Interview with Steve Kay: How to think big and forge solutions to complex problems

Categories: guest blogger
Tags:
Comments: No Comments
Published on: January 3, 2013

Guest post by Sandra Smieszek

It is certainly my great pleasure to introduce Professor Steve Kay, holder of the Anna H. Bing Dean’s Chair, Dean of College of Letters, Arts and Sciences, and Professor of Biological Sciences at the University of Southern California Dornsife, leader, educator and innovator. He is a member of the National Academy of Sciences, and a fellow of the American Association for the Advancement of Science. He is is a renowned expert on circadian rhythms. He spent two decades identifying the photoreceptors, genes, and complex networks that make these internal clocks tick.

A transformative force in the field of molecular biology, Kay is a world expert on circadian rhythms. He spent two decades identifying the photoreceptors, genes and complex networks that make these internal clocks tick. He is perhaps best known for using blinking mustard plants and glowing fruit flies to explore the molecular genetic basis of circadian clocks in plants, flies, and mammals.

SS: What influences directed you to your specific area of research? Who influenced your scientific thinking early in your career, and how?

SK: I became interested in biology early in my childhood. It all began on the small island of Jersey, off the coast of Normandy. Many of my family members were fisherman, and I spent a lot of time on commercial boats. This exposure marine life coupled with great teachers and my first glimpse through a microscope set me on my path to becoming a scientist.

Certainly my mentors pushed me to ‘think big’. Trevor Griffiths who was my Ph.D. supervisor, introduced me to the world of plants. It was during my doctoral studies when I discovered that light regulated the expression of the gene that produced the enzyme for chlorophyll synthesis.

It was Trevor Griffiths who advised me to pursue my research in United States. That is when I started a postdoctoral fellowship at a lab of Nam-Hai Chua who focused on light dependent gene expression in plants. He certainly taught me how to approach more than one thing at a time. It was incredibly exciting to work with him on the first vectors for transgenic plants.

SS: What scientific breakthrough over the past couple of years influenced your research directions and why/how?

SK: My ‘eureka’ moment definitely came during my postdoctoral studies. Light signals change in gene expression patterns, I am thinking here particularly of chlorophyll a/b binding CAB gene. The discovery essentially showed how CAB was regulated by the circadian clock. That was in 1985 and it was the first direct evidence for the role of circadian rhythm exerting its effect at a molecular level. It was astonishing.

(more…)

Stephen Altschul on BLAST, BRCA1 and the Wild Duck

Categories: guest blogger
Comments: No Comments
Published on: November 1, 2012

Guest post by Sandra Smieszek

The creator of the basic local alignment search tool (BLAST) and an eminent bioinformatics forerunner and literati does not call for much introduction. Stephen Altschul (pictured right) graduated summa cum laude from Harvard University, and has a Ph.D. from MIT, both in mathematics. What BLAST can do for us is something we all know yet the quintessence is in how it originated, and even more interestingly, the man behind the scenes. It is certainly my great pleasure to introduce Stephen Altschul, who will provide us not solely with the story of his algorithms, but additionally of the power-law explosion of bioinformatics over the past decade.

SS BLAST was published in Journal of Molecular Biology in 1990. Since that time it has been cited over 43,568 times. How does that feel?

Certainly accomplished, it was designed to be faster than FASTA at finding very strong similarities.  It was something of a surprise that it performed as well as it did at finding weak similarities as well.

SS What influences directed you to your specific area of research? Who influenced your scientific thinking early in your career, and how?

Having graduated, I spent a lot of time reading about potential applied mathematical problems in biology. Among the inspirational books I read was a textbook entitled Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison by Sankoff and Kruskal. I read The Double Helix by James Watson. I travelled a lot to conferences, yet speaking of individuals that had particular impact, David J. Lipman, the present director of NCBI, was my great inspiration. That is a route I took from mathematics per se to the world of bioinformatics.

SS What scientific discovery over the past couple of years had a major impact upon you?

The most exciting discovery I was involved with as it unfolded was certainly the characterisation of BRCA1 in early 1990s. It was a perfect example of applying sequence alignment tools for significant discovery of functional motifs of BRCA1. I want to credit Peer Bork along with Eugene Koonin. We mapped out the functional motifs. BRCA1 was partitioned into globular and not globular domains. We have noticed a similarity between the designated 53BP1 that has been identified by its ability to bind p53. The other hits included KIAA0170 and RAD9. The probability exceeded 87% that a pattern as strong as the previously noted ‘granin motif’ would be shared by a random sequence as long as BRCA1 and the then-extant motif database, thus lending no statistical support to the relevance of this motif. Now the C-terminus of BRCA1 is known to contain two 95-residue BRCT domains, which are also found in many other proteins involved in DNA repair and cell cycle regulation. The crystal structure was later defined. It is not solely the story of characterization of one of the most important tumor suppressor genes in cancer, but additionally the story of how well-applied statistics can shed light on true positive interesting domains in this example. 

SS What was the most difficult stage in your career?

I guess right after graduation getting applied problems was the most difficult stage, but it did not last long. I ended up working in a ‘lucky field’ – one that has grown rapidly over the past decade. (more…)

page 1 of 1

Follow Me
TwitterRSS
GARNetweets
October 2017
M T W T F S S
« Sep    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Welcome , today is Tuesday, October 17, 2017