Arabidopsis Research Roundup: August 26th

Tags: No Tags
Comments: No Comments
Published on: August 26, 2016

This weeks Arabidopsis Research Roundup includes three papers across a wide range of topics. Firstly is a widely-reported study, described here with an audio description by Nik Cunniffe and Sanjie Ziang, of the evolutionary relationship between viral infection, pollinator attraction, plant fertility and miRNA-regulated gene expression. Secondly, Gordon Simpson is a co-author on a paper that has elucidated the crystal structure of the FPA proteins and finally Gareth Jenkins leads an investigation into the relationship between UV light, the UVR8 protein and histone modifications.

Groen SC, Jiang S, Murphy AM, Cunniffe NJ, Westwood JH, Davey MP, Bruce TJ, Caulfield JC, Furzer OJ, Reed A, Robinson SI, Miller E, Davis CN, Pickett JA, Whitney HM, Glover BJ, Carr JP (2016) Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts? PLoS Pathog. 12(8):e1005790

http:/​/​dx.​doi.​org/10.1371/journal.ppat.1005790

Open Access
BumbleBee
This pan-UK collaboration is led by John Carr, Beverly Glover and Nik Cunniffe at the University of Cambridge and has received wide attention in the general press. Nik Cunniffe also kindly provides an audio description of this work that looked into the effect of viral infection on the attraction of pollinators. The authors used GC-MS to look at the volatiles produced in virally infected Arabidopsis and tomato plants, showing that infection can alter the foraging behavior of bumblebees. Mutational analysis of both cucumber mosaic virus (CMV) and Arabidopsis showed that the microRNA pathway is involved in regulating the emission of these pollinator-perceivable volatiles. When virus-infected tomato plants were not pollinated there was a clear reduction in seed yield, indicating that the plant requires the volatile production following viral infection to attract pollinators, leading to reproductive success. Importantly the authors model the possible trade-off between viral infection and reproductive success in the wild, which might oppose the strong selective pressure for the establishment of disease-resistance genes. The authors speculate that this is a co-beneficial relationship for both virus and plant.

Nick Cunniffe and Sanjie Jiang kindly provide an audio description of this work.


 

Zhang Y, Rataj K, Simpson GG, Tong L (2016) Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA PLoS One 11(8):e0160694

http:/​/​dx.​doi.​org/10.1371/journal.pone.0160694

Open Access

Gordon Simpson (University of Dundee) in a co-author on this US-led study that has elucidated the crystal structure of the SPOC domain of the FPA floral regulator protein. FPA contains a N-terminal RNA recognition motif and a C-terminal SPEN paralog and ortholog C-terminal (SPOC) domain. This SPOC domain is highly conserved throughout plant species and this crystal structure is an important development in our understanding of the regulation of RNA 3’-end formation and how much the plant SPOC domains compare with an equivalent from metazoans.

 

Velanis CN, Herzyk P, Jenkins GI (2016) Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification Plant Mol Biol.

http:/​/​dx.​doi.​org/10.1007/s11103-016-0522-3

Open Access

Gareth Jenkins (Glasgow) leads this study that continues his groups work on the Arabidopsis UVR8 photoreceptor. They show that UV-B exposure increases histone lysine acetylation on UVR8-regulated genes in a UVR8 dependent manner. In fact all of the histone enrichments throughout the genome following UV-B required UVR8 activity. However the authors could find no direct interaction between UVR8 and the known enzymes involved in light-mediated histone modification indicating that UVR8 either interacts with a novel set of proteins or the UVR8 effect is mediated via a currently unknown signaling intermediate.
UVRpic

Arabidopsis Research Roundup: July 19th

There are six papers in this weeks Arabidopsis Research Roundup. Two of these include research on the stomatal patterning gene TMM. Firstly a White Rose consortium investigates the ancestral basis of stomatal patterning, whilst a Glasgow-based study investigates the relationship between patterning and the dynamics of guard cell opening. The GARNet committee is represented by work from Cardiff that looks at the relationship between seed size and shoot branching and also from Cambridge in research that studies meiotic recombination in genomic regions important for pathogen defense. Finally are two studies that look into aspects of root and shoot patterning and include co-authors from CPIB in Nottingham or the John Innes Centre.

Caine R, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ (2016) An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens Development

http://dx.doi.org/10.1242/dev.135038 Open Access

This study is a collaboration between labs in Sheffield and Leeds, led by Andrew Fleming (Sheffield). They investigate the role that the signalling module comprised of Epidermal Patterning Factors (EPFs), ERECTA and TMM play during the evolution of stomatal patterning. This module is known to play an important role in Arabidopsis and in this study the authors show that the moss Physcomitrella patens contains homologs of each of the genes and that they perform the same function. When P.paten versions of these genes are transferred to equivalent Arabidopsis mutants they show conserved function demonstrating that this module is an example of an ancestral patterning system.

Andrew Fleming provides a brief audio description of this manuscript:

Papanatsiou M, Amtmann A, Blatt MR (2016) Stomatal spacing facilitates guard cell ion transport independent of the epidermal solute reservoir. Plant Physiol. http://dx.doi.org/10.1104/pp.16.00850 Open Access

Mike Blatt and Anna Amtmann (University of Glasgow) are the co-supervisors for this study into the relationshop between ion transport in stomatal guard cells and their physical positioning within a leaf. They used a genetic approach to assess the effect of stomatal clustering, showing that too many mouths (tmm) mutant plants have reduced stomatal movements associated with alterations in K+ channel gating and coincident with a surprising reduction in the level of K+ ions in guard cells. These results underline the importance of stomatal spacing in this process but do not provide a full explanation into the alteration in K+ ion dynamics.

Sornay E, Dewitte W, Murray JAH (2016) Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture Plant Signaling and Behaviour e1192741

http://dx.doi.org/10.1080/15592324.2016.1192741 Open Access

From http://dx.doi.org/10.1080/15592324.2016.1192741
From http://dx.doi.org/10.1080/15592324.2016.1192741

This research comes from the lab of GARNet PI Jim Murray (Cardiff) and investigates cell proliferation and growth within a developing seed. They previously have shown that targeting of D-type cyclin CYCD7;1 to the central cell and early endosperm can trigger nuclear divisions and ovule abortion, which leads to a smaller number of larger seed. In this study they show that development of larger seed in transgenic plants is influenced by the architecture of the mother, as plants with increased side branches, caused by pruning of the main stem, do not generate this phenotype. This is indicative of a close relationship between the amount of resources allocated to different parts of the plant and that a transgenic effect was altered by a different plant morphology. This should provide an important insight into future work that aims to define the effect of any particular transgenic alteration.

Choi K, Reinhard C, Serra H, Ziolkowski PA,, Underwood CJ,, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP,, Henderson IR (2016) Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet. 12(7):e1006179.

http://dx.doi.org/10.1371/journal.pgen.1006179 Open Access

GARNet advisory board member Ian Henderson (Cambridge) is the corresponding author of this study that involves contributions from the UK, US, Poland and France. They investigate genomic regions that show increased meiotic recombination, which is predicted to occur coincident with genes involved in pathogen defence given their requirement to adapt to new external challenges. This study focuses on NBS-LRR domain proteins that tend to physically cluster in the Arabidopsis genome. Interesting they discovered both hot and coldspots for meiotic recombination that associate with NBS-LRR clusters, the later often correlating with structural heterozygosity. In a more detailed dissection of 1000 crossovers in the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R hotspot, they discovered higher recombination frequencies associating with known sequence motifs important for the pathogen response, which were influenced by ecotype-specific factors. Ultimately the authors note that there is a complex relationship between regions of meiotic recombination, structural heterozygosity and the evolutionary pressures that occurs with host-pathogen relationships.

Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development http://dx.doi.org/10.1242/dev.136465 Open Access

From http://dx.doi.org/10.1242/dev.136465
From http://dx.doi.org/10.1242/dev.136465

 Malcolm Bennett (CPIB) is the sole UK-based co-author on this study led by Belgian collaborators and investigates the role of reactive oxygen species (ROS) in auxin-regulated lateral root (LR) formation. They show that ROS can reactivate LR primordia and pre-branch sites, resulting in increased LR numbers. This occurs in both wildtype and in auxin mutants that have reduced numbers due to changes in auxin-mediated cell wall remodeling. ROS is deposited in the apoplast of emerging LR cells in a pattern that is coincident with the expression of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH) genes. Concomitantly the altered expression of RBOH was shown to affect the development and emergence of LRs. This adds a further level of complexity to the current understanding of the signaling factors that converge to facilitate LR growth.

 

Shi B,, Zhang C, Tian C, Wang J,, Wang Q,, Xu T,, Xu Y, Ohno C, Sablowski R, Heisler MG, Theres K, Wang Y, Jiao Y (2016) Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genet. http://dx.doi.org/10.1371/journal.pgen.1006168 Open Access

This Chinese-led study includes Robert Sablowski (JIC) as a co-author and studies the factors that influence the development of axillary meristems. They use innovative live imaging to show that SHOOT MERISTEMLESS (STM) is continuously expressed and that this dependent on a leaf axil auxin minimum. Once STM expression is lost then the axil is unable to form a meristem even if STM is switched back later in development, indicating that cells undergo an irreversible developmental commitment. The expression domain of STM is under cell-type specific control of REVOLUTA (REV) DNA binding. Overall this study demonstrates that meristematic competence and initiation is dependent on differing levels of the key regulator STM.

From http://dx.doi.org/10.1371/journal.pgen.1006168
From http://dx.doi.org/10.1371/journal.pgen.1006168

Arabidopsis Research Roundup: June 9th

This edition of the Arabidopsis Research Roundup pleasingly includes four Open Access articles. Firstly Jose Gutierrez-Marcos leads an investigation into stress-induced memory, secondly Richard Morris is the corresponding author on a study that has developed a new model that explains waves of calcium signalling that response to environmental stresses. Thirdly is a UK-US collaboration that defines the factors that control carotenoid accumulation in seeds. Finally Chris Hawes leads a study that characterises the novel localisation of a subset of auxin biosynthetic enzymes.

Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity Elife http://dx.doi.org/10.7554/eLife.13546 Open AccessStress_Model

Jose Gutierrez-Marcos is the corresponding author on this pan-European study that adds to our increasing knowledge about the role of generational memory in the response to stress. Distinct regions of the Arabidopsis genome are susceptible to fluctuations in the level of DNA methylation in response to hyperosmotic stress, a condition that persists into a following generation. This effect is transmitted through the female lineage and the authors investigate this effect in more detail by focussing on a single epigenetically targeted locus. By designing experiments that ran over a series of generations they show that a plants ‘short term memory’ is reliant on the DNA methylation machinery and is able to transmit a distinct developmental response to immediate offspring.

Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted Calcium Wave Dependent on AtRBOHD and TPC1 Propagates the Systemic Response to Salt Stress in Arabidopsis Roots. Plant Physiol.

http:/​/​dx.​doi.​org/​10.​1104/​pp.​16.​00215 Open Access

Richard Morris (JIC) leads this US-UK collaboration that investigates the downstream mechanisms that occur after the waves of ROS and Ca2+ signalling that respond to environmental stresses. The authors show that the current model for propagation of this wave, which relies upon a diffusive wave Ca2+ signalling, is unable to explain the speed of transmission of the wave. The authors develop a new model that adds a ROS-signalling component to explain the velocity of the Ca2+ wave and experimentally verify that their model could represent the in vivo situation. In addition they show that the effectiveness of this ROS-release signalling module is dependent on the activity of the vacuolar ion channel TPC1 and the NADPH Oxidase AtRBOHD.
CaWavePic
Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M, Lipka AE, Angelovici R, Gore MA, DellaPenna D (2016) ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing Arabidopsis seed. Plant Physiol.

http:/​/​dx.​doi.​org/​10.​1104/​pp.​16.​00604 Open Access

The lead author of this US-led study is Sabrina Gonzalez-Jorge who is currently a post-doc in GARNet committee member Ian Henderson’s lab in Cambridge. This study elucidates nine loci that are involved in carotenoid homeostasis in Arabidopsis seeds and shows that plants lacking the ZEAXANTHIN EPOXIDASE (ZEP) protein have a six-fold reduction in total seed carotenoids. Natural variation within the ZEP gene is able to account for the fine-tuning of seed carotenoid content and acts upstream of two previously characterised CAROTENOID CLEAVAGE DIOXYGENASE enzymes. Importantly, and somewhat surprisingly, four of the nine Arabidopsis loci are thought to have conserved function in determining the composition of carotenoids in maize kernels. This demonstrates that studying this phenomonen in Arabidopsis is highly relevant for study of the same process in economically important crops.

Kriechbaumer V, Botchway SW, Hawes C (2016) Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway J Exp Bot.

http://dx.doi.org/10.1093/jxb/erw195 Open Access

Chris Hawes (Oxford Brookes) leads this study that localised a subset of enzymes involved in auxin biosynthesis to the endoplasmic reticulum. In addition certain of these enzymes appear to physically interact. This localisation is confirmed by showing ER microsomal fractions are able to undertake auxin biosynthesis. The auxin signalling pathway is complex and well characterised yet this finding adds another layer of regulation that might influence the dynamics of auxin activity.

Arabidopsis Research Report: May 26th

This weeks Arabidopsis Research Roundup includes six studies across a range of discplines. Firstly Alison Smith provides an excellent audio description of an investigation into the dynamics of night-time starch degradation.

Secondly three UK institutions (Durham, Exeter and Oxford Brookes) participate in a study of VAP27 membrane network proteins. Next a broad collaboration from CPIB in Nottingham then introduce a multi-scale model that helps describe Arabidopsis root development.

We also include two studies that involve collaborations with Korean researchers: Gary Loake is a contributor on a study that introduces plant RALF genes whilst Ian Henderson’s research group participates in a study into the function of the SWR1 complex in miRNA gene expression. Finally we highlight a new Plant Cell teaching tool put together by UK academics from Hull and Bristol.

Feike D, Seung D, Graf A, Bischof S, Ellick T, Coiro M, Soyk S, Eicke S, Mettler-Altmann T, Lu KJ, Trick M, Zeeman SC, Smith AM (2016) The starch granule-associated protein EARLY STARVATION1 (ESV1) is required for the control of starch degradation in Arabidopsis thaliana leaves Plant Cell

http://dx.doi.org/10.1105/tpc.16.00011 Open Access

This UK and Swiss study is led by Alison Smith from the John Innes Centre and investigates starch degradation that occurs during nighttime. They developed a novel screen to identify an uncharacterized mutant called early starvation 1 (esv1) that more rapidly degraded starch so that it is exhausted earlier in the night. They found that ESV1 and the related LESV1 proteins associated with starch granules within the chloroplast stroma. The authors propose that these proteins influence the organisation of the starch granule matrix, facilitating access for starch-degrading enzymes. In addition they also show that this function appears to be conserved throughout all starch-synthesizing organisms.

Professor Smith provides an audio description of this paper:

Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ (2016) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol. 210(4):1311-1326 http://dx.doi.org/10.1111/nph.13857

This cell biology-focused study is a collaboration between the Universities of Exeter, Durham and Oxford Brookes and investigates vesicle-associated membrane protein-associated proteins (VAPs), which form part of the network that links the plasma membrane and ER. The Arabidopsis genome contains 10 VAP homologues (VAP27-1 to -10) split into 3 clades. Members of clades I and II localise to both ER as well as to ER/PM contact sites (EPCSs) whilst clade II members are only found at the PM, all discovered through transient expression experiments in tobacco. Interestingly the localisation to the EPCSs is associated with the cytoskeleton but does not require the presence of that underlying structure. These proteins are expressed in most cell types and when their levels are altered, plants show pleiotropic phenotypes. Overall this study shows that VAP27 proteins are required for ER-cytoskeleton interactions that are critical for normal plant development.

Muraro D, Larrieu A, Lucas M, Chopard J, Byrne H, Godin C, King J (2016) A multi-scale model of the interplay between cell signalling and hormone transport in specifying the root meristem of Arabidopsis thaliana. J Theor Biol. S0022-5193(16)30070-4 http://dx.doi.org/10.1016/j.jtbi.2016.04.036

From http://dx.doi.org/10.1016/j.jtbi.2016.04.036

This investigation was performed at CPIB in Nottingham in collaboration with the Virtual Plant Project in Montpellier and is led by John King. The authors have developed a multi-scale computational model that allows the study of signalling networks that occurs during Arabidopsis root growth. This model was experimentally tested to investigate how it is affected by hormonal changes during root growth. The model was able to identify two novel mutants that significantly alter root length through perturbations in meristem size. In general this study demonstrates the value of multi-scale modeling as part of the process of evaluating the function of the components that define the formation of the root meristem.

Sharma A, Hussain A, Mun BG, Imran QM, Falak N, Lee SU, Kim JY, Hong JK, Loake GJ, Ali A, Yun BW (2016) Comprehensive analysis of plant rapid alkalization factor (RALF) genes Plant Physiol Biochem. 106:82-90

http://dx.doi.org/10.1016/j.plaphy.2016.03.037

This Korean-led study includes a contribution from Gary Loake from the University of Edinburgh and is the first comprehensive investigation of Rapid alkalization factor (RALF) proteins across plant species. These RALF proteins are thought to be important signalling molecules in plant defense and development. This study provides information on gene structure, subcellular locations, conserved motifs, protein structure, protein-ligand interactions and promoter analysis across Arabidopsis, rice, maize and soybean. The RALF genes are phylogenetically divided into 7 clades and their mRNA upregulation following nitrosative and oxidative stresses suggests that they are function in responding to changes in cellular redox status. Overall this manuscript provides a valuable resource to prime future research into the role of RALF genes.

Choi K, Kim J, Müller SY, Oh M, Underwood C, Henderson I, Lee I (2016) Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex in Arabidopsis thaliana. Plant Physiol. http://dx.doi.org/10.1104/pp.16.00332

GARNet committee member Ian Henderson (Cambridge) is a contributor on this study that is led by researchers in Seoul, South Korea. In the last ARR, Vinod Kumar described work that looked into the role of the SWR1 chromatin-remodeling complex and this study provides an insight into the role of this same SWR1 complex on microRNA (miRNA)-mediated transcriptional control. In SWR1 complex mutants (arp6, sef, and pie1), deep sequencing revealed that many miRNA types and their target mRNAs are misregulated. This further establishes the role of the SWR1 complex in the control of nucleosome occupancy, likely by mediating the exchange of H2A isoforms, for a range of genes involved in the fine-tuning of numerous developmental processes.

Hubbard, K, Dodd, A. (2016). Rhythms of Life: The Plant Circadian Clock. Teaching Tools in Plant Biology: Lecture Notes. http://dx.doi.org/10.1105/tpc.116.tt0416

Katherine Hubbard and Anthony Dodd have produced a teaching resource focused on the Circadian Clock as part of the increasingly comprehensive Plant Cell Teaching Tools. Most academics are looking to save time and this resource will allow them to do this and provides excellent coverage of the topic.

SLS ’16: An Undergraduate’s View

Tags: No Tags
Comments: No Comments
Published on: April 26, 2016

Guest Post from Sam Downs, 2nd Year Undergraduate at Cambridge University.

This April, the Sainsbury Laboratory at Cambridge university (SLCU) held its first large meeting – SLS ’16 – on Induced Plant Development. The keynote speakers were Prof. Sofie Goormachtig on root strigolactone signalling to Prof. Christian Fankhauser on growth changes in response to light, with others addressing topics ranging from large scale morphological studies to cell and molecular biology.

It was a first for me too; like most undergraduates, I hadn’t yet attended an academic conference. As I imagine many find at their first conference, it was slightly intimidating to be in a room half-full of PIs – the rest being PhD students, with their own research projects underway, wasn’t much better. There was nothing for it but to get stuck in though, and talking to people about their talks and posters proved easier than I had thought. It’s a testament to the friendliness of the plant science community that everyone was willing to explain their work from the bottom up to a passing undergrad!

As an outsider to research, it was interesting to note what people felt was important to communicate in talks and posters. They seemed to be broadly results-driven or process-driven, and I found this was especially marked in the posters; many were reporting new techniques, such as growing Arabidopsis roots on microfluidics chips, or laser imaging of cell movements, whilst others (such as Dr Dana MacGregor’s prize-winning poster on seed dormancy) drew their main interest from the phenomenon they showed. This is quite different to the way that I’ve mainly engaged with science – essentially, as an interested member of the public. This year I’ve been helping to run the Cambridge student biological society, and we’ve hosted a number of talks by UK scientists. Their talks are mainly of the former kind; essentially reporting new results, suitable for a lay audience. It was thus quite new to me to hear technique-driven presentations, and exciting too – a look above the parapet of summer exam revision (driven, of course, by an entirely different sort of result!).

What struck me most of all, though, was the hearing the questions people asked at the end of each talk. Through these, I got a stronger sense of how active researchers think about science than even the talks or the posters could. As an undergraduate, I’m used to hearing researchers talk about results, and sometimes about methods too; but the biggest difference was how the audience parsed what they heard. The questions focused on the experimental process and the physiology of the whole plant (“What happens to Rorippa aquatica if it’s in warm water, [when heat and submersion have opposite effects]?” “Is the plant’s response to UV-B modulated in the diurnal cycle?”). This is a different way of thinking (perhaps regrettably) to that taken at undergraduate level; we tend to focus more on isolated details, so the bigger picture of how a result came about in the lab and in the organism can be missed. It was a reminder to me of the challenge of getting across this gap from obsession with facts to obsession with science.

Overall, I learnt a lot in the short duration of the SLS, both about what’s going on in plant development and about life in science. I would life to thank the organisers, the speakers, and especially Geraint Parry from GARNet who offered me the opportunity to attend it.

Rorippa                   Temperature mediated developmental changes in Rorippa aquatica

Arabidopsis Research Roundup: April 1st.

This weeks Arabidopsis Research Roundup contains an eclectic mix of investigations. Firstly is a study from Peter Unwin that investigates the molecular factors that control interactions between plants and nematode parasites. Secondly is a study led by John Christie that investigates the factors that control hypocotyl curvature. Thirdly is a fascinating proof-of-concept synbio-style study from Rothamstead Research where an algal gene is transferred into Arabidopsis in the hope of developing a phytomediation-based solution to heavy metal contamination. Fourthly is a study from David Bass that catalogues protist species that feed on leaf-microorganisms whilst finally John Carr heads a study that compares RNA-dependent RNA polymerases from Arabidopsis and Potato.

Eves-van den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE (2016) Functional C-terminally encoded plant peptide (CEP) hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol Plant Pathol. http://dx.doi.org/10.1111/mpp.12402).CEP1

This study is a collaboration between researchers at the Universities of Dundee and Leeds, led by Peter Unwin. The focus of the paper is the interaction of Plant-Parasitic Nematodes (PPNs) with their plant hosts. PPNs stimulate redifferentiation of vascular tissues to form ‘feeding structures’ that benefit the parasite. This process is mediated by a diverse family of effector proteins termed C-terminally Encoded Peptide plant hormone mimics (CEPs). This study investigates the CEPs from the nematode Rotylenchulus reniformis and suggests that these peptides evolved de novo in this organism. They show that the activity of a synthetic peptide corresponding to RrCEPs causes a reduction in primary root elongation whilst upregulating a set of genes including the nitrate transporter AtNRT2.1. The authors propose that CEPs evolved in R. reniformis to allow sustained biotrophy by upregulating a specific set of feeding-responsive genes and by limiting the size of the feeding site produced. This study represents an exciting introduction to a currently under-researched area within plant-pathogen interactions.

Sullivan S, Hart JE, Rasch P, Walker CH, Christie JM (2016) Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis. Front Plant Sci. 7:290 http://dx.doi.org/10.3389/fpls.2016.00290 Open AccessFrontiersPHOT1

John Christie (Glasgow) is the corresponding author on this investigation into the role of the blue-light receptor phototropin 1 (phot1) during hypocotyl phototropism. Curvature of this organ is enhanced by treatment by red-light mediated by the phytochromeA receptor. However this study shows that pre-treatment with blue-light can also enhance this hypocotyl curvature although this did not occur at higher light intensities. In addition phototropic enhancement was also lacking when PHOT1 is expressed only in the hypocotyl epidermis. Therefore the study shows that the phyA impact on phot1 signaling is restricted to low light intensities and in tissues other than the epidermis.

Zhong Tang, Yanling Lv, Fei Chen, Wenwen Zhang, Barry P. Rosen, and Fang-Jie Zhao (2016) Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity J. Agric. Food Chem. http://dx.doi.org/10.1021/acs.jafc.6b00462 Open Access ArsM

This synthetic biology-focused study is led by Fang-Jie Zhao at Rothamstead Research. The authors take an algal gene (arsM) that allows the transformation of inorganic arsenic to a more volatile methylated version. The biological activity of this enzyme was successfully transferred to two different Arabidopsis ecotypes. However interestingly these transgenic plants became more sensitive to arsenic in growth media suggesting that the new methylated arsenic intermediate is more phytotoxic than inorganic arsenic. Therefore this study demonstrates a negative consequence of this project that attempted to engineer arsenic tolerance in plants. Once again this demonstrates that nature rarely acts predictably and any great ideas usually need to be tested in vivo.

Ploch S, Rose L, Bass D, Bonkowski M (2016) High Diversity Revealed in Leaf Associated Protists (Rhizaria: Cercozoa) of Brassicaceae J Eukaryot Microbiol. http://dx.doi.org/10.1111/jeu.12314

After a fantastic opening line in the abstract, ‘The largest biological surface on earth is formed by plant leaves’, this study includes the work of David Bass from the Natural History Museum in London. They investigate the abundance of protists that associate with leaf-inhabiting microorganisms, the “phyllosphere microbiome“. Their findings demonstrate that protists should be considered an important part of the diversity of plant-interacting microbial organisms.

Hunter LJ, Brockington SF, Murphy AM, Pate AE, Gruden K, MacFarlane SA, Palukaitis P, Carr JP (2016) RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases Sci Rep. 6:23082 http://dx.doi.org/10.1038/srep23082 Open Access

John Carr (Cambridge) is the UK-lead on this collaboration with Slovenian and Korean researchers. They primarily investigate the role of the RDR1 RNA-dependent RNA polymerase (RDRs) in potato. In Arabidopsis the RDR1 gene contributes to basal viral resistance but potato plants deficient in StRDR1 do not show altered susceptibility to three different plant viruses. In addition they perform a phylogenetic analysis on the RDR genes and identify a novel RDR7 gene that is only found in Rosids (but not Arabidopsis.

Arabidopsis Research Roundup: March 18th

Tags: No Tags
Comments: No Comments
Published on: March 18, 2016

This weeks Arabidopsis Research Roundup includes three papers from the Norwich Research Park on very different topics. Firstly the team of Richard Morris investigates the nature of mRNA sequences that are transported over long-distances. Secondly Kristen Bomblies introduces a set of genes involved in the evolution of weediness whilst finally Cyril Zipfel is involved in research that developed a novel assay for identification of defence signaling components. Elsewhere Paul Devlin’s group from RHUL characterises the interactions between components of a light signaling pathway whilst Alex Webb and co-workers use a novel assay to confirm the activity of plant nucleotide cyclases involved in calcium signaling.

Calderwood A, Kopriva S, Morris RJ (2016) Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell http://dx.doi.org/10.1105/tpc.15.00956 Open Access

Richard Morris (JIC) is the lead author on this ‘Breakthrough Report’ that analyses previously generated data in order to ascertain whether populations of mRNAs that are transported long-distances in the phloem are selected by any mechanism. They showed that in general mobile transcripts can be explained by their abundance and half-life, leading to the conclusion that the majority of transported mRNAs are not selected on the basis of their primary sequence.

Baduel P, Arnold B, Weisman CM, Hunter B, Bomblies K (2016) HABITAT-ASSOCIATED LIFE HISTORY AND STRESS-TOLERANCE VARIATION IN ARABIDOPSIS ARENOSA Plant Physiol. http://dx.doi.org/10.1104/pp.15.01875 Open Access

Recent ECR Research Grant awardee Kristen Bomblies (JIC) leads this investigation into growth variation in Arabidopsis Arenosa. This obligate outbreeding relative of A.thaliana is normally not weedy but can transition to weediness in conditions of high disturbance. This study uses transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to investigate a weedy population of A.arenosa that has been discovered growing along railway lines through central and Northern Europe. These plants show constitutive upregulation of genes involved in heat shock and freezing tolerance. Amongst the genes that were strongly selected in the weedy population was LATE ELONGATED HYPOCOTYL (LHY), which is known to regulate many stress-regulated genes in A.thaliana and therefore might be a significant determinant in the evolution of weediness.

Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana Proc Natl Acad Sci U S A. http://dx.doi.org/10.1073/pnas.15118471

This Australian-Austrian-UK collaboration includes work from the lab of Cyril Zipfel (TSL). The initial work in this study uses the Nicotiana benthamiana expression system to identify novel leucine-rich repeat (LRR)-containing pattern recognition receptors (PRR) that interact with the BRI1-ASSOCIATED KINASE1 (BAK1) protein, which is important in recognition of bacterial pathogens. N.benthamiana plants were treated with the effector peptide csp22 and the resulting samples were immunopurified with BAK1. They identified a protein termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR) which, when silenced in tobacco resulted in reduced defence responses to the csp22 peptide. Subsequent expression of NbCSPR in Arabidopsis caused antibacterial resistance. Primarily the authors demonstrate a novel protocol that could be used to identify further novel components in signaling pathways that response to pathogen attack.

Siddiqui H, Khan S, Rhodes BM, Devlin PF (2016) FHY3 and FAR1 Act Downstream of Light Stable Phytochromes Front Plant Sci. 7:175 http://dx.doi.org/10.3389/fpls.2016.00175 Open Access
DevlinPic
Paul Devlin (RHUL) is the lead on this study that looks at the regulation of the ELF4 gene. This gene is a light-dependent target for the transcription factors FHY3 and FAR1 and the authors demonstrate that this signaling acts via not only the phytochrome PhyA but also through phyB, phyD, and phyE. ELF4 induction by FHY3 and FAR1 occurs specifically in the evening, which allows expression of ELF4 beyond dusk during shortening days. Without the action of the two transcription factors, this ELF4 expression is not maintained resulting in further downstream gene expression changes that alters the cycling of the circadian clock.

Abdul-Awal SM, Hotta CT, Dodd AN, Davey MP, Smith AG, Webb AA (2016) NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis Plant Physiol. http://dx.doi.org/10.1104/pp.15.01965 Open Access

This study continues Alex Webb’s (Cambridge) work in the area of calcium signaling by investigating the control of cyclic ADP-ribose (cADPR) production in Arabidopsis. Although the role of cADPR in plant signaling is well established there are no ADPR cyclase enzymes with strong similarity to known metazoan enzymes in previously interrogated plant genomes. This argues for either a unique synthesis route for cADPR or for the activity of an enzyme with low sequence similarity to previously characterized cyclases. To test these difference ideas the authors developed two novel fluorescence-based assays to measure ADPR cyclase activity. These assays reveal that indeed there is activity that resembles the characteristics of a cyclase, which additionally is activated by nitric oxide (NO). This potentially links NO signaling activity to increased levels of cADPR and mobilisation of a calcium signal.

Arabidopsis Research Roundup: February 17th

Tags: No Tags
Comments: No Comments
Published on: February 16, 2016

This weeks Arabidopsis Research Roundup features papers that build upon the history of research in each featured lab. Firstly Gareth Jenkins from Glasgow continues to investigate mechanisms of UV-B signaling whilst Laila Moubayidin, now at the JIC, is involved in work that investigates the multiple factors that control root meristem size. Finally we present a three protocol papers that are featured in a new colelction of articles that focus on protocols that can be used to assess different environmental responses.

Findlay KM, Jenkins GI (2016) Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant Cell Environment http://dx.doi.org/10.1111/pce.12724 Open Access
UVBmodel
The research group led by Gareth Jenkins (Glasgow) continues their work on the plant response to UV in this study that investigates the binding patterns of the UVR8 protein. UVR8 mediates the plant response to UV-B light and the protein either exists in a monomeric (active) or dimeric (inactive) form. This study shows that UVR8 maintains dimer/monomer photo-equilibrium through diurnal photoperiods and that the REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 proteins are necessary for maintaining this equilibrium. Interestingly they show that the UVR8 balance is tipped toward the monomeric form in lower temperatures. This shows that the protein does not act as a simple switch to signal for changes in UV-B as its effect is influenced by environmental parameters outside of the light source.

Moubayidin L, Salvi E, Giustini L, Terpstra I, Heidstra R, Costantino P, Sabatini S (2016) A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis Planta http://dx.doi.org/10.1007/s00425-016-2471-0 Open Access

Laila Moubayidin now works as a postdoc with Lars Ostergaard at the JIC but this work is the result of research conducted with Sabrina Sabatini in Rome. In this study they continue the labs investigation into the role of the SCARECROW (SCR) protein in the control of root meristem size. They show that SCR, from endodermal cells, sustains a gibberellic acid signal by regulating RGA REPRESSOR OF ga1-3 (RGA) protein stability. This in turn controls the activity of the cytokinin responsive transcription factor ARR1 at the root transition zone. This activity therefore maintains a balance of cell division and differentiation that maintains correct meristem size.

A new edition of ‘Methods in Molecular Biology’ focuses on ‘Environmental Responses in Plants and includes a number of papers featuring UK authors who work on Arabidopsis.

Hydrotropism: Analysis of the Root Response to a Moisture Gradient’ that features Malcolm Bennett from CPIB in Nottingham. http://dx.doi.org/10.1007/978-1-4939-3356-3_1

Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes’ from the group of John Brown at the James Hutton in Dundee http://dx.doi.org/10.1007/978-1-4939-3356-3_11

Assessing the Impact of Photosynthetic Sugars on the Arabidopsis Circadian Clock’ from the lab of Alex Webb in Cambridge. http://dx.doi.org/10.1007/978-1-4939-3356-3_12

«page 2 of 4»

Follow Me
TwitterRSS
GARNetweets
July 2017
M T W T F S S
« Jun    
 12
3456789
10111213141516
17181920212223
24252627282930
31  

Welcome , today is Tuesday, July 25, 2017