as to whether cell division is also required for germination [5, 6].

The endosperm provides both chemical and mechanical resistance to germination. For the
completion of germination, the cell walls of the endosperm must be modified to allow the radicle
to protrude. In tomato, weakening of the endosperm is required for germination to occur [7, 8].
There is evidence that genes encoding cell-wall remodelling enzymes are expressed in both the
embryo and endosperm [9]. The expression levels of these genes are controlled by the phytohor-
mones ABA and gibberellins (GA). ABA and GA have an antagonistic effect on germination
- GA promotes germination whilst ABA represses it. ABA is able to prevent germination by
inhibiting endosperm rupture, although testa rupture still occurs [10].

∗Contributed to the writing of the report
†Contributed to the problem during the study group
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Figure 1: The structure of an Arabidopsis seed. A diagrammatic representation of a mature Ara-
bidopsis seed, consisting of a diploid embryo surrounded by a single layer of triploid endosperm
cells. The endosperm is covered by the testa [1]. (Diagram is not to scale.)

Figure 2: (A) Endosperm and testa rupture are distinct events. (B) Testa rupture occurs after
around 35 hours of imbibition, approximately 5 hours prior to endosperm rupture [3].
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Figure 3: Micrograph of a germinated Arabidopsis seedling. Note the cells of the endosperm,
which remain alive after germination, are relatively intact (scale bar = 100 µm, image from [12]).

Arabidopsis seeds are too small (500µm) to allow mechanical testing, but experiments using
the related species Lepidium have shown that the force required to puncture the endosperm
decreases from 40 mN to 20 mN over 18 h (during which the percentage of germinated seeds
in the test population rose from 0 to 72%). This force is presumably provided by the growing
radicle. Models of plant cell growth have been developed, the most well-known being that of
Lockhart [11] which describes growth as a mechano-hydraulic process:

1

V

dV

dt
=

φL

φ + L
(∆Ψ + P − Y ), (1)

where V is the cell volume, L is the water conductance coefficient, P is the turgor pressure, φ is
the extensibility, Y is the yield threshold, and ∆Ψ is the water potential difference.

Anisotropic (directional) growth is believed to result from cell-wall remodelling (correspond-
ing to an alteration of φ in the model (1)). It is interesting to note that endosperm weakening
has been proposed to involve alteration of wall properties, perhaps indicating a common mecha-
nism that drives radicle growth whilst reducing endosperm resistance. Electron micrographs of
germinated seedlings show the structure of the endosperm to be relatively intact after protrusion
of the radicle, suggesting that rupture occurs between individual cells rather than by breakage
of cell walls (as shown in Figure 3).

Whilst much effort has been placed on the genetic networks involved in this process, a
mathematical approach for furthering the understanding of the physical/mechanical properties
of germination has not yet been described. Many of the required parameters, such as the kinetics
of water uptake, are available from the literature [13, 14].

Modelling the mechanics of germination will aid biological researchers in their understand-
ing of the system, and may help to develop novel strategies for producing seeds with uniform
germination patterns.

1.1 Modelling aims and strategy

The key process in germination is the rupture of the endosperm. Therefore, in this report, we
ignore the testa rupture, and model only the proceeding dynamics. We develop a range of models
to investigate the growth of the radicle (which is inhibited by the surrounding endosperm) and the
weakening, stretching and rupture of the micropylar region of endosperm. We consider separate
models for the radicle and the endosperm; although coupling these models would provide further
understanding, it is beyond the scope of this report.

In Section 2, we model the radicle elongation, representing the endosperm as a force on the
ends of the radicle. We show the length of the radicle gradually increases until it reaches a
critical length, at which the endosperm ruptures (i.e. the force on the ends of the radicle drops
to zero), and the radicle’s length rapidly increases.
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Figure 4: Diagram of the radicle model, described by equations (2)-(6).

We investigate the stretching and rupture of the endosperm in Section 3, assuming that the
radicle provides a force normal to the endosperm. As the appropriate choice for the material
properties of the endosperm is unclear, we consider several models. In Section 3.1–3.2, we assume
the endosperm is elastic. We first consider a simple elastic spring model and use experimental
data to prescribe the weakening of the endosperm (Section 3.1). We then show how this spring
model could be developed into a more complex computational model which consists of a sheet of
rigid cells joined by elastic springs (Section 3.2). In Section 3.3–3.4, we assume the endosperm
is viscous. In Section 3.3, we develop a ‘Lockhart-style’ model, considering the stretching of
the individual cells in the endosperm. We then consider a tissue-scale model in Section 3.4,
modelling the endosperm as a thin viscous sheet. In Section 4, we summarise our progress and
discuss potential future work.

2 Radicle elongation

2.1 Model

In this Section, we develop a ‘Lockhart-style’ model of radicle elongation. We model the radicle
as a cylinder of fluid and investigate how the length of the radicle changes in response to osmotic
potential. The action of the endosperm on the radicle is represented by a force, F ∗, opposing
radicle growth. We assume that the endosperm ruptures once the radicle reaches a critical
length.

Details of the model are summarised in Figure 4. We model the radicle as a cylinder of fluid of
length L∗(t∗) and radius R∗ (which we assume to be constant). The radicle has osmotic potential
Π∗(t∗), which the radicle regulates in order to keep the turgor pressure, P ∗(t∗), approximately
constant. We assume that, without loss of generality, the fluid surrounding the radicle is at zero
hydrostatic pressure and osmotic potential. The turgor pressure acts on the ends of the radicle,
and induces a tension, T ∗(t∗), in the radicle walls. We assume that if this tension is greater than
a prescribed yield stress, Y ∗, the radicle will lengthen. The extensibility of the radicle walls is
denoted by µ∗, and the permeability of the radicle walls is denoted by k∗.

We use this model to investigate the relationships between the four variables: the length of
the radicle, L∗(t∗), the tension in the radicle walls, T ∗(t∗), the turgor pressure, P ∗(t∗), and the
osmotic potential, Π∗(t∗). In particular, this model enables us to see how the variables change
when the radicle suddenly breaks through the endosperm and F ∗ drops to zero.
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2.2 Governing equations

The flux into the radicle (across the sides of the cylinder) changes the radicle’s volume. Thus,
by conservation of mass, we obtain

d(πR∗2L∗)

dt∗
= 2πR∗L∗k∗(Π∗ − P ∗), (2)

which reduces to

1

L∗

dL∗

dt
=

2k∗

R∗
(Π∗ − P ∗). (3)

Balancing the forces on the ends of the radicle, we find the turgor pressure, P ∗(t∗), and tension
in the radicle walls, T ∗(t∗), balances the force exerted on the radicle by the endosperm, F ∗.
Therefore, by the conservation of momentum, we find that

F ∗ = πP ∗R∗2 − 2πR∗T ∗. (4)

We assume that when the tension, T ∗(t∗), is below the prescribed yield stress, Y ∗, the cell wall
is elastic, whereas above it the cell wall is viscous. Thus, for T ∗(t∗) < Y ∗, upon removing the
tension, the radicle will return to its initial length. However, for T ∗(t∗) > Y ∗, the radicle will
(irreversibly) lengthen according to

T ∗ − Y ∗ = µ∗ dL∗

dt∗
, (5)

where µ∗ is the extensibility of radicle walls. Henceforth we assume that T ∗(t∗) > Y ∗ The
osmotic potential, Π∗, is regulated to maintain the pressure inside the radicle, P ∗, equal to the
optimal turgor pressure, P̂ ∗. Hence, we write

dΠ∗

dt∗
= −A∗(P ∗ − P̂ ∗), (6)

where A∗ is a constant with dimensions s−1.

2.2.1 Nondimensionalisation

We base the length of the radicle on its initial length, L∗
0. The characteristic timescale is the rate

of water flux into the radicle, namely R∗/(k∗P̂ ∗), and the characteristic pressure is the optimal
turgor pressure, P̂ ∗. We make the following rescalings

L∗ = L∗
0L, t∗ =

R∗

k∗P̂ ∗
t, Π∗ = P̂ ∗Π, P ∗ = P̂ ∗P, (7)

and we obtain the dimensionless regulation rate, extensibility and yield stress

α =
k∗P̂ ∗

A∗R∗
, M =

µ∗L∗
0k

∗

R∗2 , Z =
F ∗

2πR∗2P ∗
+

Y ∗

P̂ ∗R∗
. (8)

Note that the action of the endosperm, F ∗, merely modifies the effective yield stress of the walls.
It then follows from equations (2)-(6) that the dimensionless governing equations are

M
dL

dt
=

P

2
−Z, (9a)

1

L

dL

dt
= 2(Π − P ), (9b)

α
dΠ

dt
= 1 − P. (9c)
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2.2.2 Parameter regimes

Typical parameter values are

k∗ = 0.1µms−1MPa−1, P̂ ∗ = 0.05MPa, A = 0.1s−1,

µ∗ = 200MPa s, R∗ = 100µm, L∗
0 = 100µm. (10)

The turgor pressure, P̂ ∗, was obtained from [15]. The remaining parameter values were estimated
from a video of a germinating seed (footage provided by S. Ubeda-Tomas and A. French). It
follows from equation (8) that α = 6 × 10−3 ≪ 1, M = 0.2.

2.3 Model solutions

We proceed by considering solutions to (9) for 0 < α ≪ 1. It follows from (9c) that for this
special case P ∼ 1, i.e. the pressure rapidly adjusts to attain full turgor. From (9a) and (9b)
we learn that

dL

dt
=

1 − 2Z
2M

, (11a)

Π − 1 =
1 − 2Z
4ML

, (11b)

so osmotic potential, Π, decreases as the length of the radicle, L, increases. We require that the
tension, T ∗, is above the yield stress, Y ∗, and in dimensionless terms this condition corresponds
to Z < 1/2.

To study the radicle breaking through the endosperm we choose

F = k(L − Lc), (12)

(so that the endosperm tissue is elastic with modulus k and natural length Lc) until L = Lr

when the endosperm ruptures. By (8), Z becomes

Z =

{

Y + β(L − Lc), for L < Lr

Y, for L > Lr
(13)

where, in terms of dimensional parameters,

Y =
Y ∗

P̂ ∗R∗
and β =

k∗

2πR2P̂ ∗
. (14)

Therefore, Z drops when the endosperm ruptures. Substituting (13) into (11a) the equation
governing radicle elongation becomes

2M
dL

dt
= 1 − 2 (Y + β(L − Lc)) , (15)

for L < Lr.
Numerical solutions to (11) are shown in Figure 5. It follows from (11a) that provided

1 > 2Z, L increases monotonically and so the radicle grows steadily. The osmotic potential (Π)
is slaved to length (L) with its dependence given in (11b). From this we see that as L → ∞,
Π → 1. By (13), as L passes through Lr, Z drops to its constant value, Y , causing Π to increase
so as to maintain turgor pressure i.e. the osmotic potential increases to account for the rupture
of the endosperm. This in turn causes the rate of radicle growth (L̇) to increase.

3 Endosperm model

In this Section we model the stretching and rupture of the endosperm. As the radicle elongates
it applies a force to the micropylar region of the endosperm, and in addition, the micropylar
region is weakened by cell-wall remodelling enzymes [10]. These two key processes cause the cells
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Figure 5: Numerical solutions to (11a) and (11b) for Z in (13). (A) Plot of radicle length
against time. When the endosperm ruptures, the rate of radicle growth increases. (B) Plot of
osmotic potential against length. The osmotic potential increases when the endosperm ruptures
to maintain turgor pressure. The following parameter choices were made: M = 0.2, Lc = 0.1,
Y = 0.1 and β = 0.1.

in the endosperm to stretch, and eventually some of the walls between adjacent cells rupture,
allowing the radicle to emerge.

The deformation of the endosperm depends crucially on the material properties of the tissue;
however, the appropriate choice of constitutive model remains unclear. For comparison, in
Sections 3.1 and 3.2, we consider an elastic model of the endosperm, whereas in Sections 3.3 and
3.4, we model it as a viscous fluid.

3.1 Analytical version of the endosperm spring model

In this Section we model the micropylar region of the endosperm as a one-dimensional elastic
material, as illustrated in Figure 6. We assume that the ends of the endosperm are fixed, a
distance 2l apart. The elongation of the radicle is represented as a constant point force, F ,
applied to the midpoint of the endosperm. This force causes the midpoint of the endosperm to
be displaced a distance x, and so each half of the endosperm is stretched from length l to length√

l2 + x2. Thus, by Hooke’s law, the tension T in the endosperm walls is

T = k(t)
(

√

l2 + x2 − l
)

, (16)

where k(t) is the time-dependent elastic modulus. We model the weakening of the endosperm
by choosing k(t) to be a monotonically decreasing function in t, and for simplicity, we assume a
linear relationship:

k(t) = A − Bt, (17)

where A and B are constants to be determined. The tension in the endosperm, (16), balances
with the prescribed force F being generated by the radicle; applying a force balance, we find
that

F = −2 cos(θ)T = 2k(t)(
√

l2 + x2 − l)
x√

l2 + x2
= 2k(t)x

(

1 − l√
l2 + x2

)

. (18)

By fitting (18) to the available experimental data [10]

t = 8 hours, x = 0.25 × 10−3m, F = 38mN, l = 0.25 × 10−3m,

t = 18 hours, x = 0.75 × 10−3m, F = 19mN, l = 0.25 × 10−3m,
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Figure 6: Diagrammatic representation of the endosperm spring model given by equations (16)-
(18).

we obtain

A = 452mN, B = 6.7 × 10−3mN per second. (19)

Plotted in figure 3.1 are solutions to equation (18) for F = 19mN, l = 0.25 × 10−3m and
parameter values (19).

3.2 Mechanical ‘spring’ simulation

In this Section we model the endosperm as a sheet of elastic material.

3.2.1 Model details

We created a mechanical simulation of the endosperm surface, the pressure exerted by the radicle
and the mechanical failure of the endosperm using an explicit Euler time-marching scheme. Code
was developed to simulate the expansion and subsequent failure as a series interconnecting springs
where the elastic modulus of the springs in the simulation could be altered individually.

Cell-wall thickness and bending stress are incorporated into our model by creating a spring
network consisting of several layers. A regularly spaced grid of nodes is created (these are the
junction points where springs are connected) of dimension N × M × P . Typical dimensions
chosen are for a lattice of size N = M = 16 and a thickness of P = 3. During a simulation
there are two distinct forces acting upon each node. First there is the net resultant force upon
the node caused by the extension and compression of the springs, second there is an internal
hydrostatic pressure that acts normal to the spring surface. For further details of the simulation
see Grandison et al, 2007 (submitted to Journal of Theoretical Biology).

To simulate mechanical breakage the stress in each spring element is measured after each
simulation frame is drawn. Springs whose stress have exceeded a prescribed critical value are
removed before the next frame is calculated in order to simulate breakage.

Figure 8 shows a number of frames from a typical simulation with the detail of the spring
network shown, making the relative amount of stretching in each part of the network clear.
The first spring breakage occurs shortly after frame 80, however the structure remains relatively
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Frame 20 Frame 80

Frame 140 Frame 200

Figure 8: Four typical frames takes from a simulation of endosperm breakage.

stable for some time longer before undergoing a complete mechanical failure and breaking apart
shortly before frame 140.

3.3 Cell-scale viscous endosperm model

We now develop a ‘Lockhart-style’ model of the endosperm to investigate how the cells in the
endosperm stretch. We model the endosperm as a string of N cells, as illustrated in Figures
9-3.3.1. As the radicle elongates, it exerts a pressure on cell i of PR

∗
i (t

∗) at time t∗. We assume
this results in a constant force along the line of cells, which we denote by F ∗. The shape of the
radicle determines the shape of the endosperm, and therefore prescribes the angle of cell i to the
horizontal, which we denote by θi(t

∗).
As the endosperm stretches, the total length of the micropylar region, λ∗(t∗), will increase,

and each cell in the micropylar region will lengthen. We take each cell i to have length l∗
i
(t∗) at

time t∗, and assume that all the cells have equal cross-sectional area A∗, which is constant in time.
We denote the position of each cell along the line of cells by s∗

i
(t∗) (so that s∗

i+1(t
∗) − s∗

i
(t∗) =

l∗
i
(t∗)). It follows that as the endosperm stretches, the velocity of a cell around the endosperm,

u∗
i
(t∗), is given by

u∗
i =

ds∗
i

dt∗
. (20)

We denote the osmotic potential of each cell by Π∗
i
(t∗). We assume that, as shown in

Section 2, the regulation of the turgor pressure is rapid, so that each cell remains fully turgid at
constant pressure P ∗ (where we have dropped the hat used in Section 2 to denote the optimal
pressure). Without loss of generality, we assume the hydrostatic and osmotic pressures of the
fluid surrounding the endosperm are zero. The internal pressure within the cells generates a
tension in the wall of each cell T ∗

i
(t∗). If the tension in the cell wall is greater than a prescribed

yield stress, Y ∗, the cell wall will lengthen. The permeability of the cell walls is denoted by k∗.
Cell-wall remodelling enzymes cause the cell wall to weaken [10], and as suggested by Lockhart,
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F ∗
F ∗

Endosperm

Radicle

Figure 9: Diagrammatic representation of the Lockhart endosperm model, as defined by equa-
tions (21)-(24), where F ∗ is the intercellular force being generated by the radicle pushing against
the endosperm.

we assume that the cell-wall weakening modifies the extensibility of the cell wall. Thus, to
phemenologically capture the cell-wall weakening, we prescribe a time-dependent extensibility,
µ∗

i
(t∗).

3.3.1 Governing equations

The flux of water into each cell changes the cell’s volume. Recalling that the cross-sectional area
of each cell, A∗, is assumed to be held constant, conservation of mass requires

A∗ dl∗
i

dt∗
= k∗(Π∗

i − P ∗)l∗i + k∗(Π∗ − P ∗ + PR
∗
i )l

∗
i + k∗(Π∗

i − Π∗
i−1)A

∗ + k∗(Π∗
i − Π∗

i+1)A
∗, (21)

where k∗ is the cell-wall permeability. The force that the radicle exerts on the endosperm, P ∗
Ri

,
induces an additional force F ∗ along the endosperm (see Figure 9). Normal to each cell, the
force F ∗ balances the pressure exerted on the endosperm by the radicle, whereas the component
of F ∗ acting tangentially to each cell balances the tension induced by the turgor pressure in the
cell walls, T ∗

i
(t∗). Thus, balancing the force on each cell in the normal and tangential directions,

we obtain

P ∗
Ri

l∗i = F ∗(θi+1 − θi−1) and F ∗ cos(θi+1 − θi−1) = 2T ∗
i − P ∗A∗, (22)

respectively. If the tension in the cell walls, T ∗
i
(t∗), is greater than the yield stress, Y ∗, the cell

wall lengthens according to

T ∗
i − Y ∗ = µ∗

i

dl∗
i

dt∗
, (23)

for each cell i, where µ∗
i
(t∗) is the prescribed time-dependent cell-wall extensibility.

To summarise, the five unknown variables are the length of each cell, l∗
i
(t∗), the velocity of

each cell round the endosperm, u∗
i
(t∗), the tension in the cell walls, T ∗

i
(t∗), the osmotic potential

of each cell, Π∗
i
(t∗), and the force induced in the endosperm, F ∗, due to the pressure of the

radicle.These variables are governed by the five equations (20)–(23). We assume that the initial
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Figure 10: Diagram of the viscous endosperm model (equations (21)-(24)) for a single cell. See
text for further details.

cell length is l∗
i
(0) =

√
A∗. We let the left-hand-side of the micropylar region of the endosperm

be stationary, and the right-hand-side of the micropylar region move as the endosperm stretches.
Therefore our boundary conditions are

u∗
1(t

∗) = 0 and u∗
N+1(t

∗) =
dλ∗

dt∗
. (24)

3.3.2 Nondimensionalisation

We now nondimensionalise the governing equations (20)-(23) by adopting the following scalings

(F ∗, P ∗
Ri

,Π∗
i ) = P ∗(F, PRi,Πi), (s∗i , l

∗
i , λ∗) =

√
A∗(si, li, λ), T ∗

i = P ∗
√

A∗Ti,

t∗ =

√
A∗

P ∗k∗
t, µ∗

i =

√
A∗

k∗
µi, u∗

i = P ∗k∗ui, (25)

we obtain the dimensionless parameter

Y =
Y ∗

P ∗
√

A∗
, (26)

which represents the dimensionless yield stress.
Upon applying these scalings, (25), to (20)-(23), we obtain the following dimensionless gov-

erning equations. Conservation of mass requires

dli
dt

= 2(Πi − 1)li + PRili − Πi+1 + 2Πi − Πi−1, (27)

and conservation of momentum is given by

Ti − Y = µi

dli
dt

, (28a)

PRili = F (θi+1 − θi−1), (28b)

F cos(θi+1 − θi−1) = 2Ti − 1. (28c)
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The geometry is determined by

li = si+1 − si, ui =
dsi

dt
,

which reduces to

dli
dt

= ui+1 − ui. (29)

The boundary conditions, (24), become

u1(t) = 0 and uN+1(t) =
dλ

dt
, (30)

and initially li(0) = 1.
We note that if we knew the length of each cell, li(t), then (27) would give the corresponding

osmotic potential. We therefore focus on the decoupled system (28)-(29).

3.3.3 Continuum limit

We assume that the length of the cells is small in comparison to the length of the endosperm,
and take a continuum limit approximation of (28)-(29). We take s to be the arc-length along
the endosperm and let

li(t) 7→ L(s, t), ui(t) 7→ u(s, t), Ti(t) 7→ T (s, t), θi(t) 7→ θ(s, t), µi(t) 7→ µ(s, t), (31)

and

dli
dt

7→ DL

Dt
, (32)

where D/Dt is the convective derivative so that

ui+1 − ui ∼ L
∂u

∂s
. (33)

From (28b) and (28c) we find

PR = F
∂θ

∂s
, (34a)

F = 2T − 1, (34b)

which gives the tension T (s, t) in terms of the known angle of the centreline of the line of cells,
θ(s, t), and the pressure exerted on the endosperm by the radicle, PR(s, t),. From (28a), (29)
and (33) we then obtain a system of two coupled PDEs

T (s, t) − Y = µ(s, t)
DL

Dt
,

DL

Dt
= L

∂u

∂s
, (35)

subject to boundary conditions

u(0, t) = 0, u(λ(t), t) =
dλ

dt
, (36)

and initial condition L(s, 0) = 1.
In this Section, we have developed a ‘Lockhart-style’ model of the endosperm to show how

the individual cells stretch in response to the force from the radicle and the cell-wall weakening.
Assuming the cells are small relative to the length of the micropylar region of the endosperm, we
have taken a continuum limit, and it remains to solve the resulting coupled system of governing
equations (35).
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3.4 Viscous shell model

Alternatively, we may consider the endosperm to be a thin viscous sheet of fluid with fixed
ends subjected to a pressure gradient across the sheet, as illustrated in Figure 11. Unlike the
model derived in Section 3.3 this approach does not consider the individual characteristics of
the cells; however, it can give information on the tissue scale of the endosperm. The imposed
pressure gradient models the effect of the radicle on the endosperm; we note, however, that
whilst this is not as physically realistic as modelling the radicle as a rigid or elastic body, it is
significantly simpler than studying the full problem which would require incorporating the free
boundary contact problem. The endosperm has a small aspect ratio, (i.e. it is much longer than
it is wide), and so we may assume dependence only on the arclength, s, along the endosperm.
Assuming that the sheet is flat in one direction, from [16] we have the nondimensionalised system

s = 0 s = l(t)

H

∆P
u

h

s

Figure 11: Diagrammatic representation of the viscous shell model, described by equations (37)-
(41).

∂h

∂t
+

∂

∂s
(uh) =0, (37a)

∂

∂s

(

4µh
∂u

∂s

)

=0, (37b)

4µh
∂u

∂s
κ + ∆P =0, (37c)

where u is the velocity along the centreline of the sheet, h is the thickness of the sheet, θ is
the angle the centreline makes with the horizontal, κ = ∂θ/∂s is the curvature, ∆P is the
imposed pressure gradient and µ is the viscosity. The endosperm degrades to allow growth and
(eventually) rupture; therefore we take µ to be a function of both arclength and time.

We now consider boundary conditions. Whilst the ends of the sheet are fixed in Cartesian
space, the total length of the sheet, λ, is a function of time, and therefore we have

u(0, t) = 0, u(λ(t), t) =
dλ

dt
, (38)

as boundary conditions on the velocity, along with

x(0, t) = 0, y(0, t) = 0, x(λ(t), t) = H and y(λ(t), t) = 0, (39)

14



where x, y are the Cartesian coordinates of the sheet which may be found via

∂x

∂s
= cos θ,

∂y

∂s
= sin θ, (40)

and H is the horizontal distance between the two fixed ends of the sheet. Our final condition is

∫ λ(t)

0

cos θds = H, (41)

for the unknown length λ(t).
We integrate (37b) to find

4µh
∂u

∂s
= T (t), (42)

where T is the tension in the sheet. Upon substituting this into (37c), we learn that

T (t)κ + ∆P = 0. (43)

Therefore, if ∆P does not depend on space then neither does the curvature; taking viscosity to
be a function of space and time does not alter this, although this will produce modified stresses
which may allow the endosperm to rupture preferentially near the radicle tip. To see spatial
variations in curvature, we could additionally solve the model with ∆P also varying in space.
Alternatively, we may be looking on the wrong timescale for spatial variations in curvature to
be captured.

There is some debate over what causes the modification of the viscosity of the endosperm.
It could depend on time, on some externally produced hormone concentration, on the tension
induced in the walls, on the local extension of a wall, or on any combination of these. This
is an important question in germination, and the answer is not known. However, any of these
may be incorporated into this model by modifying the expression for the viscosity to vary as
appropriate. It remains to solve this model for an appropriate choice of µ, but the situation for
constant µ and ∆P is considered in [16].

4 Conclusions

During seed germination both the radicle elongates and the endosperm weakens. The combi-
nation of these two processes cause the endosperm to stretch and eventually rupture so that
the radicle can protrude. These key aspects of seed germination have received relatively little
attention from the mathematical modelling community. We now summarise our key results.

In Section 2, we considered a ‘Lockhart-style’ model of radicle elongation, modelling the
radicle as a cylinder of fluid. Based on experimentally derived parameter estimates, we found
regulation of the osmotic potential to be rapid, so the radicle is always fully turgid. The en-
dosperm provides a force on the ends of the radicle which opposes radicle elongation. When
the radicle reaches a prescribed length, the endosperm ruptures and so this opposing force is
removed, leading to a rapid increase in the radicle’s length.

In Section 3, we modelled the endosperm, assuming that the radicle applies a constant normal
force to the endosperm. We considered two options for the material properties: assuming the
endosperm is elastic (Section 3.1–3.2), or viscous (Section 3.3–3.4). In Section 3.1, we first
considered a simple spring model for the endosperm, and used experimental data to estimate a
linear law for the weakening of the endosperm. We then showed how the spring model could
be incorporated into a more complex computational model which consisted of a sheet of rigid
cells joined by elastic springs (Section 3.2). In Section 3.3, we developed a ‘Lockhart-style’
model, considering the stretching of the individual cells in the endosperm. We then considered
a tissue-scale model in Section 3.4, modelling the endosperm as a thin viscous sheet. In both
these models, Section 3.3–3.4. , solving the resulting system of governing equations is beyond
the scope of this report.
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Although the last two models considered here have not been solved, our efforts illustrate how
different aspects of seed germination are amenable to mathematical modelling. Determining
which of the endosperm models is appropriate will require detailed comparison with experi-
ments. We were provided with images of endosperm rupture which were taken at fifteen minutes
intervals. Since rupture appears to be a rapid process, this did not provide sufficient information
to determine the material properties. Future experimental work should include taking images
at shorter intervals close to the rupture time to obtain detailed quantitative information about
how the radicle lengthens and the endosperm stretches. We could then compare these data to
our model results. Future modelling efforts will focus on coupling a model of radicle elongation
to one of endosperm rupture.
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