Arabidopsis Research Roundup: August 12th

The UK Arabidopsis Research Roundup this week includes a couple of EVO-DEVO-type studies that compare processes within different organisms (Physcomitrella and Cardamine) to those occurring in Arabidopsis. These include the evolution of both hormone signaling and leaf development. Elsewhere a cell-biological focused study looks at the factors that control formation of plasmodesmata whilst another manuscript investigates the details of a plants mechanism to avoid photoinhibition.

Yasumura Y1, Pierik R2, Kelly S3, Sakuta M4, Voesenek LA5, Harberd NP (2015) An Ancestral Role for Constitutive Triple Response 1 (CTR1) Proteins in Both Ethylene and Abscisic Acid Signaling Plant Physiology http://dx.doi.org/10.1104/pp.15.00233

GARNet Advisory Board Member Nick Harberd leads this study that investigates the evolution of the CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) protein, which has known to be involved in ethylene signalling for two decades. CTR1 is compared between mosses, lycophytes and angiosperms, showing that PpCTR1 from moss Physcomitrella patens has the same function and the Arabidopsis equivalent, indicating that this signaling pathway predates the land plant lineage. However PpCTR1 is also involved in ABA signaling, which is not the case with AtCTR1 and may be explained by the presence of an AtCTR1 homolog in angiosperms. The authors state that this work provides new insights into the molecular events that contributed to the adaptive evolution of regulatory mechanisms across plant species

Kirsten Knox, Pengwei Wang, Verena Kriechbaumer, Jens Tilsner, Lorenzo Frigerio, Imogen Sparkes, Chris Hawes, Karl Oparka (2015) Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation Plant Physiology http://dx.doi.org/10.1104/pp.15.00668

This study is led by Karl Oparka (Edinburgh) and Chris Hawes (Oxford Brookes) as well as including PIs from Exeter (Sparkes), Warwick (<a href="http://www2.warwick cialis professional 20 mg.ac.uk/fac/sci/lifesci/people/lfrigerio/” onclick=”_gaq.push([‘_trackEvent’, ‘outbound-article’, ‘http://www2.warwick.ac.uk/fac/sci/lifesci/people/lfrigerio/’, ‘Frigerio’]);” target=”_blank”>Frigerio) and St Andrews (Tilsner). The manuscript investigates formation of plasmodesmata (PD), which are known to form from endoplasmic reticulum (ER) via an intermediant termed the desmotubule. Members of the Reticulon (RTNLB) family of ER-tubulating proteins are found in the PD proteome are are associated with developing PD following cell division. The authors use super-resolution imaging to show that RTNLB6 colocalises with desmotubules. The mobility of these RTNLB proteins was show, using FRAP, to vary dependent on their positioning within a developing cell plate. Mutant studies show that RTNLB proteins act as important regulators of the formation of PDs and the authors discuss the wider potential roles of these proteins in this process.

Ware MA, Giovagnetti V, Belgio E, Ruban AV (2015) PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems J Photochem Photobiol B http://dx.doi.org/10.1016/j.jphotobiol.2015.07.016

Alexander Ruban (QMUL) continues a fine run of recent publications with this study that investigates plants that express increased levels of the photosynthetic PsbS protein, in the context of a subsequent increase in levels of non-photochemical fluorescence quenching (NPQ). In these PsbS overexpressors, there is increased amplitude of the irreversible NPQ component, qI, which likely results from aggregation of the LHCII antenna complex. Use of freeze-fracture electron microscopy show that quenched thylakoids have 3x more aggregated LHCII particles compared to those that are dark-adapted. Overall, these results demonstrate the importance of this LHCII aggregation in the NPQ mechanism whilst showing that structure of the PSII supercomplex plays no role in formation in process of quenching.

Cartolano M, Pieper B, Lempe J, Tattersall A, Huijser P, Tresch A, Darrah PR, Hay A, Tsiantis M (2015) Heterochrony underpins natural variation in Cardamine hirsuta leaf form Proc Natl Acad Sci U S A. 2015 Aug 4. http://dx.doi.org/10.1073/pnas.1419791112

The study is a continuation of many years of work led by Miltos Tsiantis (who maintains links with Oxford University), aimed at increasing the understanding of how different morphological patterns develop. They compare leaf patterning in Arabidopsis (which has a simple leaf) and in the related plant, Cardamine (that has a complex leaf). They have identified a novel QTL from Cardamine that shows that age-dependent progression of leaf form underlies variation in this trait within species. Interestingly the QTL mapped to a cis-acting region controlling expression of the floral regulator FLC. Genotypes expressing low levels of FLC show early flowering and accelerated changes in leaf form, including faster leaflet production. These findings link reproductive timing with leaf development and the authors speculate that this may help to optimize resource allocation to the next generation.

Arabidopsis Research Roundup: July 11th

A couple of weeks since the last update as it’s been quiet for UK Arabidopsis Research publications. However we now see a variety of publications that address some important questions in different signaling pathways. Firstly a multinational collaboration performs a genome-wide analysis of DELLA binding, followed by two studies looking different aspects of light signaling, specifically the link with the production of protective carotenoids and also with the tight control of protein degradation. Elsewhere there is the description of a systems biology approach developed to aid the definition of signaling pathways in non-model organisms and finally a commentary piece about some work on Arabidopsis Arenosa.

 

Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins (2015) Marín-de la Rosa N, Pfeiffer A, Hill K, Locascio A, Bhalerao RP, Miskolczi P, Grønlund AL, Wanchoo-Kohli A, Thomas SG, Bennett MJ, Lohmann JU, Blázquez MA, Alabadí D PLoS Genet. 11(7):e1005337. http://dx.doi.org/10.1371/journal.pgen.1005337

The Centre for Integrative Biology in Nottingham and Rothamstead Plant Science partner with groups from Sweden, Germany, Spain and Saudi Arabia in this truly international collaboration. They investigate the role of DELLA proteins in the relay of environmental cues to multiple transcriptional circuits. The primary experimentation in this study uses ChIP-Seq to analyse the DNA-binding sites of one DELLA protein. Perhaps as expected the DELLA protein binds multiple promotor regions yet with a particular enrichment in regions upstream of cytokinin-regulated genes, where they interact with type-B ARABIDOPSIS RESPONSE REGULATOR (ARR) proteins. The biological relevance of this mechanism is underpinned by the requirement for both DELLAs and B-type ARRs in the control of root growth and photomorphogenesis.

 

Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and co-factors (2015) Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M, Cifuentes-Esquivel N, Halliday KJ, Martinez-Garcia JF, Rodriguez-Concepcion M Plant Physiol.

Karen Halliday at the University of Edinburgh is part of this UK-Spanish team that studied the regulation of carotenoid biosynthesis via a light signaling module formed by PIF1 and HY5. In shade conditions, PIF proteins signal for a decrease in carotenoid accumulation, thus saving the plant unneeded energy consumption. The PIF1 response focusses on the phytoene synthase (PSY) biosynthetic gene and is antagonised by the PAR1 transcriptional co-factor. However this is not a universal response carried out by known antagonisers of PIF1 function, demonstrating that carotenoid biosynthesis is finely regulated by a precise subset of regulatory proteins.

 

High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis (2015) Hajdu A, Ádám É, Sheerin DJ, Dobos O, Bernula P, Hiltbrunner A,, Kozma-Bognár L, Nagy F Plant Journal http://dx.doi.org/10.1111/tpj.12926

Professor Ferenc Nagy has dual appointments in Edinburgh and in Hungary and this output results from work performed in Hungary. This study looks at control of flowering via phytochrome B signalling, which has been previously shown to rely on the degradation of the CONSTANS (CO) protein that in turn delays flowering by attenuating FLOWERING LOCUS T (FT) expression. Therefore phyB mutants show accelerated flowering, yet this is unexpectedly also true following PHYB overexpression. The novelty of this study comes from showing that PHYB overexpression induces FT without affecting CO transcription but rather acts by causing accumulation of the CO protein, due to an affect on a COP1-ubiquitin ligase complex. This article adds further detail to the already complex relationship between light signaling, the circadian clock, protein degradation and de novo transcription in the control of flowering in Arabidopsis.

 

Inferring orthologous gene regulatory networks using interspecies data fusion (2015) Penfold CA, Millar JB, Wild DL. Bioinformatics. 31(12):i97-i105. http://dx.doi.org/10.1093/bioinformatics/btv267

This study was led by David Wild from Warwick Systems Biology Centre. The authors have used two related Bayesian approaches to network inference that allow Gene Regulatory Networks (GRN) to be jointly inferred in, or leveraged between, several related species, for example between Arabidopsis and related crop species. Inferring gene function is achieved with more accuracy when GRNs are compared between species rather than attempting to use stand alone inference. The manuscript uses data from the yeast S.pombe but the broader principles could be applied to other experimental systems.

 

The High Life: Alpine Dwarfism in Arabidopsis (2015) Bomblies K Plant Physiol. 168(3):767. http://dx.doi.org/10.1104/pp.15.00745

This commentary piece about high altitude growth of Arabidopsis aernosa is the first published work from Kristen Bomblies since she moved her lab to the John Innes Centre from Havard (together with the lab of Levi Yant). Having these two talented young researchers relocate to the UK is be great for UK plant science so I sure everyone in the community wishes them all the best. Watch Kristen talk about her work at a New Phytologist conference from 2014.

Levi Yant also has two postdoctoral posts currently available in his lab.

 

COPO 2015 Meeting

Tags: No Tags
Comments: 1 Comment
Published on: June 25, 2015

COPO has big plans…. and if it is to be truly successful and benefit the plant community there needs to be a cultural change! That’s the simple if revolutionary message that came out of the recent COPO meeting held at TGAC on June 23rd-24th.

So the uninitiated will be asking: ‘What is COPO?‘ The answer is the Collaborative Open Plant Omics group which was funded by a BBSRC BBR grant in 2014. This is a >£1m collaboration between The Genome Analysis Centre (TGAC), University of Oxford, the European Bioinformatics Institute (EMBL) and the University of Warwick.

This workshop was to introduce the aims of COPO to a range of stakeholders, from curators of available data repositories to experimentalists who are generating large datasets. By the end of the 2-day session it was hoped that everyone would gain an understanding of what COPO can offer the community with regard facilitating the sharing of large datasets.

White Board Discussions

The workshop was led by Rob Davey (TGAC) and Ruth Bastow (GPC, GARNet, Warwick). Rob kicked off the meeting by describing the aims of COPO which included asking ‘What are the barriers for you and your data and how can COPO facilitate access to the workflows used to analyse data’.

Subsequently a range of stakeholders introduced the fantastic tools that are out there for repositing data of many different types. These included David Salt (University of Aberdeen, Ionomics), Elizabeth Arnaud (Montpellier, CropOntology), David Marshall (James Hutton Institute, Germinate: Plant Genetic Resources), Esther Kabore (INRA, Wheat Data Repository) Reza Salek (EMBL, Metabolights), and finally Tomasz Zielinski (Edinburgh, BioDare) who made the telling observation that ‘data Management is a user interface/user experience problem NOT a software engineering/ data modelling problem’. Many researchers are often reluctant to take the time and effort required to submit their data to an appropriate repository in a reasonable manner, for any number of opaque reasons. However the take-home message from the early talks was very positive as there are a large number of data platforms available for people to use and benefit from. One of the challenges for COPO is to not only to help convince people to use these resources but encourage them to share data in a standardised manner.

Following a useful coffee break it was time for researchers to explain the data they are producing and the challenges for their analysis. Miriam Gifford (Warwick) discussed her generation of transcriptomic data, Christine Sambles (Exeter) talked about developing a workflow for metabolomics data and TGAC group leader Ksenia Krasileva introduced her work on wheat functional genomics. Ksenia also highlighted a new portal for communication between data generators and data users called Grassroot Genomics.

The final three talks of the day highlighted the amount of data that can be produced in different sets of biological experiments. Ji Zhou (TGAC) and Chris Rawlings (Rothamstead) introduced cutting-edge field phenotyping technologies that use large imagers to capture visible and spectral aspects of plant growth. Workshop attendee Professor Peter Murray-Rust summed it up with a tweet: ‘Blown away by the crop monitoring equipment at Rothamstead’. On an opposite end of the spectrum Jim Murray (Cardiff) showed a single fluorescent image of a zebrafish taken on a light-sheet microscope that weighed in at an impressive 23Tb of data. Overall these talks served to highlight the vast amounts of data that can be produced and provided the second take-home message of the day that ‘Getting data is NOT the issue, making any sense of it IS the challenge’……

 

The task of second day discussions was to make sense of what had been presented the previous day and identify the best opportunities for COPO to impact on the process of data sharing. A lively first hour of debate included Dr Philippe Rocca-Serra (COPO Co-PI from Oxford) presenting a somewhat sobering eight slides of ‘Pain Points’ that he had taken out of the previous days presentations! However it was refreshing to observe that the challenge of the task was not underestimated and being tackled with realistic planning.

Pain Points!

Later in the morning discussions turned more specific with a white-board brainstorming session that was divided into ‘Data Collection’.Data Storage’ and ‘Data Analysis’ sections. Most progress was made in the first two sections with a long list of storage repositories identified that bridged the breath of biological data and with which COPO could potentially interact.

It was felt that successful interactions would be predicated on some level of data standardisation so perhaps the most effective initial use of the COPO resources would be to develop a workflow for standard data collection. This would hopefully make experimentalists think about the format of their data submission as they are planning and generating the data. The consensus was that attaching these standards to legacy-data might be a difficult task but that for future data generation, COPO could influence data sharing at this level.

IMG_8241

Ultimately it is clear that plant science has the same generic problems as many other disciplines and the greatest challenge is to change the ‘culture’ of sharing data. The most obvious and direct way to promote this change will be via the funders and publishers. Some progress has been made in this arena with a recent shift towards open access publication in the REF process, and it would only take another small additional step to make it a requirement to share data in any REF-returnable publications. So I hope that those with greater power and influence than me, are reading the GARNet blog!

Regardless of the pace of cultural change, the feeling in the meeting was that the COPO mandate is to encourage data sharing whilst moving to a position to effectively interact with the data that is shared. There is plenty of work to do but at the end of this exploratory workshop the COPO organisers had plenty to think about regarding the direction of the project. Watch their space!

Storify of tweets from the meeting

Arabidopsis Research Roundup

This week roundup features a wide range of research topics from two current members of GARNet Advisory board as well as two papers featuring work from the lab of Laszlo Bogre at Royal Hollaway. The studies range from an investigation into the similarity between the barley and Arabidopsis circadian clocks, the role of MYR3R during regulation of organ growth, documenting a novel interaction of a MAPK protein and the development of new fluorescent probes for study of cysteine proteases.

 

Kusakina J, Rutterford Z, Cotter S, Martí MC, Laurie DA, Greenland AJ, Hall A, Webb AA (2015) Barley Hv CIRCADIAN CLOCK ASSOCIATED 1 and Hv PHOTOPERIOD H1 Are Circadian Regulators That Can Affect Circadian Rhythms in Arabidopsis. PLoS One. 10(6):e0127449. http://dx.doi.org/10.1371/journal.pone.0127449

This publication is the result of a multi-site collaboration between the Alex Webb at Cambridge, GARNet Advisory board member Anthony Hall at Liverpool, Andy Greenland at NIAB and David Laurie at the JIC. The focus of this study are the barley CIRCADIAN CLOCK ASSOCIATED 1 and PHOTOPERIODH1 genes, which are involved in regulation of the circadian clock. The authors investigated the circadian rhythms in barley whilst using heterologous expression in Arabidopsis to show that the barley CCA1 is functionally equivalent to AtCCA1 and that barley PHOTOPERIODH1 functions similar to AtPRR7.

 

Kobayashi K, Suzuki T, Iwata E, Nakamichi N, Suzuki T, Chen P, Ohtani M, Ishida T, Hosoya H, Müller S, Leviczky T, Pettkó-Szandtner A, Darula Z, Iwamoto A, Nomoto M, Tada Y, Higashiyama T, Demura T, Doonan JH, Hauser MT, Sugimoto K, Umeda M, Magyar Z, Bögre L, Ito M (2015) Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J. http://dx.doi.org/10.15252/embj.201490899

GARNet advisory board member John Doonan and Royal Hollaway-based Laszlo Bogre are collaborators on this multi-nation publication that looked at the role of three MYB2R3 proteins in cell cycle control. Arabidopsis plants that have mutations in three repressor type-myb3r genes display enlarged organs. In addition, MYB3R3 binds to G2/M-specific genes and associates with the repressor-type E2F and RBR proteins. The authors perform a range of pair-wise interaction studies to identify components of multiprotein complexes, that have also been identified in other organisms. Ultimately they show that these MYC3R genes are important for periodic expression during the cell cycle and for establishing a post-mitotic quiescent state that determines organ size.

 

Kohoutová L1, Kourová H1, Nagy SK2, Volc J1, Halada P1, Mészáros T2,3, Meskiene I4,5, Bögre L6, Binarová P1 (2015) The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress New Phytologist. http://dx.doi.org/10.1111/nph.13501

Laszlo Bogre also features as a collaborator in this East European-led study that investigated the interaction of the MAPK-protein MPK6 with microtubules. Immunoprecitations showed that the active form of MPK6 interacted with γ-tubulin, sedimenting with in vitro polymerised microtubules. In addition they identified a novel substrate for MPK6, the microtubule plus-end protein, EB1c. Overall the authors propose that MPK6 plays a significant role in maintaining regular planes of cell division, particularly during stress conditions.

 

Lu H, Chandrasekar B, Oeljeklaus J, Misas-Villamil JC, Wang Z, Shindo T, Bogyo M, Kaiser M, van der Hoorn RA (2015) Subfamily-specific Fluorescent Probes for Cys proteases Display Dynamic Protease Activities During Seed Germination. Plant Physiology http://dx.doi.org/10.1104/pp.114.254466

Renier Van De Hoorn who works in the Department of Plant Chemetics at the University of Oxford, leads this study that investigates the activity of plant cysteine proteases. They developed a novel set of fluorescent probes that specifically target different subfamilies of Cys proteases. In order to test these probes they used Arabidopsis mutant lines alongside transient expression studies in tobacco. In addition they show that these probes have broad applicable across 8 plant species. Finally they use these new tools to reveal the dynamic properties of different protease sub-families during remobilization of seed storage proteins in Arabidopsis.

Arabidopsis Research Roundup: June 3rd 2015

We are unashamedly biased in this weeks Arabidopsis Research Roundup which firstly features work from the group of GARNet PI Jim Murray about the genetic interactions that define growth of lateral organs. Elsewhere we highlight papers that investigate a different role for CYCD3 genes in vascular development, the role of TFL1 in the shoot meristem and the ability of Arabidopsis seedling to tolerant a high light environment during ontogenesis.

Randall RS, Sornay E, Dewitte W, Murray JA (2015) AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property Journal Experimental Botany http://dx.doi.org/10.1093/jxb/erv200

Jim Murray and Walter Dewitte (Cardiff) lead this study that investigates the relationship between the AINTEGUMENTA (ANT) transcription factor and cyclin CYCD3;1 during lateral aerial organ (LAO) formation. LAO growth is determined by the both the number and size of cells that comprise the organ. During petal development, ant mutants have reduced cell number but increased cell size, demonstrating a ‘compensatory mechanism’ of growth. In contrast cycd3;1 mutants have increased cell size that results in larger petals, showing no compensatory mechanism. Interestingly ant cycd3;1 double mutants do show growth compensation in the same tissue. The authors propose that occurrence of the compensatory mechanism depends on at which time-point during distinct phases of cell division and cell expansion the growth defect occurs.

 

C Collins, Maruthi M.N and C Jahn (2015) CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. Journal Experimental Botany http://dx.doi.org/10.1093/jxb/erv218

Another study that investigates a different role of D-type cyclins is led by former Murray lab member, Carl Collins working at the Natural Resources Institute at the University of Greenwich. The factors that control cambial cell growth are poorly understood but the authors provide a link between the cell cycle and cambial differentiation by showing that CYCD3 subgroup of genes play a role in the process. Three CYCD3 genes are expressed in cambial tissue and the equivalent triple mutant has reduced hypocotyl and stem diameter, which is linked to a reduction in mitotic activity. Conversely, mutant xylem cells increased in size. This shows that CYCD3 genes provide a mechanism for controlling the correct proportions of cell growth during vascular development. This might provide a useful tool in the future study of this important process in woody plants.

 

Carvalho FE, Ware MA, Ruban AV (2015) Quantifying the dynamics of light tolerance in Arabidopsis plants during ontogenesis Plant Cell Environment http://dx.doi.org/10.1111/pce.12574

The group of Professor Alexander Ruban at Queen Marys University London utilise a novel methodology to measure the ‘intactness’ of photosystem II (PSII). In this paper they assess the amount of light required to inhibit PSII activity through the life cycle of Arabidopsis plants grown in short days. They show that maximum light tolerance occurs in 8-week old plants. Interestingly the light tolerance correlates with rates of electron transport yet did not coincide with the chlorophyll a/b ratios or anthocyanin content.

 

Baumann K, Venail J, Berbel A, Domenech MJ, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D (2015) Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. Journal Experimental Botany http://dx.doi.org/10.1093/jxb/erv247

The TFL1 gene is a repressor of flowering in the Arabidopsis shoot meristem. Researchers from the UK, USA, Spain and Italy, led by Desmond Bradley at the JIC show that ecoptocally expressed TFL1 can repress flowering outside of its normal expression domain. By comparing the expression of TFL1 with genes that determine floral identity (APETALA, LEAFY) the authors conclude that the shoot meristem is more sensitive to TFL1, allowing the maintenance of a vegetative state in this tissue.

Arabidopsis Research Round-up

Tags: No Tags
Comments: No Comments
Published on: October 30, 2014

It’s all about Norwich Research Park this week as Jonathan Jones, Dan MacLean (The Sainsbury Laboratory) and Caroline Dean (John Innes Centre) take the lead on this week’s papers. As a bonus, they’re all open access!

 

  • Sohn KH, Segonzac C, Rallapalli G, Sarris PF, Woo JY, Williams SJ, Newman TE, Paek KH, Kobe B and Jones JDG. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLOS Genetics, 23 October 2014. DOI: 10.1371/journal.pgen.1004655. [Open Access]

While it is known that plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance proteins recognise specific ‘avirulent’ pathogen effectors and activate immune responses, the mechanisms by which they do this are not well understood. This article challenges previous hypotheses and advances our understanding of how immune receptors activate defense in Arabidopsis.

 

  • Younsi R and MacLean D. Using 2k + 2 bubble searches to find single nucleotide polymorphisms in k-mer graphs. Bioinformatics, 24 October 2014.DOI: 10.1093/bioinformatics/btu706. [Open Access]

In this Bioinformatics paper, Younsi and MacLean from The Sainsbury Laboratory describe how they used sequence data from 16 Arabidopsis thaliana ecotypes to test and validate an algorithm capable of accurately detecting single nucleotide polymorphisms from de Bruijn graphs.

 

  • Csorba T, Questa JI, Sun Q and Dean C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization.Proceedings of the National Academy of Sciences of the USA, 27 October 2014. DOI: 10.1073/pnas.1419030111. [Open Access]

In previous work, Caroline Dean and colleagues from the John Innes Centre showed that expression of FLOWERING LOCUS C (FLC) is regulated epigenetically by modifications to the histones: accumulation of H3K36me6 causes FLC to be expressed, thus applying a ‘brake’ to flowering, while accumulation of H2K27me3 removes the brake. However, this is not the whole story, and now the Dean lab has identified another component of the mechanism – antisense non-coding RNA transcripts calledCOOLAIR.

You can read more about this story in this press release: Plants require COOLAIR to flower in spring.

Publication trends in Arabidopsis

Comments: 1 Comment
Published on: September 18, 2014

Pete McQuilton and Richard Smith of Nowomics have pulled a load of information on Arabidopsis trends for us to write this fascinating guest blog post. Nowomics is a new website that fetches data from many biological databases every day and works out what’s changed, and finds genes and species names mentioned in new PubMed abstracts. This lets users (this can be anyone – it’s free!) to follow genes and gene ontology terms to create a personalised news feed of new papers and data. 

Arabidopsis thaliana, the humble model organism for flowering plants, has been studied for over 140 years. Discovered by Johannes Thal (hence the name thaliana), the mouse-ear cress is a member of the mustard family (Brassicaceae), alongside such luminaries as cabbage and radish. With it’s relatively small sequenced genome (114.5mb/125Mb total), rapid life cycle (about 6 weeks from germination to mature seed), prolific seed production and many genetic tools and mutants, Arabidopsis is a wonderful model organism for basic research in genetics and molecular biology.

As part of a series of blog posts at Nowomics we have examined the publication trends in Arabidopsis-related research. We’ve extracted data on primary research papers from PubMed (excluding reviews and clinical trials) for a ten year range from 2004-2013 and have identified those that mention Arabidopsis in the title or abstract. These papers are defined as Arabidopsis papers (further details of the method are given below).

From this analysis, it is clear that the Arabidopsis community is thriving, having produced just over 3500 papers in 2013, up from 1847 in 2004. This represents a 91% increase in article number, keeping pace with the overall rise in number of journal articles published, which has grown by 95% since 2004.

Journals

Figure 1. The top Arabidopsis-publishing journals 2004-2013.
Figure 1. The top Arabidopsis-publishing journals 2004-2013.

From 2004 to 2011, Plant Physiology (Plant Physiol.), Plant Journal (Plant J.) and Plant Cell made up the top three journals publishing Arabidopsis research (see figure 2). Plant Signal Behaviour (Plant Signal Behav.) has risen rapidly from it’s inception in 2006 to join the top five in 2008. By far the strongest trend, however, is the rise of PLoS ONE from outside the top ten in 2010 with just 66 Arabidopsis papers, to topping the chart with 315 in 2013. That figure represents 9% of all Arabidopsis articles in 2013. The meteoric rise of PLoS ONE can be seen for other organisms, such as in Drosophila, as described in a previous blog post. (more…)

Open access: How much is enough?

Categories: Open Access
Comments: No Comments
Published on: June 4, 2013

Nearly everyone is behind Open Access as an idea, but when RCUK demanded that all papers published from RCUK-funded groups be published open access it became clear that widespread, truly open access publication is still an idea and not a deliverable. The problem is that while scientists see the moral case for open access, and it is to their advantage to have as wide an audience as possible for their research, open access publishing can be extremely expensive, especially when academic careers are so invested in publications in high-impact, traditionally high-profile journals.

Open Access publishing can be cheap – national journals can even be free, though according Eigenfactor, there are no UK-based free plant science journals. PloS and BMC are charging around £1200 per article. When I looked up the OA fee on the BMC website, a friendly message popped up saying that the University of Warwick would pay half the publication fee if I submitted an article to them; other institutions will have similar schemes to help with payment of publication costs. Plant Physiology charge £750 for OA publication, though this is on top of often much larger pre-existing fees for colour publication and other costs. These figures seem reasonably affordable with the planned block grants to provide funding for article processing charges.

Article processing charges (APC) funding will come into force in academic year 2013/14, and during this time research institutions are expected to make sure 45% of papers are published OA. In mid 2014 the funding mechanism will be reviewed. Over the next few years, it is expected that the proportion of OA articles will go up – the target for 2014/15 is 53% at the time of writing.

However, I have heard from several people that some journals are charging a very high fee for OA publishing – in excess of £10 000. The APC fund will not be able to cover fees as large as that. So it is good news then that in April of this year, RCUK revised the original announcement that OA publication means ‘gold’ – ‘green’ OA is acceptable. This means that you can publish your work in many journals without paying the OA fee, and self-publish the paper in a format and forum agreed to by the publisher. In most cases this means you can put a non-formatted version of the accepted article on your website and in your institutional repository.

 

While researching this post on Open Access (OA), I found these webpages which will be of use to anyone who is confused about the RCUK OA policy:

  • Sherpa is an online tool from RCUK that explains users’ options for complying with their policy in the majority of journals. For example, if you search for ‘New Phytologist’ it explains that you can pay $3000 for the gold open access option, OR archive your article in an open access repository.
  • A commentary from The Times about April’s revision to RCUK’s OA policy.
  • RCUK’s Policy on Open Access FAQs (PDF) – you might not get as must detail as you want about the future of the OA policy, but this is the first place you should check if you have questions.
  • Stephen Curry regularly blogs about open access, and is one of the reasons RCUK had to clarify their stance on the importance of impact factors as a result of their OA policy – well worth a read.
«page 3 of 4»

Follow Me
TwitterRSS
GARNetweets
Categories
April 2024
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
2930  

Welcome , today is Saturday, April 20, 2024