Staying together: green beginnings

Comments: No Comments
Published on: November 5, 2013
This seaweed, Ulva linza, would only exist as undifferentiated cells if not for bacterial signals

The second of our series of blog posts Celebrating Basic Plant Science is written by Juliet Coates, Lecturer in Molecular Genetics at the University of Birmingham.

Living organisms can be categorised in a number of ways, but one very obvious “either/or” distinction is between organisms that are made up of a single cell – unicellular organisms – and those that are many-celled, or multicellular.

The multicellular state arose many times during evolution: animals, plants, algae, amoebae, fungi and bacteria can all be multicellular. Multicellular organisms completely underpin life on Earth as we know it today – and they all must have evolved from single-celled ancestors. We understand a little of why they might have done so, as being multicellular gives a number of competitive advantages: increased size and improved nutrient collection being just two. Yet how multicellular organisms came to be is a key biological problem that is still largely unanswered.

I am a plant scientist, so I am particularly interested in the origins of multicellular green things: plants and algae. Without becoming multicellular, plants would never have colonised the land, and the evolution of multicellular plants and algae was key in shaping our climate, our ecosystems and our oxygen-rich atmosphere. How green multicellularity arose seems to me to be a really fundamental thing to understand, but it is a little-addressed question. Here I’ll give an overview of the important findings to date about the evolution of multicellularity.

 

(more…)

Celebrating Basic Plant Science: Siobhan Braybrook

The first in our series of Celebrating Basic Plant Science articles comes from Siobhan Braybrook, a Career Development Fellow at the Sainsbury Laboratory at the University of Cambridge. She explains her work on plant development and discusses why she thinks basic plant science is value for money. 

In parts of India people have built ‘living bridges’ with traditional methods. Could developmental biology build the living bridges of the future?

How do we measure the importance of scientific works? Do we require immediate applications? Do we simply need to know? Both basic and applied science are important and vital for our sociological and scientific progress, but we tend to measure their impact with a very immediate and short ruler, one which is biased towards applied outcomes. Basic science is concerned with knowledge for knowledge’s sake, the desire to know. Applied science is directed towards a specific problem and it’s solution. Here, I propose that is impossible to anticipate the value of a basic scientific work beyond its immediate context, and that attempting to do so might just force us to narrow our field of imagination and innovation.

My group focuses on a basic scientific question- we would like to know how plants grow shapes. Our research definitely falls into the category of basic science as we pursue the answer to this question, not with a specific application in mind, but with a simple desire to know. But that does not mean that we don’t find applied directions during our pursuits.

Plant cells are pretty special to me because they exist in a box; the plant cell wall contains all of the other cell contents, allowing the cell to attain high pressures and also being the regulator of cell shape. We use biology, genetics, biochemistry, and materials science to understand how the cell wall controls cell, organ, and whole plant shape. As an example, we have shown with collaborators in France that new organ formation strictly requires a particular change in the cell wall, altered pectin chemistry. It was surprising that something as simple as pectin, the same thing used to make jellies set, was able to control whole plant shape by limiting new organ growth. These experiments have directed us to look at other growth processes that might be controlled, in part, by pectins in the cell wall.

From a basic science standpoint, our findings were very satisfying- we had found out something new and interesting. But they have also led us down some less familiar paths, into the realm of applied science. Can we take what we have learned about a biological material, the cell wall, and design man-made materials that also have the potential to grow? Could we one day place a small block of material on the ground and have it grow into a house? A car? Alternatively, if we understand how the cell wall controls growth, could we plant a seed that grows into a house frame? A chair? It is unlikely that any company would touch this idea without a very, very, very long pole at this time. It is too speculative, maybe even too crazy. But within the realm of basic science, we can continue to chip away at the possibility- with a freedom that does not require a final product right away, a freedom that allows us to grow our ideas along side our plants.

In closing, it is probably highly simplistic to separate basic and applied science. There is cross talk between the two, research projects that exist in a continuum, and research questions that are entangled. However, there are some very special things about basic science: you don’t need to know exactly where you are going in order to end up somewhere cool; you can explore things for the sake of knowledge which gives a lot of freedom; and sometimes you find out unexpected things that end up having massive applied impacts that you might never have anticipated. It is essential that we create a place for such scientific freedoms, that we don’t assume which pursuits have value before they have been investigated, and that we allow for the possibility of novel discoveries.

You can read Siobhan Braybrook’s research about pectin and new organ formation in Braybrook and Peaucelle 2013, PLoS ONE 8(3): e57813 and Peaucelle et al. 2001, Curr. Biol. 21:1720

Image credit: Screwtape via Flickr

 

Celebrating Basic Plant Science

Comments: 1 Comment
Published on: October 1, 2013

Do you know why the government uses taxpayers’ money to fund scientific research with no obvious application to the real world and definitely no short-term gain? Do you think it is valuable to carry out such research? If you’re a scientist, can you explain why your research is important?

At this year’s annual UK Plant Sciences Federation conference, PlantSci 2013, keynote speaker David Baulcombe made his case for the absolute necessity of ‘basic’ plant science research – science done for the sake of curiosity and understanding, to answer a question just because it’s there. He argues that above and beyond simple curiosity, maintaining a diversity of basic plant science research avenues is critical for paradigm shifts and future innovation, which are impossible to predict and can impact not only plant and agricultural science but medical science too. You can see him present his arguments in the video below, kindly provided by the Journal of Experimental Botany.

During the question and answer session after his talk, Baulcombe suggested that it would be a good idea to have some sort of online celebration of basic plant science. We jumped on this idea, and asked a few UK based scientists researching fundamental questions in plant science to write a blog post explaining their research and why they spend their time and energy on it. The ‘Celebrating Basic Plant Science’ series will start this week, and we’ll publish one story a month until we run out of volunteers. For now they’ll be here on the blog, but eventually we’ll give them a more permanent home on the GARNet website.

If you’re interested in finding out more about a certain area of plant science, please feel free to Tweet us (@weedinggems, @garnetweets) or to leave a comment below. If you want to contribute your own story Celebrating Basic Plant Science, we’d love to hear from you – please email charis@garnetcommunity.org.uk

Video credit: Journal of Experimental Botany. See the other talks from PlantSci 2013 here

page 2 of 2»

Follow Me
TwitterRSS
GARNetweets
April 2018
M T W T F S S
« Mar    
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Welcome , today is Thursday, April 26, 2018