UK Rice Research Consortium Meeting: February 27-28th 2020

            Rice is a major global food crop with an estimated 3.5 billion people taking 20% of their calories from different species of this grass. As such there are many scientific and international development reasons why UK researchers should conduct rice research, even though it is very unlikely to be ever grown commercially in this country……unless climate change is much more catastrophic than predicted!


            The UK Rice Research Community is small but growing. The inaugural open meeting took place in 2019 in Nottingham and the 2020 meeting was hosted by Bobby Caine and Andrew Fleming in Sheffield. This meeting focused on early career researchers, with all talks bar two given by PhD students or PDRAs, together with sessions on grant writing and careers advice as well as a horizon-scanning roundtable on what is needed to progress the community.

UKRRC Group Photo from @robertcaine19

            Given the challenges in growing rice in the UK, this community has excellent overseas collaborations with researchers at IRRI in the Philippines, Malaysia, Vietnam, across Africa and in the USA. However one of the highlighted difficulties in progressing this research comes with the required paperwork needed to obtain overseas germplasm!! This delays projects and reduces the impact of UK scientists. Unfortunately there are unlikely to be any quick fixes in this area. UK researchers would also like to see the establishment of a UK stockcentre, although perhaps the current number of active research groups might not make this any more viable than simple sharing germplasm between labs.


            As a new person to this community it was surprising to hear that there are significant difficulties even with growing plants in pots in the UK and that there isn’t a good reproducible source of ‘rice appropriate soil’ and therefore much time is lost troubleshooting even the most basic plant growth requirements. Rice is being grown down the spine of the country from Aberdeen, Durham, Sheffield, Nottingham and Rothamsted amongst other locations so there is the need for information sharing to reduce lost research time. Perhaps the UKRRC website is the place for these resources.


            As mentioned above many of the short talks featured overseas collaborations. Dr Jen Sloan from the Fleming lab in Sheffield introduced a project that generated plenty of interesting conversations. They have used an innovative CO2 priming strategy in an attempt to replicate the increased biomass produced in plants grown at constant elevated CO2. Indeed they showed that a 21day CO2 priming was sufficient to increase adult biomass both in the growth chamber and in the field. They have worked with Malaysian farmers to help the development of a field-priming system that uses fungal mycelium to produce the excess CO2. This technology is accessible for the Malaysian small-holder farmers and therefore might be a simple real world solution for increasing biomass. They will continue with this research program whilst beginning to also investigate the actual mechanism through which the CO2 priming works, which remains a big mystery!

Jen Sloan discusses CO2 priming

            Leonie Luginbuehl works with Julian Hibberd at the University of Cambridge and over the past few years has investigated which fluorescent proteins are the best to use in rice plants. She is developing the type of fundamental resource that will be very important for this research community moving forward. She has expanded this toolkit to develop nucleus-localized fluorescently tagged proteins that she is using for FACS and subsequent tissue-specific gene expression. Look out for that information over the coming years!

Leonie Luginbuehl introduces her work with fluorescent reporters.

            Due to their involvement with the major C4Rice project the Hibberd lab has a rice transformation pipeline but this challenging technique is usually beyond the scope of individual labs. Therefore the crop transformation facility at NIAB is very useful for community-members who wish to assess transgenic germplasm. The second round of applications for this FREE resource is open until March 31st and most applications are accepted given a robust scientific case.


            Most rice is first grown in a nursery and then transplanted into flooded paddy-fields. However direct seeding IS possible and even though it requires more intensive weeding, overall it has a lesser environmental impact. Most rice varieties have not been optimised for direct seeding and this is the focus of the project that Guillaume Menard is working on at Rothamsted. They collaborate with IRRI to conduct high-throughput phenotyping and imaging in their search of traits that can be linked to direct seeding. Although this is work remains in process they intend for their enormous amount of generated data to become publically available on the IRRI servers….watch that space…


            Meeting Co-organiser Bobby Caine has recently obtained a GCRF Global Challenges Research Fellowship from the University of Sheffield where he continues to work with Julie Gray to look at the role of stomatal density on environmental tolerance. This fellowship has given him the outstanding opportunity to interact with Vietnamese farmers to test their varied germplasm for stomatal alterations, with the ultimate aim of transferring beneficial traits into rice elite varieties.

Bobby Caine presenting the importance of stomata!

            Although the UK rice research community is small it was excellent to see that participants from the majority of institutes with this type of research attended this meeting and showed a real willingness to build future resource sharing and collaborative relationships. Hopefully these early career researchers can ‘grow older together‘ with this spirit of collaboration so that they can bring the UK’s excellent research infrastructure and history in discovery-led and applied resource to this globally important research area.

Leave a Reply


 © 2024 - Weeding the Gems