GARNet Research Roundup: November 22nd 2018

This GARNet Research Roundup begins with two studies from the University of Sheffield. First is research from Jurriaan Ton’s lab that looks at the interaction between CO2 concentration, the soil microbiome and plant growth. The second paper from Matt Davey and Peter Quick looks at the effect of cold acclimation on freezing tolerance in Arabidpsis lyrata.

The third study includes authors from Dundee and Durham and also looks at an impact of altered CO2 concentrations, in this case on nitrogen assimilation.

The next paper looks at the role of a GA signaling module on endosperm expansion during seed germination and includes authors from Nottingham and Birmingham.

The fifth paper includes Richard Morris at the JIC as a co-author and looks at the relationship between calcium signaling and changes in cellular pH. The penultimate study features co-authors from Warwick and Exeter in work that looks at the role of 3′-O-β-D-ribofuranosyladenosine during plant immunity. Finally is a paper that includes Steve Long from Lancaster and characterises the rubisco-chaperone BSD2.


Williams A, Pétriacq P, Beerling DJ, Cotton TEA, Ton J (2018) Impacts of Atmospheric CO(2) and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. Front Plant Sci. doi: 10.3389/fpls.2018.01493

https://www.frontiersin.org/articles/10.3389/fpls.2018.01493/full

Open Access

Alex Williams is the lead author of this paper and works with Jurriaan Ton at the University of Sheffield. The impact of the soil rhizosphere on plant growth is emerging as an important growth determinant. In this paper the authors assess the role of altered [CO2] and soil carbon (C) and nitrogen (N) concentration in the colonisation of Arabidopsis roots by two different bacteria. Firstly they showed that altered [CO2] did not change the growth dynamics of the saprophytic bacteria Pseudomonas putida KT2440 and was independent of soil C or N. In contrast growth of the rhizobacterial strain Pseudomonas simiae WCS417 was sensitive to both changing [CO2] and soil composition. These results show the importance of the interaction between atmospheric CO2 and soil nutritional status during plant interactions with soil bacteria.


Davey MP, Palmer BG, Armitage E, Vergeer P, Kunin WE, Woodward FI, Quick WP (2018) Natural variation in tolerance to sub-zero temperatures among populations of Arabidopsis lyrata ssp. petraea. BMC Plant Biol. doi: 10.1186/s12870-018-1513-0

Open Access

Matthew Davey, now working in Cambridge, collaborated with Peter Quick at the University of Sheffield on this research that looks at the tolerance of Arabidopsis lyrata to freezing. They showed that populations from locations with colder winter climates were better able to survive subzero temperatures, particular when they have been acclimated at near zero for longer periods. This demonstrates that the adaptation of plants to cold temperatures allows them to better survive freezing, although surprisingly this effect is lessened when this acclimation period does not occur.


Andrews M, Condron LM, Kemp PD, Topping JF, Lindsey K, Hodge S, Raven JA (2018) Effects of elevated atmospheric [CO2] on nitrogen (N) assimilation and growth of C3 vascular plants will be similar regardless of N-form assimilated. J Exp Bot. doi: 10.1093/jxb/ery371

This UK-New Zealand collaboration is led by Mitchell Andrews and looks at the effect of elevated [CO2] on the nitrogen (N) assimilation when the plant is exposed to a variety of different N-sources. They show that in C3 plants the overall N assimilated will be the same whether the plant is under ammonium (NH4+) nutrition or under nitrate (NO3-) nutrition. These results are contrary to previous results that suggest elevated [CO2] reduces plant growth under NO3- nutrition.


Sánchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gómez L, Holdsworth MJ, Bassel G, Oñate-Sánchez L (2018) A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Mol Plant. doi: 10.1016/j.molp.2018.10.009 

https://www.sciencedirect.com/science/article/pii/S1674205218303356

Open Access

This Spanish-led project includes authors from the Universites of Nottingham and Birmingham. They look at the influence of a GA signalling module on endosperm cell separation, which is essential for Arabidopsis seed germination. They show the NAC transcription factors NAC25 and NAC1L control expression of the EXPANSION2 gene and that the GA signalling component RGL2 has a controlling influence by repressing this activity.


Behera S, Xu Z, Luoni L, Bonza C, Doccula FG, DeMichelis MI, Morris RJ, Schwarzländer M, Costa A (2018) Cellular Ca2+ signals generate defined pH signatures in plants. Plant Cell. doi: 10.1105/tpc.18.00655

Open Access

Richard Morris (John Innes Centre) is a co-author on this Italian-led study that investigates the role of Calcium ions in cell signalling. They use a set of genetically-encoded fluorescent sensors to visualise a link between Ca2+ signaling and changes in pH. If this link is maintained across all cell types it might represent an extra layer of complexity and control of cellular signal transduction.


Drenichev MS, Bennett M, Novikov RA, Mansfield J, Smirnoff N, Grant M, Mikhailov S (2018) A role for 3′-O-β-D-ribofuranosyladenosine in altering plant immunity. Phytochemistry. doi: 10.1016/j.phytochem.2018.10.016

https://www.sciencedirect.com/science/article/pii/S0031942218301997?via%3Dihub

This Russian-led study includes UK-based researchers Mark Bennett, Murray Grant, Nick Smirnoff and John Mansfield as co-authors. They show that the natural disaccharide nucleoside, 3′-O-β-D-ribofuranosyladenosine accumulated in plants infected with the bacterial pathogen P. syringae. Perhaps surprisingly the application of this nucleoside to the plant doesn’t effect bacterial multiplication, indicating that adds a significant metabolic burden to plants already battling new infections.


Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM (2018) BSD2 is a Rubisco specific assembly chaperone, forms intermediary hetero-oligomeric complexes and is non-limiting to growth in tobacco. Plant Cell Environ. doi: 10.1111/pce.13473

Steve Long is a Professor at Lancaster Environment Centre and is a co-author on this Australia-led study that characterizes the role of the Rubisco chaperone BSD2 during Rubisco biogenesis. These results suggest this is the sole role of BSD2 and its activity is non-limiting to tobacco growth.



No Comments - Leave a comment

Leave a Reply


Welcome , today is Friday, March 29, 2024