Arabidopsis Research Roundup: January 10th 2018

This Arabidopsis Research Roundup covers the final papers of 2017 and the first of this new year. The initial paper is led by researchers in Bristol and characterises how the multifaceted BIG protein influences stomatal dynamics in response to altered CO2. Second is a manuscript from SLCU that for the first time in plants demonstrates nuclear sequestration of cell cycle regulated mRNAs.

Next is a paper from Rothamsted that describes a role for the hormone GA during floral development. David Salt (Nottingham) is then a co-author on a manuscript that has determined a role for the CTL protein in ion homeostasis.

Seth Davies from York is the lead author on the next study that investigates a link between metabolism and the circadian clock. The sixth paper looks at genes involved in the control of autophagy and features Patrick Gallois (Manchester) as a co-author.

There are three papers from researchers working on Norwich Research Park with Cyril Zipfel (TSL) involved in a study that looks at vacuolar trafficking of BR signaling components. Janneke Balk leads a study that characterises enzymes involved in biosynthesis of metal co-factors whilst the final NRP-based paper from Nick Pullen and Steven Penfield (John Innes Centre) describes the Leaf-GP open software for automated plant phenotyping.

The penultimate paper uses a set of PlantProbes (developed by Paul Knox at Leeds) to study pollen development whilst the final paper from Keith Lindsey (Durham) describes the application of a Bayesian statistical methodology to model the parameters that control a hormone signaling network.


He J, Zhang RX, Peng K, Tagliavia C, Li S, Xue S, Liu A, Hu H,, Zhang J, Hubbard KE,, Held K, McAinsh MR, Gray JE, Kudla J, Schroeder JI, Liang YK, Hetherington AM (2018) The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2. New Phytol. doi: 10.1111/nph.14957 Open Access

Alistair Hetherington (University of Bristol) leads this UK-USA-China collaboration that has characterised a role for the mysterious BIG protein during stomatal closure in response to altered CO2 concentration. Interestingly BIG mutants do not show a defect in stomatal opening in response to altered CO2, allowing the dissection of this complex response through the activity of this protein. It remains to be determined exactly how the BIG protein influences this process.


Yang W, Wightman R, Meyerowitz EM (2017) Cell Cycle Control by Nuclear Sequestration of CDC20 and CDH1 mRNA in Plant Stem Cells. Mol Cell. doi: 10.1016/j.molcel.2017.11.008

Elliott Meyerowitz (SLCU) is the corresponding author of this research that provides the first characterisation in plants of nuclear sequestration of mRNAs from developmental important genes. The authors show that Arabidopsis anaphase-promoting complex/cyclosome (APC/C) coactivator genes CDC20 and CCS52B are confined to the nucleus in prophase, preventing translation of the cognate proteins until metaphase, which appears to protect cyclins from degradation at an inappropriate phase of the cell cycle


Plackett ARG, Powers SJ, Phillips AL, Wilson ZA, Hedden P, Thomas SG4 (2017) The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning. Plant Reprod. doi: 10.1007/s00497-017-0320-3

This study is led from Rothamsted Research and includes Zoe Wilson from the University of Nottingham. They perform a systematic analysis of early floral organ initiation across the Arabidopsis inflorescence, discovering that both GA-dependent and independent stages are important for this process, albeit via the activity of presently unknown factors.


Gao YQ, Chen JG, Chen ZR An D, Lv QY, Han ML, Wang YL, Salt DE, Chao DY (2017) A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis. PLoS Biol. doi: 10.1371/journal.pbio.2002978

Open Access

David Salt (University of Nottingham) is a co-author on this Chinese-led investigation into the role of the vesicle trafficking regulator choline transporter (CTL) during the control of ionome homeostasis. Using ctl1 mutants they show that this function is required for the action of certain ion transporters as well as during plasmodesmata (PD) development. This study provides novel insights into the role of vesicular transport in the control of ion homeostasis and how the location of these ions might alter vesicle activity.


Sánchez-Villarreal A, Davis AM, Davis SJ (2017) AKIN10 Activity as a Cellular Link Between Metabolism and Circadian-Clock Entrainment in Arabidopsis thaliana.

Plant Signal Behav. doi: 10.1080/15592324.2017.1411448

Seth Davies (University of York) is the corresponding author on this study demonstrating that overexpression of the AKIN10 subunit of the SnRK1 complex results in increased period length of the circadian clock. The authors postulate about the possible links between metabolic rate and function of the clock, allowing them to present a model of action that features each of the central regulatory elements.


Havé M, Balliau T, Cottyn-Boitte B, Dérond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, Gallois P, Rajjou L, Zivy M, Masclaux-Daubresse C (2017) Increase of proteasome and papain-like cysteine protease activities in autophagy mutants: backup compensatory effect or pro cell-death effect? J Exp Bot. doi: 10.1093/jxb/erx482

Open Access
This study is led by French researchers and includes Patrick Gallois (University of Manchester) as a co-author. The work focuses on the role of the ATG genes during autophagy, the key process that controls nutrient recycling during senescence. In atg5 mutants they show that different sets of proteases are misregulated, suggestive of a complex relationship between the enzymes involved in nutrient remobilization.


Liu Q, Vain T, Viotti C, Doyle SM, Tarkowská D, Novák O, Zipfel C, Sitbon F, Robert S, Hofius D (2017) Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation. Mol Plant. doi: 10.1016/j.molp.2017.12.015

Cyril Zipfel (TSL) is a member of this Pan-European consortium that investigates the role of the vacuolar proteins, LAZARUS1 (LAZ1) and LAZ1 HOMOLOG1 (LAZ1H1) on the cellular cycling of BR-signaling components. Plants with mutations in laz1 and laz1h1 show increased BAK1 accumulation at the tonoplast as well as enhanced BRI1 trafficking and degradation. These DUF300 proteins appear to play a specific role in BR signalling as other vacuolar-associated proteins are not involved in this process.


Kruse I, Maclean A, Hill L, Balk J (2017) Genetic dissection of cyclic pyranopterin monophosphate biosynthesis in plant mitochondria. Biochem J. doi: 10.1042/BCJ20170559 Open Access

Janneke Balk (John Innes Centre) leads this study that has identified novel alleles in mitochondrial enzymes that are involved in the biosynthesis of metal cofactors. Analysis of these enzyme mutant reveals that they show deficiencies in the synthesis of cyclic pyranopterin monophosphate (cPMP), revealing fresh insights into the metabolic processes involving this key intermediate.


Zhou J, Applegate C, Alonso AD, Reynolds D, Orford S, Mackiewicz M, Griffiths S, Penfield S, Pullen N (2017) Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat. Plant Methods. doi: 10.1186/s13007-017-0266-3

Open Access

Nick Pullen and Steve Penfield (John Innes Centre) introduce this new software tool for the automated measurement of plant phenotypes. This Leaf-GP software is open access and has the sophistication to discriminate between different aspects of both Arabidopsis and greenhouse growth wheat.

This paper is back of a special issue of Plant Methods that is based on the use of Computer Vision in Plant Phenotyping.


Ndinyanka Fabrice T, Vogler H, Draeger C, Munglani G, Gupta S, Herger AG, Knox JP, Grossniklaus U, Ringli C (2017) LRX Proteins play a crucial role in pollen grain and pollen tube cell wall development. Plant Physiol. doi: 10.1104/pp.17.01374

Open Access

This Swiss-led study looks into the role of LRX proteins during cell wall formation and how they affect pollen germination and pollen tube formation. The authors took advantage of the molecular tools produced by Paul Knox (University of Leeds) as part of his Plant Probes project.


Vernon I, Liu J, Goldstein M, Rowe J, Topping J, Lindsey K (2017) Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions. BMC Syst Biol. doi: 10.1186/s12918-017-0484-3 Open Access

Keith Lindsey (University of Durham) leads this paper that applies a Bayesian statistical methodology to analyse a model of hormonal crosstalk in the Arabidopsis root. They show that this technique can provide new insight into the behavior of models and enables the identification of new interesting rate parameters.

Magnetising Pollen to break the Plant Transformation Bottleneck?

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: December 19, 2017

The potential for crop improvement by ‘traditional’ genetic modification and by ‘game-changing’ gene-editing technologies is easy to appreciate. The introduction a foreign gene or the alteration of endogenous gene function in order to modify the way in which a plant responds to a particular environmental stimuli is the underlying goal of most applied plant scientists. Our improved knowledge of how these techniques work, advances in the speed and cost DNA synthesis alongside the adoption of the principles of synthetic biology in the engineering of molecular constructs means that generation of DNA parts for genetic modification is, in theory at least, now facile endeavor.


However there is an ‘eleplant in the room’ of every grant proposal that promises to generate an altered variety of any desired orphan crop. Our ‘eleplant’ is the efficiency, or lack thereof, in plant transformation. This issue was the topic of a 2016 Perspective piece in The Plant Cell in which the example of Sorghum was cited, an important food crop that is unfortunately recalcitrant to transformation, taking up to 12months to generate T1 transformants. This bottleneck will continue to be an issue when discussing new targets for genetic modification as callus-based mechanisms of transformation are famously extremely challenging, with one method good for the goose might be not so good for the gander.

From http://www.plantcell.org/content/28/7/1510

These challenges have been solved for many major crops but even with this knowledge, regeneration of transgenic crops only usually takes place in labs with specific knowledge and experimental pipelines (in the UK at facilities at NIAB or the JIC)*.


It is in this climate that a recent paper by Zhao et al in Nature Plants might be another true game changer. They have modified the magnetofection procedure that has been used very successfully to introduce DNA into animal cells in order to modify existing pollen transformation techniques. This protocol involves mixing DNA with magnetic nanoparticles that can be introduced using a magnetic field into pollen grains through small apertures in the pollen wall. These transformed pollen can then be used to fertilise emasculated plants as normal, from which transgenic seeds can then be selected in the usual manner.

From https://www.nature.com/articles/s41477-017-0072-y

This technique relies upon the pollen aperature being greater than 5um and Zhao et al demonstrate that this was possible in a range of flowering plants including pepper, pumpkin, zucchini and lily. The majority of their experimental work highlighted the introduction of a gene expressing BT toxin into cotton and the subsequent identification of insect resistant plants. The viability of magnetotransformed pollen was unaffected and after the initial fertilization the transgene segregated with normal mendelian ratios.


Importantly for future uptake of this technology, the authors were able to successfully transform Elite varieties that are recalcitrant to callus-transformation, thus greatly reducing the time usually needed for crossing between easily transformable and elite lines. Success rates even for floral dip transformation are lower than 1% so the reported 2-10% in this study, over three years of experiments, strongly suggests that this technique has enormous potential for crop genetic modification.

The only minor drawback is that due to the high success rate, extra generations of selfing transgenic plants might be necessary to obtain pure breeding lines due to the integration of multiple independent insertions.

These experiments have been conducted with a single research lab so it remains to be seen whether these success rates are recapitulated in other locations that have similar but potential significant alterations in their experimental setup.


Importantly the authors do not attempt to use this technique to transform any grass species, a taxonomic group that supplies the vast majority of global animal calories. This will be important to ascertain yet might prove challenging or impossible due to the size of grass pollen grains. Only time will tell whether this is possible.

There is little doubt that this work will raise significant interest in academic and industrial labs across the globe.

Watch this space whether this will prove the breaking of the transformation bottle(neck).

*- Of course Arabidopsis is immune from such concerns as it can be transformed by floral dip, due to an unusually open gynoecium during development.

A commentary article on the Zhao et al paper is also available in Nature Plants.

Devin O’Connor talks to GARNet

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: November 30, 2017

Devin O’Connor discusses auxin, PINs and protein instrinic qualities during our discussion of his recent eLife paper entitled ‘Cross-species functional diversity within the PIN auxin efflux protein family’.
https://elifesciences.org/articles/31804
https://www.slcu.cam.ac.uk/research/oconnor-group

Anthony Dodd talks to GARNet

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: November 24, 2017

Anthony Dodd (Universit of Bristol) talks to GARNet about a recent paper published in Plant Physiology entitled ‘The energy-signalling hub SnRK1 is important for sucrose-induced hypocotyl elongation‘.

iGEM 2017

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: November 17, 2017

The giant jamboree that marks the end of the 2017 International Genetically Engineered Machine (iGEM) competition was again held in Boston, USA in mid November. This unique event brings together up to 3000 students who present, demonstrate and discuss the novel research projects that they have worked on for the past year. These synthetic biology projects can be on any conceivable (safe) topic and are usually supported by academic institutions who, along with a range of sponsors, supply teams with up to £50K to fund the research, registration costs and transport.
The overall number of iGEM teams continues to rise with 295 having their entries finally accepted in 2017. Perhaps notably, 2017 is the first in which the number of Chinese teams was greater than those from the host nation. The number of UK teams has remained static over the past three years, with the identity of competing institutes often changing, no doubt caused by the high financial cost and time commitment needed to support projects and to send a group of students to Boston. Only Edinburgh, Exeter, Glasgow, Kent, Oxford, Sheffield, UCL and Warwick have supported teams in each of the past 4 years since the final jamboree moved to Boston.


The number of projects entered in the ‘Environment Track’ again increased this year and it was notable at this jamboree that there was an increased focus on ideas that involve plant science. Although this hasn’t translated into a significant increase in the number of projects that are actually working WITH a plant synbio chassis, there is certainly an increased focus on finding solutions to global and local challenges that use plant-derived solutions. An example of this is from WashU St Louis whose project’s ultimate goal was to improve plant resistance to damaging UV-B radiation. Although they discussed a possible collaboration with the Cardiff_Wales team who were using transient tobacco expression system as their experimental chassis, their work did not progress further than characterizing their gene circuit in E.coli, which provided resistance to UV-B in that system. This type of project was more common than ever before, where bacterial synthetic biology was used as a starting point to tackle global problems that might ultimately involve plant science.


However it was again pleasing to learn about some outstanding plant synbio projects. The plant synthetic biology lab in Valencia led by Diego Orzaez again excelled in this area, building hardware to monitor changes in plant growth in response to stress, a PlantLabCo software tool and also developing a root-expressed red-light sensor. Information about each of the Valencia projects from the past 4 years can be found here.

Arguably the most impressive plant project, and eventually winner of the Plant Synthetic Biology track, was from the UESTC-China team who had generated stably transformed tobacco plants expressing three biosynthetic enzymes. This Phytoremediation-based project was designed to remove the industrial atmospheric pollutant TCP. Lab experiments showed that transgenic leaf extracts were able to convert TCP to glycerol, demonstrating clear proof of concept. However during questioning the challenge of this (and many other) iGEM project was clear; the issue of scalability. How many tobacco plants would be needed to effectively reduce pollutants and where would these plants be grown? These questions were beyond the scope of this project and yet due to the required extra investment and future research time needed to provide satisfactory solutions they might remain forever unanswered.
Elsewhere it was great to learn about the project from SECA-NZ who had managed to stably transform Arabidopsis plants with a frost-responsive gene from an Arctic plant, not an insubstantial task for a 6-month project!!


iGEM is a fantastic breeding group for innovative, with the competition allowing students to gain research and project management skills that set them on the path to careers in research or entrepreneurship. Synbiobeta is a partner sponsor of the event and during his final address iGEM president Randy Rettberg encouraged iGEMers to go out and ‘find the money’. iGEM also very strongly encourage responsible innovation so hopefully these messages can be successfully interwoven in future projects that the iGEM students will develop.



With UK synthetic biology heavyweights Imperial College (the 2016 overall winners) and Cambridge University absent from the 2017 competition, the UK community looked to others to pick up their slack….and they did so with some significant success! University teams from Exeter (overgrad Environment, Applied Design), Glasgow (undergrad, Food and Nutrition), Oxford (undergraduate Diagnostics), Edinburgh (overgrad Therapeutics) and Kent (undergrad Poster) all won ‘Track awards’ whilst Newcastle OG, Edinburgh UG, Manchester OG and Cardiff UG were also nominated for awards. This strong showing is only possible due to the matched funding that many teams receive from the BBSRC, SEB, Welcome Trust and Society of Microbiology.


iGEM is what it is, a tremendous international melting pot of ideas that is a fantastic experience to all those who participate. The competitive element can be challenging to assess with all teams judged equally with no consideration as to the level of institutional support, available financial resources, team size or length of project. Winning a medal or prize is ultimately a test of those parameters that might sit outside the actual research project so each team should take pride in what they have achieved within the limits of their ambition.

 

The experiences gained by being involved in a nine-month (or more) multi faceted research project that culminates in a global conference are not found easily elsewhere!

Andrew Fleming talks to GARNet

Categories: Uncategorized
Tags: No Tags
Comments: No Comments
Published on: November 2, 2017

Andrew Fleming (University of Sheffield) talks to GARNet about a recent paper published in Current Biology entitled ‘Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells’.

http://www.cell.com/current-biology/references/S0960-9822(17)3101

Andrew also talked to GARNet last year about a paper about stomatal evolution: https://www.youtube.com/watch?v=NvRfzJwKEqo&t=68s

Andrew mentioned the excellent Plant Probes resource during the talk.

Arabidopsis Research Roundup: November 1st.

Tags: No Tags
Comments: No Comments
Published on: November 1, 2017

This weeks Research Roundup includes three research and two methods papers. Firstly is work from the O’Connor and Leyser groups at SLCU that investigates the diversity of function in PIN auxin transporters between monocots and dicots. Secondly research from the Kover lab at the University of Bath has characterised the photosynthetic contribution of the inflorescence stem whilst the third paper is from the Bill Finch-Savage at the University of Warwick and looks at the effect of temperature on seed dormancy. Finally are two methods paper from the University of Warwick and Leeds that introduce protocols for the imaging of either the endoplasmic reticulum or the ultrastructure of pollen tubes.


O’Connor DL, Elton S, Ticchiarelli F, Hsia MM, Vogel JP, Leyser O (2017) Cross-species functional diversity within the PIN auxin efflux protein family. Elife. doi: 10.7554/eLife.31804

Open Access

Devin O’Connor and Ottoline Leyser (SLCU) lead this research that bridges the divide between a model dicot (Arabidopsis) and a model monocot (Brachypodium)as they investigate mechanisms of auxin transport, focussed on the PIN protein family. Arabidopsis lacks a clade of PIN proteins (termed Sister-of-PIN1 (SoPIN1) that are found in other plant species. They show that Brachypodium sopin1 mutants have inflorescence defects similar to Arabidopsis pin1 mutants, a similarity of function that is confirmed by the ability of soPIN1 to rescue the phenotype of null Atpin1 plants. However Brachy PIN1 is only able to rescue a less severe Atpin1 mutant. Overall they demonstrate that PIN1 functional specificity is determined by membrane and tissue-level accumulation and transport activity. As this paper is published in Elife, the journal provides reviewer comments and in this case they show that this manuscript was initially rejected. However the authors persisted and provided a reworked manuscript that convincing the reviewers that this study was appropriate for publication in Elife. An excellent lesson in persistence!


Gnan S, Marsh T, Kover PX (2017) Inflorescence photosynthetic contribution to fitness releases Arabidopsis thaliana plants from trade-off constraints on early flowering PLoS One doi: 10.1371/journal.pone.0185835

Open Access

In this study from Paula Kover’s lab at the University of Bath they investigate how the photosynthetic capacity of the Arabidopsis influoresence influences the time of flowering in a range of accessions. Interestingly after plants had flowering the authors removed rosette leaves to assess the ability of the influoresence to support future plant growth. Surprisingly there was a wide variation in general fitness following leaf removal, ranging from a growth reduction of 65% to no observed loss in fitness. These changes are due to both the differencies in the flowering time and in the number of lateral branches. This can explain how early flowering accessions can maintain fitness despite reduced vegetative growth.


Huang Z, Footitt S, Tang A, Finch-Savage WE (2017) Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behavior in Arabidopsis Plant Cell Environ. doi: 10.1111/pce.13082

William Finch-Savage (University of Warwick) leads this investigation into the effect of temperature on seed development and dormancy. They used specially designed polyethylene tunnels that allowed in vivo variations in temperature and light conditions. Perhaps unsurprisingly they showed that temperature plays a significant role in future seed development with lower temperatures promoting dormancy but higher temperatures reduced dormancy that subsequently alters the timing of future life cycles, which has consequences for the species fitness.


Dzimitrowicz N, Breeze E, Frigerio L (2018) Long-Term Imaging of Endoplasmic Reticulum Morphology in Embryos During Seed Germination. Methods Mol Biol. doi: 10.1007/978-1-4939-7389-7_6

Lorenzo Frigerio (University of Warwick) leads this methods paper that describes the imaging of the endoplasmic reticulum over long periods during seed germination.


Ndinyanka Fabrice T, Kaech A, Barmettler G, Eichenberger C, Knox JP, Grossniklaus U, Ringli C (2017) Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation. BMC Plant Biol. doi: 10.1186/s12870-017-1136-x

Paul Knox (University of Leeds) is a co-author on this methods paper that outlines the necessary steps for efficient preparation of pollen tubes for subsequent ultrastructural analysis.

Arabidopsis Research Roundup: October 23rd

Different aspects of plant cell wall biology dominant the first few papers of this weeks Arabidopsis Research Roundup. Firstly Andrew Fleming (University of Sheffield) and colleagues identify that a specific type of cell wall stiffening is important in control of stomatal opening. Secondly are two papers from the lab of Paul Dupree (University of Cambridge) that investigate the role that xylan modifications play in the formation of the cell wall. Finally in this broad area John Runions (Oxford Brookes) and colleagues show that attachment to the cell wall is critical for correct function of the dynamic actin filament network. Elsewhere Jerry Roberts (CPIB) leads a study that looks at proteins that control floral development. Next the group of Alexander Jones  at SLCU has developed an exciting new tool that allows for in vivo visualization of the plant hormone GA. Finally the lab of Phil Wigge (also at SLCU) further expands their work that dissects the signaling pathways that controlling the response to temperature.


Carter R, Woolfenden H, Baillie A, Amsbury S, Carroll S, Healicon E, Sovatzoglou S, Braybrook S, Gray JE, Hobbs J, Morris RJ, Fleming AJ (2017) Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells. Curr Biol. doi: 10.1016/j.cub.2017.08.006 Open Access

This broad UK collaboration is led by Andrew Fleming at the University of Sheffield and looks into the factors that control stiffening of cell walls in stomatal guard cells. They use Atomic Force Microscopy to show that stiffening of the polar regions of guard cell walls pins down these ends of cells during stomatal opening. This study provides exciting new insights into the importance of cell wall dynamics on stomatal opening and likely has significant agronomic importance.


Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K, Iuga D, Simmons TJ, Durand-Tardif M, Brown SP, Dupree R, Busse-Wicher M, Dupree P (2017) An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat Plants doi: 10.1038/s41477-017-0030-8

Lyczakowski JJ,,, Wicher KB,, Terrett OM, Faria-Blanc N, Yu X, Brown D,, Krogh KBRM, Dupree P,,, Busse-Wicher M (2017) Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnol Biofuels. doi: 10.1186/s13068-017-0902-1

Open Access

Paul Dupree (University of Cambridge) is involved in two papers that investigate the chemical decorations that adorn components of the plant cell wall. In the first paper they demonstrate that the incorrect addition of acetyl esters onto xylan prevents the formation of the secondary cell wall due to a reduced interaction between xylan and cellulose microfibrils. They undertake a genetic study to show that the ESKIMO1/XOAT1/TBL29, a xylan-specific O-acetyltransferase is responsive for correct attachment of acetyl esters to xylan.

In the second paper they show that a reduction in the attachment of the acetyl ester glucuronic acid to xylan allows increased isolation of ethanol following saccharification. This has enormous potential significance in ongoing attempts to generate lignocellulose biomass that is more amenable to conversion into potential biofuels.


Tolmie F, Poulet A, McKenna J, Sassmann S, Graumann K, Deeks M, Runions J (2017) The cell wall of Arabidopsis thaliana influences actin network dynamics. J Exp Bot. doi: 10.1093/jxb/erx269.
This collaboration between Oxford Brookes and Exeter Universities looks in details at the Arabidopsis actin filament network using a set of novel imaging tools. In addition they show that the network is distributed when the link to the cell wall is disrupted. As might be expected this also effects the function of the network as evidenced by changes in Golgi body motility.


González-Carranza ZH, Zhang X, Peters JL, Boltz V, Szecsi J, Bendahmane M, Roberts JA (2017) HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression. PLoS One.

doi: 10.1371/journal.pone.0185106 Open Access

Jerry Roberts (CPIB, Nottingham) leads a collaboration with Dutch and French colleagues to investigate the role of the F-box gene HAWAIIAN SKIRT in control of flower development. This protein acts by interacting with the CUC-SHAPED COTYLEDON 1 (CUC1) and CUC2 transcription factors to restrict petal size by altering cell proliferation and mitotic growth.


Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM (2017) In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants. doi: 10.1038/s41477-017-0021-9

Free with the link: rdcu.be/wnOh

Alexander Jones (SLCU) collaborates with Wolf Frommers’ lab in Stanford to develop a novel tool to analyse the plant hormone gibberellin in planta. This optogenetic biosensor protein allowed them to show that GA levels correlate with cell length in hypocotyl and root tissues. GA levels are dependent on PIF signalling in a relationship that controls rapid tissue elongation in reponse to favourable environmental conditions. We’re pleased to announce that Alexander will be speaking at next September’s GARNet2018: A Plant Science Showcase at the University of York.


Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C, Rhodes D, van Noort J, Jaeger KE, Wigge PA (2017) Transcriptional regulation of the ambient temperature response by H2A.Z-nucleosomes and HSF1 transcription factors in Arabidopsis. Molecular Plant doi: 10.1016/j.molp.2017.08.014

Open Access

Phil Wigge (SLCU) leads this work that investigates how the temperature responsive histone variant H2A.Z interacts with heat shock transcription factors (HSFs). They find that the activity of HSFs is able to evict H2A.Z histones yet at non-inducible temperatures these heat responsive genes show an over-representation of H2A.Z-nucleosomes. They demonstrate that this relationship allows plants to be primed to rapidly response to temperature change whilst preventing leaky transcription in times of low temperature.

«page 2 of 14»

Follow Me
TwitterRSS
GARNetweets
April 2018
M T W T F S S
« Mar    
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Welcome , today is Thursday, April 19, 2018