

Understanding the physical basis of growth from the top down.

Siobhan (#2) Braybrook
The Sainsbury Laboratory
University of Cambridge

The Plant Mechanics Group

Firas Bou Daher

Marco Aita

Lihua Han

Summer Students:

Ashley Manton

Amy Roberts

Simon Butterworth

Part II Plant Sci:

Amish Gir

Rozi Vőfély PhD student

Marina Linardić PhD student

Tom Torode

How do plants grow shapes?

Understanding shape growth in plants

Materials science

Shape growth occurs on many scales because of actions on each scale

Understanding any given scale is not enough to explain the whole

Biophysics of plant cell growth

Cells grow and change shape by altering 2 parameters:

Changes in internal cell pressure

Changes in wall mechanics

Anisotropy Elasticity Viscosity

The plant cell wall is a complex biological composite

Cell wall structure will change dynamically by alteration and addition of new material

Simple shape change: anisotropy

Polar organ growth in hypocotyls

Regulatory genes

Dark-grown hypocotyls keep reaching for the surface: etiolation

Kinematics of hypocotyl etiolation

Kinematics of hypocotyl etiolation

Extreme oriented cell/organ growth during etiolation

72h post germination

25 um X 13 um

germination

Cell expansion occurs in a Basal-> Apical wave

Simple shape change: anisotropy

What does MT/CesA orientation look like in isotropic hypocotyl cells?

MT orientation *is* correlated with expansion in later stages of etiolation

Basal cells, MAP4-GFP

Orientation measured with FibrilTool (A. Boudaoud)

Top cells, MAP4-GFP

Simple shape change: anisotropy

Current methods for examining biophysical changes in plants

Changes in pectin matrix affect growth magnitude and character but not anisotropy

If not pectin, then who?

We do not know yet......

- Developing better testing/modelling methods for viscoelasticity (hemicellulose? expansins?)
- Immunolocalizations for chemical changes in the cell wall
- RNA profiling of transcripts associated with growth changes

Simple shape change: anisotropy

What's going on under there?

Viscoelasticity? Hemicellulose? MT reorient and provide material anisotropy for extreme growth

Exposure to light quickly effects elasticity of the cell wall to halt expansion

So far, all of our information pertains to the epidermis.....is that enough?

Acknowledgments

