GARNet Research Roundup: March 21st 2019

This edition of the GARNet research roundup begins with a study from the John Innes Centre that investigates the role of auxin in the control of fruit development in Capsella.

Auxin is also a central focus of the next paper that is from SLCU, in which the authors characterise the role of different types of auxin transport during shoot development. The third paper, also from Cambridge, identifies a new function for members of the DUF579 enzyme family. The final paper from Cambridge reports on an outstanding citizen science project that looks at how different temperature and light conditions influence the growth of spring onions.

The next paper is from the University of Glasgow and investigates the role of the SNARE protein complex during vesicle transport in Arabidopsis.

The final two papers include authors from the University of Nottingham. Firstly Anthony Bishopp leads research that defines determinants of vascular patterning across plant species. Finally Don Grierson is a co-author on work that has identified novel signaling components involved in the response to hypoxia in Persimmon and Arabidopsis.


Dong Y, Jantzen F, Stacey N, Łangowski Ł, Moubayidin L, Šimura J, Ljung K, Østergaard L (2019) Regulatory Diversification of INDEHISCENT in the Capsella Genus Directs Variation in Fruit Morphology. Curr Biol. doi: 10.1016/j.cub.2019.01.057

Open Access

This research from Lars Ostergaard’s lab in the John Innes Centre is led by Yang Dong. The work is primarily conducted in Capsella and investigates the role of the INDEHISCENT (IND) protein in this plant, which has fruits that are morphologically distinct from those in Arabidopsis. Expression of CrIND controls fruit shape by influencing auxin biosynthesis leading to auxin accumulation in specific maxima that are localised to the fruit valves.

doi: 10.1016/j.cub.2019.01.057

van Rongen M, Bennett T, Ticchiarelli F, Leyser O (2019) Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genet. doi: 10.1371/journal.pgen.1008023

Open Access

Martin Van Rongen is the lead author on this research performed under the supervision of Ottoline Leyser at the Sainsbury Lab, Cambridge University. They investigate the hormonal signals that underpin the remarkable plasticity of shoot patterning, focusing on a genetic analysis of connective auxin transport (CAT), which moves the hormone across the stem (in contrast to up-down polar transport). Using multiple pin mutant plants, they show CAT is important in the regulation of strigolactone-mediated shoot branching. However shoot branching controlled by the BRANCHED1 transcription factor is reliant on the ABCB19 auxin export protein and is not significantly influenced by the activity of PIN proteins. Martin van Rongen discusses this paper on the GARNet YouTube channel.


Temple, H, Mortimer, JC, Tryfona, T, et al (2019) Two members of the DUF579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct. https://doi.org/10.1002/pld

Open Access

Henry Temple works with Paul Dupree at the University of Cambridge and leads this study that identifies a novel activity of two DUF579 enzymes in the methylation of glucuronic acid within highly glycosylated arabinogalactan proteins (AGPs). This differs from all other previously characterized DUF579 members that have been previously shown to methylate glucuronic acid within the cell wall component xylan.


Brestovitsky, A, Ezer, D (2019) A mass participatory experiment provides a rich temporal profile of temperature response in spring onions. Plant Direct. 2019; 3: 1– 11. https://doi.org/10.1002/pld3.126

Open Access

This citizen science project led by Anna Brestovitsky and Daphne Ezer was performed in collaboration with the BBC Terrific Scientific program. In this study primary school students from across the UK recorded the growth of spring onions over a two-week period, which was then cross-referenced with detailed hourly meteorological data. This allowed the authors to discern the effect of minute temperature and light changes on plant growth and perhaps more importantly demonstrated that even the youngest researchers, when involved a well-designed citizen science project, can yield very useful data.


Zhang B, Karnik RA, Alvim JC, Donald NA, Blatt MR (2019) Dual Sites for SEC11 on the SNARE SYP121 Implicate a Binding Exchange during Secretory Traffic. Plant Physiol. doi: 10.1104/pp.18.01315

Open Access

Ben Zhang and Rucha Karnik are first authors on this paper that continues Mike Blatt‘s lab’s study of SNARE proteins, which are involved in vesicle trafficking. This study defines a new amino acid motif within SNARE SYP121 that is needed for the binding of the SEC11 protein but is not involved in binding plasma membrane K+ channels. This motif is essential for assembly of the entire SNARE complex yet does not influence the interaction of SYP121 with the uptake of K+ ions.


Mellor N, Vaughan-Hirsch J, Kümpers BMC, Help-Rinta-Rahko H, Miyashima S, Mähönen AP, Campilho A, King JR, Bishopp A (2019) A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species. Development. doi: 10.1242/dev.172411

Open Access

Nathan Mellor is first author on this work led by the lab of Anthony Bishopp at the University of Nottingham. The primary accomplishment of this work is in the development of a mathematical model that is able to predict the role of auxin in the specification of vascular patterning during embryonic development. This model has been tested through experimental interrogation of both transgenic Arabidopsis plants and in a range of other species with different vascular development patterns. Importantly they show that a heterologous auxin input might not be as critical in vascular development when compared to growth patterns that arise from spatial constraints. The authors show that this model has broad relevance to define early vascular patterning across plant species.


Zhu QG, Gong Z, Huang J, Grierson D, Chen KS, Yin XR (2019) High-CO2/hypoxia-responsive transcription factors DkERF24 and DkWRKY1 interact and activate DkPDC2 promoter. Plant Physiol. doi: 10.1104/pp.18.01552

Open Access

Don Greirson is a co-author on this Chinese-led study that identifies a set of transcription factors from Persimmon ((Diospyros kaki). These TFs are involved in responses to high CO2 and the authors show that their Arabidopsis orthologs play a similar role. The authors introduce a new response module that may be important during this key environmental response.

GARNet Research Roundup: November 1st 2018

This week’s GARNet research roundup again features papers on a variety of topics. First is work from the University of Leeds that investigates the physical properties of callose:cellulose hydrogels and the implication for cell wall formation. Second is work from the University of York that assesses the role of the HSP90.2 protein in control of the circadian clock. The third paper features GARNet committee member Sarah McKim and looks at the genetic control of petal number whilst the next paper from the Universities of Warwick and Glasgow includes a proteomic analysis of different types of secretory vesicles.

The next two papers look at different aspects of hormone signaling. Firstly Alistair Hetherington from the University of Bristol is a co-author on a study that looks at the role of the BIG protein whilst Simon Turner’s lab in Manchester investigates the role of ABA in xylem fibre formation.

The penultimate paper includes Lindsey Turnbull from the University of Oxford and looks at the stability of epialleles across 5 generations of selection. Finally is a paper that includes researchers from TSL in Norwich who have contributed to a phosphoproteomic screen to identify phosphorylated amino acids that influence the defence response.


Abou-Saleh R, Hernandez-Gomez M, Amsbury S, Paniagua C, Bourdon M, Miyashima S, Helariutta Y, Fuller M, Budtova T, Connell SD, Ries ME, Benitez-Alfonso Y (2018) Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nature Communications DOI: 10.1038/s41467-018-06820-y

https://www.nature.com/articles/s41467-018-06820-y

Open Access
Radwa Abou-Saleh is lead author on this work from Yoselin Benitez-Alfonso’s lab at the University of Leeds. (1,3)-β-glucans such as callose play an important role in plant development yet their physical properties are largely unknown. This study analyses a set of callose:cellulose hydrogel mixtures as a proxy for different cell wall conditions. They show that callose:cellulose hydrogels are more elastic than those composed of only cellulose, providing evidence that the interactions between cellulose and callose are important for the structural features of cell walls.


Davis AM, Ronald J, Ma Z, Wilkinson AJ, Philippou K, Shindo T, Queitsch C, Davis SJ (2018) HSP90 Contributes To Entrainment of the Arabidopsis Circadian Clock via the Morning Loop. Genetics. doi: 10.1534/genetics.118.301586

http://www.genetics.org/content/early/2018/10/18/genetics.118.301586.long

Open Access
Amanda Davies is the first author on this study from Seth Davies’ lab at the University of York in which they assess the role of the molecular chaperone HSP90.2 on function of the circadian clock. The show hsp90.2-3 mutant plants have a lengthened circadian period with a specific defect in the morning. This data allows the authors to better understand the pathway through which HSP90.2 functions to entrain the circadian clock.


Monniaux M, Pieper B, McKim SM, Routier-Kierzkowska AL, Kierzkowski D, Smith RS, Hay A. The role of APETALA1 in petal number robustness. Elife. doi: 10.7554/eLife.39399

https://elifesciences.org/articles/39399

Open Access
GARNet committee member Sarah McKim is a co-author on this paper, that is led by Marie Monniaux, which includes research from her time at the University of Oxford. This work from the Hay lab in Cologne compares petal number in Arabidopsis thaliana, in which the number is invariant, and Cardamine hirsute, in which it varies. They show that petal number robustness can be attributed to the activity of the APETALA1 (AP1) floral regulator and that AP1 masks the activity of several genes in Arabidopsis but not in Cardamine.


Waghmare S, Lileikyte E, Karnik RA, Goodman JK, Blatt MR, Jones AME (2018) SNAREs SYNTAXIN OF PLANTS 121 (SYP121) and SYP122 mediate the secretion of distinct cargo subsets . Plant Physiol. doi: 10.1104/pp.18.00832

http://www.plantphysiol.org/content/early/2018/10/23/pp.18.00832.long

Open Access

This collaboration between the Universities of Glasgow and Warwick is led by Sakharam Waghmare, who works with Mike Blatt in Glasgow. This study uses proteomic approaches to characterise the secretory cargos within vesicles decorated with either of the SNARE proteins SYNTAXIN OF PLANTS 121 (SYP121) or SYP122. Genetic analysis suggests that SYP121 and SYP122 have redundant functions but this new research is able to identify cargo proteins that are either contained within both types of vesicle or that are specific to one or the other.


Zhang RX, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng YQ, Xiong L, Li C, Hetherington AM, Liang YK (2018) BIG regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytol. doi: 10.1111/nph.15568

Alistair Hetherington is a co-author on this China-based study led by Ruo‐Xi Zhang from Wuhan. This work adds to some recent interest in the BIG protein; in this study showing that it is involved in the interaction between JA and ethylene signaling during stress responses. In a complex set of interactions they show that the BIG protein differently alters opposing arms of the JA signaling pathway providing additional evidence that this protein is a key regulator of plant hormone signaling, albeit by a set of as yet unknown mechanisms.


Campbell L, Etchells JP, Cooper M, Kumar M, Turner SR. An essential role for Abscisic acid in the regulation of xylem fibre differentiation. Development. doi: 10.1242/dev.161992

This work from Simon Turner’s lab at the University of Manchester is led by Liam Campbell and identifies a novel role for ABA in the formation of xylem fibres during secondary thickening of the Arabidopsis hypocotyl. The action of ABA doesn’t alter the xylem:phloem ratio but rather the activity focuses on the formation of fibres within the already defined xylem tissue.


Schmid MW, Heichinger C, Coman Schmid D, Guthörl D, Gagliardini V, Bruggmann R, Aluri S, Aquino C, Schmid B, Turnbull LA, Grossniklaus U (2018) Contribution of epigenetic variation to adaptation in Arabidopsis. Nat Commun. doi: 10.1038/s41467-018-06932-5

https://www.nature.com/articles/s41467-018-06932-5

Open Access
Lindsey Turnbull (University of Oxford) is a co-author on this paper from Ueli Grossniklaus’ group in Zurich. Marc Schmid is lead author of the study that investigates the inheritance of Arabidopsis epialleles over 5 generations during conditions of simulated selection. The authors show that variations in methylation state are subject to selection and do indeed contribute to adaptive responses


Kadota Y, Liebrand TWH, Goto Y, Sklenar J, Derbyshire P, Menke FLH, Torres MA, Molina A, Zipfel C, Coaker G, Shirasu K (2018) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol. doi: 10.1111/nph.15523

Members of Cyril Zipfel’s group at The Sainsbury lab in Norwich are co-authors on this paper led by Yasuhiro Kadota from the RIKEN in Yokohama. They use a phosphoproteomic screen to identify a set of newly identified phosphorylation sites on membrane-associated proteins involved in effector-triggered immunity (ETI). Some of these phosphosites overlap with those known to be important for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), indicating a convergence of signaling control of both these pathways to certain key residues.

GARNet Research Roundup: July 27th

Tags: No Tags
Comments: No Comments
Published on: July 26, 2018

This GARNet research roundup includes papers that feature a number of different research areas. Firstly is work from Glasgow that investigates the photoactivation of the UVR8 light receptor. Second is work from the University of Cambridge that links the activity of the BIG protein to the circadian oscillator. The next paper has co-authors from Cambridge and looks at promotor sequences needed for expression in bundle sheath cells. The fourth paper from the University of Leeds documents an important role for peroxisomes in the drought response whilst the final manuscript includes co-authors from the University of Birmingham and looks at the role of the ASYNAPTIC4 protein during meiosis.


http://pubs.rsc.org/en/Content/ArticleLanding/2018/PP/C8PP00138C#!divAbstract

Díaz-Ramos LA, O’Hara A, Kanagarajan S, Farkas D, Strid Å, Jenkins GI. Difference in the action spectra for UVR8 monomerisation and HY5 transcript accumulation in Arabidopsis (2018) Photochem Photobiol Sci. doi: 10.1039/c8pp00138c

Open Access

Aranzazu Díaz-Ramos and Andrew O’Hara are co-first authors on this research from the University of Glasgow that investigates the activation of photomorphogenic responses by the UVR8 photoreceptor. They show that two distinct UVR8 responses, either the monomerisation of UVR homodimers or accumulation of HY5 responsive transcripts, occurs at different wavelengths.


Hearn TJ, Marti MC, Abdul-Awal SM, Wimalasekera R, Stanton CR, Haydon MJ, Theodoulou FL, Hannah MA, Webb AA (2018) BIG regulates dynamic adjustment of circadian period in Arabidopsis thaliana. Plant Physiology pp.00571.2018. doi: 10.1104/pp.18.00571

Open Access

Timothy Hearn works with Alex Webb at the University of Cambridge and in this paper characterises how the multi-functional BIG protein impacts the circadian clock. This gene was isolated in a forward genetics screen to identify signaling components that alter the response to nicotinamide, which acts as a brake on the circadian oscillator. This finding allows the authors to better understand how altering the circadian oscillator can affect appropriate phasing during different environmental conditions.


Kirschner S, Woodfield H, Prusko K, Koczor M, Gowik U, Hibberd JM, Westhoff P. Expression of SULTR2;2 in the Arabidopsis bundle sheath and vein cells is mediated by a positive regulator. J Exp Bot. 2018 Jul 19. doi: 10.1093/jxb/ery263

Open Access

Sandra Kirschner is first author on this German-led study that includes Helen Woodfield (now Cardiff University) and Julian Hibberd (University of Cambridge). They are interested in the mechanisms that restrict gene expression to bundle sheath cells in C3 plants with a longer view of understanding the biology of these cells in C4 plants. They analyse the vascular-restricted SULTR2;2 promotor and identified a short region that is necessary for its expression pattern. Importantly they show that this sequence is evolutionarily conserved across Brassicaceae and a distantly related C4 plant.

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/ery263/5056055


Ebeed HT, Stevenson S, Cuming AC, Baker A. Conserved and differential transcriptional responses of peroxisome associated pathways to drought, dehydration and ABA. J Exp Bot. 2018 Jul 19. doi: 10.1093/jxb/ery266

Open Access

Heba Ebeed is the lead author of this work conducted in Alison Baker’s lab at the University of Leeds. They take a comparative genomics approach to investigate the expression of peroxisome-localised genes in a moss (physcomitrella), monocot (wheat) and a dicot (arabidopsis). They show that members of three gene families are upregulated in each of these organisms following drought stress, demonstrating the importance of peroxisomes in this environmental response throughout plant evolution.


Chambon A, West A, Vezon D, Horlow C, De Muyt A, Chelysheva L, Ronceret A, Darbyshire AR, Osman K, Heckmann S, Franklin FCH, Grelon M (2018) Identification of ASYNAPTIC4, a component of the meiotic chromosome axis. Plant Physiol. pii: pp.01725.2017. doi: 10.1104/pp.17.01725

Chris Franklin and Alice Darbyshire from the University of Birmingham are co-authors on this French-led study that looks into the role of the ASYNAPTIC4 (ASY4) protein in the control of synapsis formation during meiosis. Plants without ASY4 activity have defective chromosomal axis formation and cannot undergo synapsis. Although the initiation of recombination is unaffected in asy4 mutants, later processes are altered, demonstrating the key role for ASY4 during meiosis

GARNet Research Roundup: June 4th

This weeks GARNet Research Roundup begins with a paper from researchers at the University of Dundee, James Hutton Institute, Durham University and the University of Glasgow that characterises a functional role for alternative splicing during the cold response. Second is a paper from Newcastle University that investigates the role of the OXI1 kinase during aphid predation. Third is a paper that includes University of Bristol co-authors that looks at strigolactone signaling in moss whilst the fourth paper from researchers at Leeds and QMUL studies the role of ascorbate during photosynthesis. The final paper from Warwick and York uses gene expression data from pathogen-infected plants to generate a model for predicting a strategy for synthetic engineering of the defence response.


Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo H, Zhang R, Brown JWS (2018) Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome. Plant Cell doi: 10.1105/tpc.18.00177.

www.plantcell.org/content/early/2018/05/15/tpc.18.00177.long

Open Access

Cristiane Calixto and Wenbin Guo work with John Brown at University of Dundee and the James Hutton Institute and in this large-scale biology paper they characterise the role of alternative splicing (AS) during a stress response. RNAseq was performed on plants exposed to cold stress and they showed that hundreds of genes undergo AS just a few hours after temperature decrease and that this response is sensitive to small changes. The authors propose that AS is a mechanism to fine-tune changes in thermo-plasticity of gene expression and in addition they investigate the activity of the novel splicing factor U2B”-LIKE.

Christiane will discuss this research at the upcoming GARNet2018 meeting held at the University of York in September 2018.


Shoala T, Edwards MG, Knight MR, Gatehouse AMR. OXI1 kinase plays a key role in resistance of Arabidopsis towards aphids (Myzus persicae) (2018) Transgenic Res. doi: 10.1007/s11248-018-0078-x.

Open Access

This work is led by Tahsin Shoala in the lab of Angharad Gatehouse at Newcastle University and demonstrates a novel role for MAPK cascades in resistance to aphid predation. They investigate mutants in OXI1 kinase, a gene that activates MAPK signaling and demonstrate a reduction in the aphid population build-up. Furthermore they show that the effect of OXI works through a mechanism that involves callose deposition, demonstrated as oxi1 mutants lack the upregulation of a set of β-1,3-glucanase genes following predation.


Lopez-Obando M, de Villiers R, Hoffmann B, Ma L, de Saint Germain A, Kossmann J, Coudert Y, Harrison CJ, Rameau C, Hills P, Bonhomme S (2018) Physcomitrella patens MAX2 characterization suggests an ancient role for this F-box protein in photomorphogenesis rather than strigolactone signalling. New Phytol. doi: 10.1111/nph.15214

GARNet committee member Jill Harrison is a co-author on this paper that is led by Mauricio Lopez‐Obando working at Université Paris-Saclay. In Physcomitrella patens development they investigate the role of the moss ortholog of the Arabidopsis strigolactone signaling mutant MAX2. Previous work had shown that moss does response to SL signaing but they find that although Ppmax2 mutants showed defects in early development and photomorphogenesis they do not show changes in the SL response. Fascinatingly this indicates that the molecular components that control SL signaling have diverged in vascular plants and seemingly co-opted a role for MAX2 that was previously not required in mosses.


https://academic.oup.com/jxb/article/69/11/2823/4991886

Plumb W, Townsend AJ, Rasool B, Alomrani S, Razak N, Karpinska B, Ruban AV, Foyer CH. Ascorbate-mediated regulation of growth, photoprotection and photoinhibition in Arabidopsis thaliana (2018) J Exp Bot. doi: 10.1093/jxb/ery170

William Plumb (Leeds) and Alexandra Townsend (QMUL) are the lead authors on this study that investigates the importance of ascorbate during photosynthesis. In this work they analysed the growth of ascorbate synthesis mutants that are smaller and have less biomass than wildtype plants. However these plants have normal levels of non-photoinhibiton, allowing the authors to conclude that ascorbate is needed for growth but not photoprotection.


Foo M, Gherman I, Zhang P, Bates DG, Denby K (2018) A Framework for Engineering Stress Resilient Plants using Genetic Feedback Control and Regulatory Network Rewiring. ACS Synth Biol. doi: 10.1021/acssynbio.8b00037
Mathias Foo and Iulia Gherman (University of Warwick) are lead authors on work that analyses gene expression data taken from Botrytis cinerea-infected Arabidopsis. They have identified a network of genes involved in the defence response. They validate their model against previously obtained time series data and then perturb the model in two differences ways, focused on the transcription factor CHE. This analysis demonstrates the potential of combining feedback control theory with synthetic engineering in order to generate plants that are resistant to biotic stress.

https://pubs.acs.org/doi/10.1021/acssynbio.8b00037

GARNet Research Roundup: May 17th

This weeks GARNet research roundup includes six excellent papers investigating many aspects of Arabidopsis cell biology. Firstly Eirini Kaiserli from Glasgow introduces a novel regulator of blue-light signaling. Second is a paper that analyses the circadian clock with single cell resolution and is led by James Locke (SLCU) and Anthony Hall (Earlham Institute). The next two papers investigate different aspects of hormone signaling, with Keith Lindsey’s group at Durham looking at the relationshop between the HYDRA protein and the auxin response whilst Ottoline Leysers group in Cambridge looks at the link between auxin and cytokinin during shoot growth. The fifth paper from Phillip Mullineaux (University of Essex) provides a genome-wide analysis into the role of HEAT SHOCK TRANSCRIPTION FACTORA1b protein. The final paper from the lab of Piers Hemsley (James Hutton Institute, University of Dundee) should be of interest to many plant molecular biologists as they assess the functional significance of different epitope tags.


Perrella G, Davidson MLH, O’Donnell L, Nastase AM, Herzyk P, Breton G, Pruneda-Paz JL, Kay SA, Chory J, Kaiserli E (2018) ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis. Proc Natl Acad Sci U S A.. pii: 201718099. doi: 10.1073/pnas.1718099115

Open Access

Eirini Kaiserli (University of Glasgow) leads this study that identifies the ZINC-FINGER HOMEODOMAIN 10 (ZFHD10) as a novel regulator of light signaling. ZFHD10 physically interacts with TANDEM ZINC-FINGER PLUS3 (TZP) and these proteins coassociate at promotors that are blue-light regulated. These results reveal of novel mechanism of action for the key multiple signal integrator TZP in the light regulated growth of Arabidopsis hypocotyls.

Eirini discusses this paper on the GARNet YouTube channel.


Gould PD, Domijan M, Greenwood M, Tokuda IT, Rees H, Kozma-Bognar L, Hall AJ, Locke JC (2018). Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression. Elife. 26;7. pii: e31700. doi: 10.7554/eLife.31700 Open Access

https://elifesciences.org/articles/31700

This paper is led by James Locke (SLCU) and Anthony Hall (Earlham) and investigates the circadian clock at single cell resolution. They use Arabidopsis plants grown in constant environmental conditions to show two desynchronised yet robust single cell oscillations that move both up and down the root. Their results indicate that the clock shows cell-to-cell coupling and they they modeled this relationship to recapitulate the observed waves of activity. Overall their results are suggestive of multiple coordination points for the Arabidopsis clock, which is different from the mammalian system of regulation.


http://dev.biologists.org/content/145/10/dev160572

Short E, Leighton M, Imriz G, Liu D, Cope-Selby N, Hetherington F, Smertenko A, Hussey PJ, Topping JF, Lindsey K (2018) Epidermal expression of a sterol biosynthesis gene regulates root growth by a non-cell autonomous mechanism in Arabidopsis. Development . pii: dev.160572. doi: 10.1242/dev.160572 Open Access

This collaboration between the research groups of Keith Lindsey and Patrick Hussey at the University of Durham investigates the role of the HYDRA1 (HYD1) sterol Δ8-Δ7 isomerase in epidermal patterning. This tissue shows highest HYD1 expression and hyd mutants have major root patterning defects. Tissue-specific expression of HYD1 indicates that it is involved with some type of non-cell autonomous signaling. Analysis of PIN1 and PIN2 protein expression suggests that auxin might be this functional signal


http://www.plantphysiol.org/content/early/2018/05/01/pp.17.01691.long

Waldie T, Leyser O (2018) Cytokinin targets auxin transport to promote shoot branching. Plant Physiol. 2018 May 1. pii: pp.01691.2017. doi: 10.1104/pp.17.01691.Open Access

This study from the lab of Ottoline Leyser (SLCU) investigates the integration between the plant hormones cytokinin and auxin. They investigate the role of cytokinin in shoot branching through analysis of Arabidopsis Response Regulators (ARRs) mutants. They show arr mutant phenotypes correlate with changes in stem auxin transport mediated by the PIN3, PIN4 and PIN7 efflux carriers, the expression of each respond to cytokinin signaling. Overall this study identifies a novel alternative pathway by which cytokinin impacts bud outgrowth through alterations in auxin transport.


Albihlal WS, Irabonosi O, Blein T, Persad R, Chernukhin I, Crespi M, Bechtold U, Mullineaux PM (2018) Arabidopsis Heat Shock Transcription FactorA1b regulates multiple developmental genes under benign and stress conditions. J Exp Bot. doi: 10.1093/jxb/ery142 Open Access

Phillip Mullineaux (University of Essex) leads this collaboration with French colleagues in a study that investigates the genome-wide targets of the HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) protein. Under non-stress ad heat-stress conditions they showed that 1000s of genes are differentially expressed with a smaller proportion of genes showing different levels of direct interaction. The indirect targets of HSFA1b are regulated through a network of 27 transcription factors and they also provide evidence for the role of hundreds of natural antisense non-coding RNA in the regulation of HSFA1b targets. Overall they show that HSFA1b is a key regulator of environmental cues to regulate both developmental genes and those involved in stress tolerance.


Hurst CH, Turnbull D, Myles SM, Leslie K, Keinath NF, Hemsley PA (2018) Variable effects of C-terminal tags on FLS2 function – not all epitope tags are created equal. Plant Physiol. doi: 10.1104/pp.17.01700 Open Access

This study from the Hemsley lab (James Hutton Institute, University of Dundee) is a cautionary tale on the use and interpretation of results obtained from experiments with commonly-used epitope tags. They assessed the activity of plants containing transgenic FLS2 proteins, which is a receptor-like kinase (RLKs) involved in the defence response. They show that various FLS2 C-terminal epitope fusions reveal highly variable and unpredictable outputs, indicating that the presence of different tags significantly alters protein function. This finding might require a reassessment of many experiments that rely on interpreting the function of epitope-tagged proteins and has significant for many if not all plant molecular biologists.

GARNet Research Roundup: March 29th

Tags: No Tags
Comments: No Comments
Published on: March 29, 2018

This edition of the GARNet research roundup begins with an analysis of the CELLULOSE SYNTHASE COMPLEX led by Simon Turner in Manchester. Next are two papers from Ian Henderson at Cambridge who, in collaboration with Rob Martienssen in the USA, has investigated the epigenetic factors that control meiotic recombination. Next are two papers led by Hugh Nimmo (Glasgow) who is researching alternative splicing of the LATE ELONGATED HYPOCOTYL transcript. Marc Vendrell and Karl Oparka at the University of Edinburgh are co-authors in the next paper that investigates the binding specificity of the AtSUC2 protein. The seventh paper includes David Salt (Nottingham) as a co-author in an investigation in the plants response to zinc. The final three papers are methods papers on gravitropism, ChIP-Seq and calcium sensing from Nottingham University, SLCU and the John Innes Centre respectively.


Kumar M, Mishra L, Carr P, Pilling M, Gardner P, Mansfield SD, Turner SR (2018) Exploiting CELLULOSE SYNTHASE (CESA) class-specificity to probe cellulose microfibril biosynthesis. Plant Physiol. doi: 10.1104/pp.18.00263 Open Access

Simon Turner (University of Manchester) leads this study that investigates the subunit specificity of the CELLULOSE SYNTHASE COMPLEX, which is composed of many CESA components. Mutant cesa plants were used to probe the specificity of these subunits. Overall the authors found that CESA classes have similar roles in determining cellulose microfibril structure but that the rates of cellulose synthesis might be altered in a subunit-specific manner.


Choi K,, Zhao X, Tock AJ, Lambing C, Underwood CJ,, Hardcastle TJ, Serra H, Kim J, Cho HS, Kim J, Ziolkowski PA, Yelina NE, Hwang I, Martienssen RA, Henderson IR (2018) Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. doi: 10.1101/gr.225599.117
The research groups of Ian Henderson (University of Cambridge) and Rob Martienssen (CSHL) co-lead back-to-back papers that investigate the factors that influence meiotic recombination frequencies. The Henderson led-paper focuses on the position of the SPO11 topoisomerase and the epigenetic factors, such as H3K4me3 and DNA methylation that reside in those areas. They discovered some surprising relationships between SPO11 binding and different transposon classes.


Underwood CJ, Choi K, Lambing C, Zhao X, Serra H, Borges F, Simorowski J, Ernst E, Jacob Y, Henderson IR, Martienssen RA (2018) Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res. doi: 10.1101/gr.227116.117

Open Access

The Martienssen–led paper focuses on epigenetic marks, such as H3K9me2 and non-CG DNA methylation that reside at pericentromeric regions. By altering the distribution of these marks, the amount of pericentrometric recombination can be changed and that the number of double stranded breaks increase in H3K9me2/non-CG mutants.


James AB, Sullivan S, Nimmo HG (2018) Global spatial analysis of Arabidopsis natural variants implicates 5’UTR splicing of LATE ELONGATED HYPOCOTYL in responses to temperature. Plant Cell Environment. doi: 10.1111/pce.13188

James AB, Calixto CPG, Tzioutziou NA, Guo W, Zhang R, Simpson CG, Jiang W, Nimmo GA, Brown JWS, Nimmo HG (2018) How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of LATE ELONGATED HYPOCOTYL (LHY). Plant Cell Environ. doi: 10.1111/pce.13193

The first of these back-to-back papers is led by Hugh Nimmo (Glasgow) in a study that characterises a set of 5’UTRs in the LATE ELONGATED HYPOCOTYL (LHY) gene and how they change in response to temperature. This is linked to a correlation of how these LHY haplotypes are global distributed.

The second paper is an extension of this study and includes Hugh Nimmo (Glasgow) and John Brown (JHI, Dundee) as co-corresponding authors. They that show RNA-binding splicing factors (SFs) are necessary for temperature-induced changes in the LHY transcript. LHY might be considered a molecular thermostat whose splicing can response to changes as little as 2°C.


De Moliner F, Knox K, Reinders A, Ward J, McLaughlin P, Oparka K, Vendrell M (2018) Probing binding specificity of the sucrose transporter AtSUC2 with fluorescent coumarin glucosides. J Exp Bot. doi: 10.1093/jxb/ery075 Open Access

Marc Vendrell and Karl Oparka (University of Edinburgh) are the corresponding authors on this bioimaging study that probes the specificity of the AtSUC2 phloem sucrose transporter. They use structural varieties in coumarin glucosides to precisely define the binding characteristics of AtSUC2.


Chen ZR, Kuang L, Gao YQ, Wang YL, Salt DE, Chao DY (2018) AtHMA4 Drives Natural Variation in Leaf Zn Concentration of Arabidopsis thaliana. Front Plant Sci. doi: 10.3389/fpls.2018.00270

Open Access

David Salt (University of Nottingham) is a co-author on this Chinese study that characterises the role of the Heavy Metal-ATPase 4 (HMA4) in the respond to zinc.


Muller L, Bennett MJ, French A, Wells DM, Swarup R (2018) Root Gravitropism: Quantification, Challenges, and Solutions. Methods Mol Biol. doi: 10.1007/978-1-4939-7747-5_8

Ranjan Swarup (University of Nottingham) leads this methods paper that describes techniques for the automated measurement of root gravitropic responses.


Cortijo S, Charoensawan V, Roudier F, Wigge PA (2018) Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis. Methods Mol Biol. doi: 10.1007/978-1-4939-7747-5_18

Phillip Wigge (SLCU) leads this methods paper that outlines the technical details for the now common and important technique of ChIP-Seq from Arabidopsis roots.


Kelner A, Leitão N, Chabaud M, Charpentier M, de Carvalho-Niebel F (2018) Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells. Front Plant Sci. doi: 10.3389/fpls.2018.00245 Open Access

Miriam Charpentier (John Innes Centre) is a co-author on this work that uses fluorescent protein-based Ca2+ sensors, the GECOs, to successfully monitor the calcium response to a range of biotic and abiotic elicitors. These GECO-based sensors represent an exciting new tool for the study of calcium dynamics.

Arabidopsis Research Roundup: Nov 24th

The week’s UK Arabidopsis research roundup includes seven papers from groups who work on a range of topics.

Firstly Antony Dodd (Bristol) investigates the role of sugar signaling during hypocotyl elongation and provides an audio description of this groups work. Secondly Mike Holdsworth (Nottingham) leads a paper that demonstrates the importance of the N-rule pathway in the response to abiotic stresses. Thirdly are a set of papers that have developed models on three different topics. Mike Blatt’s group at Glasgow University has a cross-scale model that is applied to stomatal opening whilst Stan Maree and Veronica Griensien (JIC) use modeling to predict how the topology of pavement cells is determined. Finally Arabidopsis is used as an example that fits a model that investigates how critical mutation rate (CMR) changes with population size. In the sixth paper Lorraine Williams and colleagues (University of Southampton) investigate the function of a rice transport protein involved in manganese tolerance by expressing it in Arabidopsis. The final paper from Jerzy Paszkowski (SLCU) outlines a novel screening strategy for retrotransposons and the identification of an ecotype specific element.


Simon NM, Kusakina J, Fernández-López Á, Chembath A, Belbin FE, Dodd AN (2017) The energy-signalling hub SnRK1 is important for sucrose-induced hypocotyl elongation. Plant Physiol. doi: 10.1104/pp.17.01395

Open Access

This UK-wide collaboration is led by Anthony Dodd at the University of Bristol and has looked at the factors that control hypocotyl elongation in response to sugar signalling. This response is integrated through the sugar-signalling hub, SnRK1 and is regulated by trehalose-6-phosphate (Tre6P). They also integrate hormone signalling and the influence of diurnal rhythms into the control of this process, importantly showing that the ubiquitous sugar regulator hexokinase is not involved in this process.

Antony kindly provides an audio description of this research that can be found on YouTube or on the GARNet iTunes channel. Please subscribe!


Vicente J, Mendiondo GM, Movahedi M, Peirats-Llobet M, Juan YT, Shen YY, Dambire C, Smart K, Rodriguez PL, Charng YY, Gray JE, Holdsworth MJ (2017) The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Current Biology doi: 10.1016/j.cub.2017.09.006

Open Access

Mike Holdsworth (University of Nottingham) is the corresponding author of this collaboration with colleagues from Sheffield, Spain and Taiwan that investigates how the N-rule degradation pathway acts a sensor of general abiotic stress in both Arabidopsis and Barley. These responses are integrated through degradation of the group VII Ethylene Response Factor transcription factors (ERFVIIs) family via direct and indirect pathways. In addition they link ERFVII activity with chromatin-remodeling ATPase BRAHMA providing evidence for a single mechanism that links the responses to a number of environmental signals.


Wang Y, Hills A, Vialet-Chabrand SR, Papanatsiou M, Griffiths H, Rogers S, Lawson T, Lew V, Blatt MR (2017) Unexpected Connections between Humidity and Ion Transport Discovered using a Model to Bridge Guard Cell-to-Leaf Scales. Plant Cell. doi: 10.1105/tpc.17.00694

Open Access

Mike Blatt (University of Glasgow) leads this collaboration with researchers at the Universities of Cambridge and Essex. They have developed the OnGuard2 quantitative systems platform that integrates numerous parameters that control guard cell dynamics across many scales including at molecular, cellular, tissue and canopy levels. They experimentally demonstrate that OnGuard2 faithfully reproduces the kinetics of real stomatal movement and therefore that this modeling is able to bridge the micro-macro divide.


Carter R, Sánchez-Corrales YE, Hartley M, Grieneisen VA, Marée AFM (2017) Pavement cells and the topology puzzle. Development. doi: 10.1242/dev.157073

Stan Maree and Veronica Griensien (John Innes Centre) lead this study that has looked at the patterning of 50000 Arabidopsis pavement cells to understand the topological signatures that exist in this population. They have developed a heuristic cellular division rule to produce a model that can reproduce their observations by predicting how these cells divide. They confirmed their model by tracking 800 mitotic events, allowing them to conclude that distinct topology is not a direct consequence of the jigsaw-like shape of the cells, but rather owes itself to life-history-driven process, with limited impact from cell surface mechanics.


Aston E, Channon A, Belavkin RV, Gifford DR, Krašovec R, Knight CG (2017) Critical Mutation Rate has an Exponential Dependence on Population Size for Eukaryotic-length Genomes with Crossover. Sci Rep. doi: 10.1038/s41598-017-14628-x

Open Access

In this study a team of computational biologists from Keele, Middlesex and Manchester have used Arabidopsis as an exemplar to understand how critical mutation rate (CMR) provides insights into the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness. They have produced a simulation for these parameters that predicts outcomes for a range of biological organisms, showing that CMR decreases with reduced population size. They suggest that the model can be used to understand the conservation strategies exhibited in populations that are approaching extinction.


Farthing EC, Menguer PK, Fett JP, Williams LE (2017) OsMTP11 is localised at the Golgi and contributes to Mn tolerance. Sci Rep. doi: 10.1038/s41598-017-15324-6
Lorraine Williams (University of Southampton) and her colleagues have identified a transporter protein from rice, OsMTP11 that is involved in mangenase tolerance. They show that heterologous expression of this protein is able to rescue the manganese sensitive phenotype of Arabidopsis mtp11-3 knockouts. They show that OsMTP11 localises to the Golgi and have also conducted site directed mutagenesis to identify key residues that are important for the function of this protein.


Griffiths J, Catoni M, Iwasaki M, Paszkowski J (2017) Sequence-independent identification of active LTR retrotransposons in Arabidopsis. Mol Plant. doi: 10.1016/j.molp.2017.10.012

Open Access

Jerzy Paszkowski (SLCU) leads this single-figure short manuscript that has characterised the population of retrotransposons in Arabidopsis. They develop a novel cost-effective screening strategy that allows them to identify sequences found on extrachromosomal DNA (ecDNA), which includes a retroelement found in Lansberg erecta but not in the reference genome ecotype Col-0.

Arabidopsis Research Roundup: October 5th

After a brief hiatus the UK Arabidopsis Research Roundup returns with eight papers that focus on different aspects of Arabidopsis cell biology.

Firstly GARNet PI Jim Murray leads a study that performs a genome-wide analysis of sub-nucleosomal particles whilst Phil Wigge’s lab at SLCU conducts a more focused study on G-box regulatory sequences.

Thirdly Veronica Grieneisen (JIC) and co-workers have modelled the process of boron transport in the root, revealing exciting insights into how traffic jams might form.

Fourthly is a large scale biology paper led by Miriam Gifford (University of Warwick) that looks at the temporal and spatial expression patterns that control lateral root development.

Next Alexander Ruban (QMUL) investigates how low-light acclimated plants respond to high light.

The sixth and seventh studies are led by Alison Baker (Leeds) or Bill Davies (Lancaster) and look at phosphate or hormone signaling respectively.

Finally Gareth Jenkins (University of Glasgow) compares the UV-B signaling module in lower plants with that in Arabidopsis.


Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH (2017) Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet. doi: 10.1371/journal.pgen.1006988

Open Access

GARNet PI Jim Murray is the corresponding author on this study that performs a whole-genome scan of sub-nucleosomal particles (subNSPs) that have been identified using differential micrococcal nuclease (MNase) digestion. They link the position of subNSPs with RNAseq data taken from plants grown in different light conditions. They show that this new technique is able to discriminate regulatory regions that have been obscured by previous experimental procedures and therefore represents a very useful experimental method.


Ezer D, Shepherd SJ, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger K, Wigge PA (2017) The G-box transcriptional regulatory code in Arabidopsis. Plant Physiol. 10.1104/pp.17.01086

Open Access

Phil Wigge (SLCU) is the corresponding author of this study that investigates the sequence elements that are linked to the conserved G-box regulatory motifs. They identify a set of bZIP and bHLH transcription factors that predict the expression of genes downstream of perfect G-boxes. In addition they have developed a website that provide visualisations of the G-box regulatory network (araboxcis.org).


Sotta N, Duncan S, Tanaka M, Takafumi S, Marée AF, Fujiwara T, Grieneisen VA (2017) Rapid transporter regulation prevents substrate flow traffic jams in boron transport. Elife. doi: 10.7554/eLife.27038

Open Access

Veronica Grieneisen (JIC) is the lead author on this detailed analysis of the regulatory circuits that are established during boron uptake in Arabidopsis roots. They used mathematical modelling to show that during boron uptake, swift regulation of transport activity is needed to prevent toxic accumulation of the metal. This system has analogy to the way in which traffic jams of nutrient flow might form and has relevance for regulatory systems outside of plant science. https://www.sciencedaily.com/releases/2017/09/170905104358.htm


Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A, Samavedam S, Bomono G, Hersh DS, Coruzzi GM, Burroughs NJ, Gifford ML (2017) Root architecture shaping by the environment is orchestrated by dynamic gene expression in space and time. Plant Cell. doi: 10.1105/tpc.16.00961

Open Access

Miriam Gifford (University of Warwick) leads this broad consortium that has taken a systems biology approach to better define the environmental factors that control dynamic root architecture. They track transcriptional responses during lateral root development in remarkable detail, looking at individual transcripts. They confirm the idea that the activity of a gene is not simply a function of its amino acid sequence but rather the temporal and spatial regulation of its expression.


Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV (2017) Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. J Exp Bot. doi: 10.1093/jxb/erx213. Open Access

Alexander Ruban (QMUL) is the corresponding author on this collaboration with Chinese colleagues that examined the effect of high-light stress on low-light acclimated Arabidopsis plants. Initially these plants showed significant photo-inhibition but that they recovered rapidly and after 2 weeks of treatment there was no change in photosynthetic yield. In addition high light acclimated plants showed accelerated reproductive phase change that coincided with higher seed yield.


Qi W, Manfield IW, Muench SP, Baker A (2017) AtSPX1 affects the AtPHR1 -DNA binding equilibrium by binding monomeric AtPHR1 in solution. Biochem J. doi: 10.1042/BCJ20170522 Open Access

Alison Baker (University of Leeds) leads this research that focusses on the binding of the Phosphate Starvation Response 1 (PHR1) transcription factor to regulatory P1BS DNA sequences. They show a tandem P1BS sequence is bound more strongly than a single P1BS site. Ultimately they demonstrate tight regulation of phosphate signaling both by the concentration of phosphate as well as the activity of the interacting SPX protein.


Li X, Chen L, Forde BG, Davies WJ (2017) The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. Front Plant Sci. doi: 10.3389/fpls.2017.01493 Open Access

Bill Davies and Brian Forde (Lancaster University) lead this work that investigates the effect on ethylene and auxin on the biphasic response to ABA during root elongation. They used a range of hormone signalling mutants to show that the response to high ABA is via both ethylene and auzin signalling. In contrast the response to low ABA does not require ethylene signalling.


Soriano G, Cloix C, Heilmann M, Núñez-Olivera E, Martínez-Abaigar J, Jenkins GI (2017) Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. New Phytol. doi: 10.1111/nph.14767

Gareth Jenkins (University of Glasgow) is the corresponding author of this work that looks at the role of the UVR8 UV-B receptor in lower plants. They expressed the versions of UVR8 from a moss or a liverwort in Arabidopsis and showed that although there appears to be differences in the regulation of this protein, the mechanism of UV-B signaling is evolutionarily conserved

«page 2 of 4»

Follow Me
TwitterRSS
GARNetweets
Categories
April 2024
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
2930  

Welcome , today is Thursday, April 18, 2024