Arabidopsis Research Roundup: March 18th

Tags: No Tags
Comments: No Comments
Published on: March 18, 2016

This weeks Arabidopsis Research Roundup includes three papers from the Norwich Research Park on very different topics. Firstly the team of Richard Morris investigates the nature of mRNA sequences that are transported over long-distances. Secondly Kristen Bomblies introduces a set of genes involved in the evolution of weediness whilst finally Cyril Zipfel is involved in research that developed a novel assay for identification of defence signaling components. Elsewhere Paul Devlin’s group from RHUL characterises the interactions between components of a light signaling pathway whilst Alex Webb and co-workers use a novel assay to confirm the activity of plant nucleotide cyclases involved in calcium signaling.

Calderwood A, Kopriva S, Morris RJ (2016) Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell http://dx.doi.org/10.1105/tpc.15.00956 Open Access

Richard Morris (JIC) is the lead author on this ‘Breakthrough Report’ that analyses previously generated data in order to ascertain whether populations of mRNAs that are transported long-distances in the phloem are selected by any mechanism. They showed that in general mobile transcripts can be explained by their abundance and half-life, leading to the conclusion that the majority of transported mRNAs are not selected on the basis of their primary sequence.

Baduel P, Arnold B, Weisman CM, Hunter B, Bomblies K (2016) HABITAT-ASSOCIATED LIFE HISTORY AND STRESS-TOLERANCE VARIATION IN ARABIDOPSIS ARENOSA Plant Physiol. http://dx.doi.org/10.1104/pp.15.01875 Open Access

Recent ECR Research Grant awardee Kristen Bomblies (JIC) leads this investigation into growth variation in Arabidopsis Arenosa. This obligate outbreeding relative of A.thaliana is normally not weedy but can transition to weediness in conditions of high disturbance. This study uses transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to investigate a weedy population of A.arenosa that has been discovered growing along railway lines through central and Northern Europe. These plants show constitutive upregulation of genes involved in heat shock and freezing tolerance. Amongst the genes that were strongly selected in the weedy population was LATE ELONGATED HYPOCOTYL (LHY), which is known to regulate many stress-regulated genes in A.thaliana and therefore might be a significant determinant in the evolution of weediness.

Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana Proc Natl Acad Sci U S A. http://dx.doi.org/10.1073/pnas.15118471

This Australian-Austrian-UK collaboration includes work from the lab of Cyril Zipfel (TSL). The initial work in this study uses the Nicotiana benthamiana expression system to identify novel leucine-rich repeat (LRR)-containing pattern recognition receptors (PRR) that interact with the BRI1-ASSOCIATED KINASE1 (BAK1) protein, which is important in recognition of bacterial pathogens. N.benthamiana plants were treated with the effector peptide csp22 and the resulting samples were immunopurified with BAK1. They identified a protein termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR) which, when silenced in tobacco resulted in reduced defence responses to the csp22 peptide. Subsequent expression of NbCSPR in Arabidopsis caused antibacterial resistance. Primarily the authors demonstrate a novel protocol that could be used to identify further novel components in signaling pathways that response to pathogen attack.

Siddiqui H, Khan S, Rhodes BM, Devlin PF (2016) FHY3 and FAR1 Act Downstream of Light Stable Phytochromes Front Plant Sci. 7:175 http://dx.doi.org/10.3389/fpls.2016.00175 Open Access
DevlinPic
Paul Devlin (RHUL) is the lead on this study that looks at the regulation of the ELF4 gene. This gene is a light-dependent target for the transcription factors FHY3 and FAR1 and the authors demonstrate that this signaling acts via not only the phytochrome PhyA but also through phyB, phyD, and phyE. ELF4 induction by FHY3 and FAR1 occurs specifically in the evening, which allows expression of ELF4 beyond dusk during shortening days. Without the action of the two transcription factors, this ELF4 expression is not maintained resulting in further downstream gene expression changes that alters the cycling of the circadian clock.

Abdul-Awal SM, Hotta CT, Dodd AN, Davey MP, Smith AG, Webb AA (2016) NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis Plant Physiol. http://dx.doi.org/10.1104/pp.15.01965 Open Access

This study continues Alex Webb’s (Cambridge) work in the area of calcium signaling by investigating the control of cyclic ADP-ribose (cADPR) production in Arabidopsis. Although the role of cADPR in plant signaling is well established there are no ADPR cyclase enzymes with strong similarity to known metazoan enzymes in previously interrogated plant genomes. This argues for either a unique synthesis route for cADPR or for the activity of an enzyme with low sequence similarity to previously characterized cyclases. To test these difference ideas the authors developed two novel fluorescence-based assays to measure ADPR cyclase activity. These assays reveal that indeed there is activity that resembles the characteristics of a cyclase, which additionally is activated by nitric oxide (NO). This potentially links NO signaling activity to increased levels of cADPR and mobilisation of a calcium signal.

Arabidopsis Research Roundup: March 4th 2016

There are six articles in this weeks Arabidopsis Research Roundup that bridge a diverse range of topics. Firstly lead author Deirdre McLachlan provides an audio description of a study that investigates the role of triacylglycerol breakdown in stomatal signaling. Secondly is a study that assesses the role of a Rab GTPase in control of anisotropic cell growth. The third and fourth papers looks into the defence response, focused on either JA or nitric oxide signaling. Finally are two papers that look into the response of Arabidopsis seedlings to growth on either arsenic or cadmium.

McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Hõrak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM (2016) The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening Current Biology http://dx.doi.org/10.1016/j.cub.2016.01.019 Open Access
Slide 1
The control of stomatal opening is a key environmental response to changes in CO2 levels and water availability. This study, led by Alistair Hetherington (Bristol), demonstrates that triacylglycerols (TAGs), contained in lipid droplets (LD), are critical for light-induced stomatal opening. Following illumination, the number of LDs are reduced through the β-oxidation pathway, a response that requires blue-light receptors. The authors postulate that a reduction in ATP-availability due to delayed fatty acid breakdown contributed to the stomatal phenotype. The lack of available ATP was confirmed following analysis of the activity of a plasma membrane H+-ATPase. Overall the authors suggest that the light-induced breakdown of TAG contributes to an evolutionarily conserved signaling pathway that controls stomatal opening therefore playing a key role in environmental adaptation.

The lead author of this study, Deidre McLachlan kindly provides a brief audio description of this paper.

During our discussion Deidre mentioned some related work that links blue-light signaling and starch degradation during stomatal opening that was included in a recent ARR.

Kirchhelle C, Chow CM, Foucart C, Neto H, Stierhof YD, Kalde M, Walton C, Fricker M, Smith RS, Jérusalem A, Irani N, Moore I (2016) The Specification of Geometric Edges by a Plant Rab GTPase Is an Essential Cell-Patterning Principle During Organogenesis in Arabidopsis. Developmental Cell 36(4):386-400 http://dx.doi.org/10.1016/j.devcel.2016.01.020 Open Access
Rab5C
Ian Moore (Oxford) is the corresponding author on this UK-German collaboration that investigates the role of a Rab GTPase in pattern formation during organogenesis. It is known that the endomembrane system controls the asymmetric distribution of cargoes to different ‘geometric edges’ of a plant cell, establishing biochemically distinct domains that are important for anisotropic growth. This study identifies a new type of membrane vesicle that accumulates specifically along geometric edges and that contains the RAB-A5c protein which, when inhibited, distorts the geometry of cells in subsequently formed lateral organs (in this case, lateral roots). Interestingly this effect is independent of changes to general endomembrane trafficking. The precise mechanism of RAB-A5c activity is unknown but loss of its activity reduces cell wall stiffness at domain-specific locations, therefore perturbing cell growth in those directions. Therefore this study provides interesting insight into fundamental mechanisms that control the growth of cells in a developing organ.

Thatcher LF, Cevik V, Grant M, Zhai B, Jones JD, Manners JM, Kazan K (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum J Exp Bot. http://dx.doi.org/10.1093/jxb/erw040 Open Access

Jonathan Jones (TSL) and Murray Grant (Exeter) are collaborators on this research that investigates the role of jasmonic acid signaling in plant resistance to the fungal pathogen Fusarium oxysporum. In this study they show that the JASMONATE ZIM-domain7 (JAZ7) gene is induced by Fusarium oxysporum and that the jaz7-1D mutant has increased suspectibility to infection. This genotype has constitutive JAZ7 expression and also demonstrates sensitivity to a bacterial pathogen. To cause alterations in gene expression, the JAZ7 protein interacts with a range of transcriptional activators and repressors. The authors postulate that in wildtype plants JAZ7 represses the JA-transcriptional network through its interaction with the co-repressor TOPLESS protein and that in the jaz7-1D plants this response network is hyper-activated leading to an inappropriately high response to pathogen attack.

Yun BW, Skelly MJ, Yin M, Yu M, Mun BG, Lee SU, Hussain A, Spoel SH, Loake GJ (2016) Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol. http://dx.doi.org/10.1111/nph.13903

Gary Loake and GARNet Advisory board member Steven Spoel (Edinburgh) are the leaders of this UK-Korean collaboration that studies the role of Nitric Oxide (NO) in the plant defence response. NO often undergoes S-nitrosylation to produce S-nitrosothiol (SNO), which is important for its bioactivity. This reaction involves the S-nitrosoglutathione reductase 1 (GSNOR1) enzyme, which serves to turnover the NO donor, S-nitrosoglutathione (GSNO). In this study the authors investigate mutant plants that accumulate NO and some a reduction in the basal defence response due to a reduction in salicylic acid (SA) signaling. This response was not rescued by the overexpression of GSNOR1 even though this was able to reduce phenotypes resulting from SNO accumulation. Mutant plants that have increased NO accumulation but lower activity of GSNOR1, so therefore an increased ratio of NO:SNO, were more suspectible to growth of bacterial pathogens. The authors conclude that the relationship between NO and GSNO is critically for plant immunity and development.

Lindsay ER, Maathuis FJ (2016) Arabidopsis thaliana NIP7;1 is Involved in Tissue Arsenic Distribution and Tolerance in Response to Arsenate FEBS Lett. http://dx.doi.org/10.1002/1873-3468.12103

Francois Maathuis (York) is the corresponding author of this study that investigates the role of the Arabidopsis aquaglyceroporin NIP7;1 in the uptake of different chemical forms of arsenic. Mutant nip7;1 plants improved the tolerance of arsenic by reducing uptake of the chemical. This is the first demonstration for the role of a NIP transporter in the response to arsenic and highlights the possibility of focussing on these proteins as a target for breeding or genetically-modifying tolerance to this toxic metal.

Wang H, He L, Song J, Cui W, Zhang Y, Jia C, Francis D, Rogers HJ, Sun L, Tai P, Hui X, Yang Y, Liu W (2016) Cadmium-induced genomic instability in Arabidopsis: Molecular toxicological biomarkers for early diagnosis of cadmium stress Chemosphere 150:258-265 http://dx.doi.org/10.1016/j.chemosphere.2016.02.042

Hilary Rodgers (Cardiff) is the sole UK representative on this Chinese study that has developed screening parameters to evaluate the growth of plants on cadmium. The study uses microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) to define a range of genomic alterations that occurred after growth of Arabidopsis plants across a range of concentrations of cadmium. They conclude that analysis of genomic methylation polymorphisms were the most sensitive biomarkers to diagnosis early cadmium stress in these plants and provide important insights for future biomonitoring strategies.

Arabidopsis Research Roundup: February 24th

Just three papers in this weeks Arabidopsis Research Roundup and they each cover fundamental aspects of the hormone and environmental control of gene expression. First Keith Lindsey provides an audio description of work that aims to dissect the complex hormonal regulation of root growth while secondly, Nick Harberd is involved in a study that investigates the HY5 shoot-root signaling protein. Finally Ian Graham leads a study into factors that regulate seed dormancy.

Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin New Phytol. http://dx.doi.org/ 10.1111/nph.13882 Open Access
HormoneSig
Keith Lindsey (Durham) is the corresponding author for this study that investigates the complex hormonal network that regulates the Arabidopsis root response to osmotic stress. The effect of ABA, cytokinin and ethylene on auxin transport are assessed through changes in the dynamics of PIN protein expression. Unsurprisingly they discover a wide range of effects transmitted via crosstalk between these four hormones and that these effects act in a tissue specific manner, as the expression of PIN1 (in the vascular tissue) and PIN2 (in the lateral root cap and epidermis) are altered in different ways. Ultimately the authors conclude that the classic ‘stress hormone’ ABA regulates the root response to drought together with auxin, ethylene and cytokinin in a complex signaling network.

Keith has kindly supplied a brief audio description of this work.

Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition http://dx.doi.org/10.1016/j.cub.2015.12.066
打印
GARNet committee member Nick Harberd (Oxford) is the UK representative on this Chinese-led study that investigates the mode of action of the mobile transcription factor ELONGATED HYPOCOTYL5 (HY5). It has been long known that HY5, a bZIP TF, regulates growth responses to light and in this study the authors demonstrate that HY5 controls light-regulated root growth and nitrate uptake. Remarkably, HY5 from the shoot can activate root-derived HY5, in turn switching on the nitrate transporter NRT2.1. This response involves a mechanism that senses carbon:nitrogen balance across different light conditions, thus placing HY5 as a key regulator in the whole-plant response to changing environmental conditions.

Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA (2016) Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid Journal of Experimental Botany http://dx.doi.org/10.1093/jxb/erw028 Open Access

This paper results from a collaboration between the labs of Ian Graham (CNAP, York) and Steve Penfield (John Innes Centre) and features an investigation into factors that regulate seed germination. Previously it was known that oxylipin 12-oxo-phytodienoic acid (OPDA) acts together with ABA to regulate germination but this study elucidates that OPDA specifically acts via the ABI5 and RGL2 hormone-regulated proteins. Furthermore the OPDA-ABA signal also acts via another dormancy promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Therefore maintenance of dormancy in Arabidopsis seedlings is regulated by ABA and MFT promoting the accumulation of OPDA, highlighting this as a critical control point in this complex process.

Arabidopsis Research Roundup: February 17th

Tags: No Tags
Comments: No Comments
Published on: February 16, 2016

This weeks Arabidopsis Research Roundup features papers that build upon the history of research in each featured lab. Firstly Gareth Jenkins from Glasgow continues to investigate mechanisms of UV-B signaling whilst Laila Moubayidin, now at the JIC, is involved in work that investigates the multiple factors that control root meristem size. Finally we present a three protocol papers that are featured in a new colelction of articles that focus on protocols that can be used to assess different environmental responses.

Findlay KM, Jenkins GI (2016) Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant Cell Environment http://dx.doi.org/10.1111/pce.12724 Open Access
UVBmodel
The research group led by Gareth Jenkins (Glasgow) continues their work on the plant response to UV in this study that investigates the binding patterns of the UVR8 protein. UVR8 mediates the plant response to UV-B light and the protein either exists in a monomeric (active) or dimeric (inactive) form. This study shows that UVR8 maintains dimer/monomer photo-equilibrium through diurnal photoperiods and that the REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 proteins are necessary for maintaining this equilibrium. Interestingly they show that the UVR8 balance is tipped toward the monomeric form in lower temperatures. This shows that the protein does not act as a simple switch to signal for changes in UV-B as its effect is influenced by environmental parameters outside of the light source.

Moubayidin L, Salvi E, Giustini L, Terpstra I, Heidstra R, Costantino P, Sabatini S (2016) A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis Planta http://dx.doi.org/10.1007/s00425-016-2471-0 Open Access

Laila Moubayidin now works as a postdoc with Lars Ostergaard at the JIC but this work is the result of research conducted with Sabrina Sabatini in Rome. In this study they continue the labs investigation into the role of the SCARECROW (SCR) protein in the control of root meristem size. They show that SCR, from endodermal cells, sustains a gibberellic acid signal by regulating RGA REPRESSOR OF ga1-3 (RGA) protein stability. This in turn controls the activity of the cytokinin responsive transcription factor ARR1 at the root transition zone. This activity therefore maintains a balance of cell division and differentiation that maintains correct meristem size.

A new edition of ‘Methods in Molecular Biology’ focuses on ‘Environmental Responses in Plants and includes a number of papers featuring UK authors who work on Arabidopsis.

Hydrotropism: Analysis of the Root Response to a Moisture Gradient’ that features Malcolm Bennett from CPIB in Nottingham. http://dx.doi.org/10.1007/978-1-4939-3356-3_1

Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes’ from the group of John Brown at the James Hutton in Dundee http://dx.doi.org/10.1007/978-1-4939-3356-3_11

Assessing the Impact of Photosynthetic Sugars on the Arabidopsis Circadian Clock’ from the lab of Alex Webb in Cambridge. http://dx.doi.org/10.1007/978-1-4939-3356-3_12

Arabidopsis Research Roundup: February 9th

Tags: No Tags
Comments: No Comments
Published on: February 9, 2016

It has been a quiet couple of weeks for newly published UK Arabidopsis Research but what might be lacking in quantity is made up for in quality! Firstly the PRESTA consortium use gene regulatory network analysis to identify a key component in the response to drought stress. Secondly is a paper featuring researchers from Rothamstead that identifies a new molecular participant in the control of RNA surveillance. Thirdly is a paper that investigates the function of aquaporins during lateral root emergence and includes researchers from Warwick and Nottingham. Finally is a study from Sheffield that investigates necrotropic and biotropic strategies employed by an ascomycete pathogen. It is also nice to observe that each of these papers are open access.

Bechtold U, Penfold CA, Jenkins DJ, Legaie R, Moore JD, Lawson T, Matthews JS, Vialet-Chabrand SR, Baxter L, Subramaniam S, Hickman R, Florance H, Sambles C, Salmon DL, Feil R, Bowden L, Hill C, Baker NR, Lunn JE, Finkenstadt B, Mead A, Buchanan-Wollaston V, Beynon JL, Rand DA, Wild DL, Denby KJ, Ott S, Smirnoff N, Mullineaux PM (2016) Time-series transcriptomics reveals that AGAMOUS-LIKE22 links primary metabolism to developmental processes in drought-stressed Arabidopsis Plant Cell http:/​/​dx.​doi.​org/​10.​1105/​tpc.​15.​00910 Open Access

This Large Scale Biology article is the result of the PRESTA collaboration that is based at the Universities of Essex, Exeter and Warwick. The research plan of the PRESTA project is based upon the generation of large scale transcriptomic datasets and in this case they investigate changes in gene expression in plants subjected to drought stress. They identified over 1800 differentially expressed genes and the early changes coincided with a drop in carbon assimilation together with a late increase in foliar ABA content. Using Bayesian network modelling of differentially expressed transcription factors they identified the AGAMOUS-LIKE22 (AGL22) gene as a key component in this gene regulatory network. AGL22 had been previously found to play an important role in the change from vegetative to floral development but in this context it influences photosynthetic rates and lifetime water use.

Hématy K, Bellec Y, Podicheti R, Bouteiller N, Anne P, Morineau C, Haslam RP, Beaudoin F, Napier JA, Mockaitis K, Gagliardi D, Vaucheret H, Lange H, Faure JD (2016) The Zinc-Finger Protein SOP1 Is Required for a Subset of the Nuclear Exosome Functions in Arabidopsis PLoS Genetics 12(2):e1005817 http://dx.doi.org/10.1371/journal.pgen.1005817 Open Access

This Franco-US collaboration also includes a contribution from Johnathan Napier’s group at Rothamstead Research. They investigated the function of the essential Arabidopsis PASTICCINO2 (PAS2) gene by isolating three suppressors of pas2 mutants (termed sop mutants). PAS2 is involved in correct splicing so the sop mutants prevented degradation of mis-spliced pas2 mRNA species. The suppressor genes were either previously characterized as being involved with function of the exosome (SOP2/RRP4, SOP3/HEN2) or as a novel zinc-finger protein (SOP1) that colocalised with HEN2 in nucleoplasmic loci. The authors show additional evidence suggesting that the SOP proteins are involved in RNA quality control and introduce SOP1 as a novel component that is involved in nuclear RNA surveillance.

Reinhardt H, Hachez C, Bienert MD, Beebo A, Swarup K, Voss U, Bouhidel K, Frigerio L, Schjoerring JK, Bennett MJ, Chaumont F (2016) Tonoplast aquaporins facilitate lateral root emergence Plant Physiology. http://dx.doi.org/10.1104/pp.15.01635 Open Access

This Belgian-led study includes lead-UK representation from Warwick (Lorenzo Frigerio)  and Nottingham (Malcolm Bennett) and investigates the role of tonoplast-localised aquaporin proteins during lateral root emergence. The AtTIP1;1, AtTIP1;2 and AtTIP2;1 are abundant aquaporin proteins and the triple tip mutant shows a reduction in lateral root (LR) number without having a shorter primary root. This effect is not due to a reduction of LR primordia but rather due to a defect in the elongation of emerging LR. The authors show that spatial and temporal variations of TIP isoform expression throughout the root correlates with the tip mutant phenotype. Surprisingly, native expression of TIP2:1, which is found only at the base of the LR, can restore wildtype LR emergence to the triple mutant, suggesting that aquaporin activity in this region is sufficient to set-off LR outgrowth.

Pétriacq P, Stassen JH, Ton J (2016) Spore density determines infection strategy by the plant-pathogenic fungus Plectosphaerella cucumerina Plant Physiology http://dx.doi.org/10.1104/pp.15.00551 Open Access

Jurriaan Ton (Sheffield) is the lead researcher on this study that investigates the molecular factors that allow pathogens to switch between necrotropy and biotrophy, which elicit different response pathways within the infected plant. They used untargeted metabolomics to investigate the growth of the ascomycete pathogen Plectosphaerella cucumerina on Arabidopsis leaves. Higher spore densities activate a JA-dependent necrotropic defence response whilst lower spore numbers causes hemi-biotrophic SA-dependent responses. This change is reflected in the susceptibility of different Arabidopsis mutants to differing spore densities and allow the authors to conclude that P. cucumerina is able to gain an advantage over the host immunity by switching between different modes of infection.

Arabidopsis Research Roundup: January 29th

This weeks Arabidopsis Research Roundup features a paper from David Baulcombe and Joe Ecker that further deciphers mechanisms of RNA silencing and is kindly discussed by postdoc Mat Lewsey in a short audio description. Elsewhere there are three studies that include researchers from CPIB in Nottingham. Leah Band contributes to a study that links environment sensing, cell death and auxin signaling whilst Ive De Smet leads a study that finds new proteins involved in cell division. Malcolm Bennett and John King take a modeling approach to describe auxin signaling via the GH3 protein family. Finally Frank Menke leads a study that provides more detail into Pattern Recognition Receptor (PRR) mediated immune signaling and then Jim Dunwell participates in a paper that describes a new method of analyzing GWAS data.

Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, Nery JR, Baulcombe DC, Ecker JR (2016) Mobile small RNAs regulate genome-wide DNA methylation. Proc Natl Acad Sci U S A. http://dx.doi.org/10.1073/pnas.1515072113 Open Access

Over the past few years RNA-mediated silencing has emerged a key mechanism for the control of gene expression. This study is a collaboration between the lab of Sir David Balcombe (Cambridge) and Joe Ecker at the SALK institute in California. Mat Lewsey, who is a British postdoc working with Professor Ecker, kindly provided a short audio description of the paper.

These groups have previously shown that sRNAs are highly mobile throughout the plant. This study shows that thousands of loci expressed in roots are dependent on mobile sRNAs generated from the shoot. They unpick the genetic basis of this response showing that it is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) but not CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. They also show that mobile sRNAs are resposible for the silencing of TEs that are found in gene-rich regions, although this is not a physiologically important response in Arabidopsis, which contains a relatively small amount of transposon tissue. Interestingly they a show that sRNAs generated from different Arabidopsis ecotypes are able to move across graft junctions and can cause methylation in usually unmethylated regions.

PNASpicXuan W, Band LR, Kumpf RP, Van Damme D, Parizot B, De Rop G, Opdenacker D, Möller BK, Skorzinski N, Njo MF, De Rybel B, Audenaert D, Nowack MK, Vanneste S, Beeckman T (2016) Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science . 351(6271):384-7 http://dx.doi.org/10.1126/science.aad2776

This study is led by Tom Beeckman from Gent University and features Leah Band from CPIB in Nottingham. They reveal an exciting relationship between cell death in root cap cells and hormone signaling. The root cap is a protective tissue that overlies the Arabidopsis root tip and might be considered as an ‘inactive’ tissue. However this study shows that an auxin signal released from root cap cells sets the spacing of lateral organs along the root. As root cap cells move up the root they undergo programmed cell death, which in turn releases a pulse of auxin and establishes a pattern of lateral root formation. The authors suggest that this relationship might integrate external soil conditions so that lateral roots will develop to optimise uptake of water and nutrients. It is well known that an auxin signal simulates lateral root formation but this study provides an explanation as to the genesis of this signal and its integration with external environmental factors.

Yue K, Sandal P, Williams EL, Murphy E, Stes E, Nikonorova N, Ramakrishna P, Czyzewicz N, Montero-Morales L, Kumpf R, Lin Z, van de Cotte B, Iqbal M, Van Bel M, Van De Slijke E, Meyer MR, Gadeyne A, Zipfel C, De Jaeger G, Van Montagu M, Van Damme D, Gevaert K, Rao AG, Beeckman T, De Smet I (2016) PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root. Proc Natl Acad Sci U S A. http://dx.doi.org/10.1073/pnas.1525122113

This broad collaboration between US-UK and Belgian researchers is led by Tom Beeckman and Ive De Smet, who works at CPIB in Nottingham. In addition it includes a contribution from Cyril Zipfel at TSL. This study aimed to identify proteins that interact with the plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4), which plays a role in the control of cell division in the Arabidopsis root. They find that PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes interacts with ACR4 and has a previous uncharacterised role in control of formative cell divisions. The authors show that the biochemical network that links ACR4 and PP2A-3 is regulated by phosphorylation.

Mellor N, Bennett MJ, King JR (2016) GH3-Mediated Auxin Conjugation Can Result in Either Transient or Oscillatory Transcriptional Auxin Responses. Bull Math Biol. http://dx.doi.org/10.1007/s11538-015-0137-x

This paper led by Professor Malcolm Bennett and John King from CPIB is an example of the growing number of multi-disciplinary interactions between biologists and mathematicians. Here a model is developed that interrogates auxin signaling and homeostasis through the GH3 gene family. This includes a parameter that considers auxin transport via the LAX3 influx protein, which, together with the activity of GH3 proteins can facilitate a positive feedback loop that allows cells to response to excess auxin.

Mithoe SC, Ludwig C, Pel MJ, Cucinotta M, Casartelli A, Mbengue M, Sklenar J, Derbyshire P, Robatzek S, Pieterse CM, Aebersold R, Menke FL (2016) Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep. http://dx.doi.org/10.15252/embr.201540806 Open Access

Frank Menke (TSL, Norwich) is the leader on this collaboration between UK, Dutch and Swiss researchers that investigates innate immunity signaling mediated via Pattern Recognition Receptors (PRRs). Tight control of this signalling is very important to prevent spurious activation of the immune response. These authors find that the differentially phosphorylated MKKK7 can interact with the FLS2 protein, which is key in the perception of bacterial flagellin. In turn MKKK7 attenuates the signalling of a downstream MAPK that contributes to defence-related gene expression. Therefore the show that the FLS2-MKKK7 signaling module is critical for control of innate immunity.

Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Dunwell JM, Xu S, Zhang YM (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep. http://dx.doi.org/10.1038/srep19444 Open Access

Professor Jim Dunwell (Reading) is a UK contributor to this largely Chinese publication that introduces a new method to analysis GWAS-style data. They propose an analysis based on random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) and using stimulations show that their new method can be powerful than conventional types of analysis. To test the method they analysed flowering time traits in Arabidopsis and detected more genes that were involved in the process.

For those interested in different-types of GWAS analysis, Professor David Salt introduced another new method during a recent ARR.

Arabidopsis Research Roundup: January 22nd 2016

A mixed selection of research in this UK Arabidopsis Roundup. Firstly a study from Stefan Kepinski and Mark Estelle that adds another layer of understanding to the regulation of the auxin response. Enrique Lopez-Juez leads a study into signaling between the nucleus and chloroplast while Tracey Lawson contributes to an investigation into role of starch metabolism in guard cells. Fran Maathuis and co-worker looks at differences in vacuolar transport between Arabidopsis ecotypes while Alan Marchant is involved in a study of cell wall pectins. Finally William Amos has uses the 1001genomes project to investigate heterozygote instability (HI).

Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun. 5;7:10269. http://dx.doi.org/10.1038/ncomms10269 Open Access

Stefan Kepinski (Leeds) is the UK lead on this collaboration with Mark Estelle from UCSD and it continues their previous work that investigates the much-studied auxin receptor TIR1. Arabidopsis seedlings grown at 29C show auxin-dependent hypocotyl elongation although the molecular mechanism behind this response has remained opaque. In this study they show that in high temperatures TIR1 accumulates in a manner dependent on the molecular chaperone, HSP90. In addition HSP90 and the co-chaperone SGT1 directly interact with TIR1. Inhibition of HSP90 results in degradation of the TIR1 and causes a range of auxin-mediated growth processes at both high and low temperatures. This study adds another level of complexity to the molecular basis of the auxin response.

Hills AC, Khan S, López-Juez E (2015) Chloroplast Biogenesis-Associated Nuclear Genes: Control by Plastid Signals Evolved Prior to Their Regulation as Part of Photomorphogenesis. Front Plant Sci. 10;6:1078. http://dx.doi.org/10.3389/fpls.2015.01078 Open Access

The work comes exclusively from the lab of Enrique Lopez-Juez at Royal Holloway and investigates at the expression of photosynthesis-associated nuclear genes (PhANGs). This expression is dependent on light as well as plastid-to-nucleus “biogenic” communication signals and causes the assembly of photosynthesis component chloroplasts. The authors investigate the factors that control the activity of the Lhcb promotor in the light and the dark, both in angiosperms and gymnosperms. They propose that suppression of PhANG responses has contributed to the evolution of light-controlled chloroplast biogenesis.

Horrer D, Flütsch S, Pazmino D, Matthews JS, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D (2015) Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening. Current Biology http://dx.doi.org/10.1016/j.cub.2015.12.036
Graphical Abstract
Tracey Lawson (University of Essex) is the UK lead on this UK-French-Swiss study that uses the stomatal guard cell experimental system to investigate the role of carbon metabolism in the response to blue light. Interestingly guard cells differ from other leave tissues in that they contain starch at the end of the night. However this starch store is rapidly degraded within 30minutes of light and is important for stomatal opening and subsequent biomass production. This starch degradation involves action of two enzymes, β-amylase 1 (BAM1) and α-amylase 3 (AMY3) that do not function during night time starch degradation in other tissues. This process is coordinated by blue light signalling and correlates with the activity of a plasma membrane ATPase. This study adds yet another level of our understanding into the mechanism of stomatal opening. See image for a proposed model of this process (from Cell Press).

Hartley TN, Maathuis FJ (2015) Allelic variation in the vacuolar TPK1 channel affects its calcium dependence and may impact on stomatal conductance. FEBS Lett. 90(1):110-7 http://dx.doi.org/10.1002/1873-3468.12035

Fran Maathuis (University of York) is the leader on this study that assesses the transport properties of two different vacuolar-localised AtTPK1 alleles identified for a study of natural variation in Arabidopsis. They use patch-clamping the interrogate the difference between these proteins from Lansberg (Ler) and Kas-2 ecotypes, when they showed different levels of Ca(2+) dependence. This coincided with lower water loss in either the presence of absence of ABA and higher Ler AtTPK1 activity at similar cytoplasmic [Ca]. The authors present a model that helps to explain their findings.

Dumont M, Lehner A, Vauzeilles B,, Malassis J, Marchant A, Smyth K, Linclau B, Baron A, Mas Pons J, Anderson CT, Schapman D, Galas L, Mollet JC, Lerouge P (2015) Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-D-manno-oct-2-ulosonic acid. Plant Journal. http://dx.doi.org/10.1111/tpj.13104

The majority of the authors on this Technical Advance are from French institutions but also includes UK plant scientist Alan Marchant (University of Southampton). They investigate the chemistry of Arabidopsis and tobacco cell walls, specifically looking at the incorperation of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), a monosaccharide that is only found the cell wall pectin rhamnogalacturonan-II (RG-II). They show that RG-II is found in the primary cell wall including within the root elongation zone. Finally they show that monitoring of Kdo is an effective way to study the synthesis and redistribution of RG-II during root growth.

Amos W (2015) Heterozygosity increases microsatellite mutation rate. Biol Lett. http://dx.doi.org/10.1098/rsbl.2015.0929 Open Access

This study is led by Professor William Amos who is based in the Zoology department at Cambridge. He is not usually a plant science researcher but used the excellent 1001genome project to investigate heterozygote instability (HI) in Arabidopsis. He looked at AC microsatellite sequences from over 1100 genome sequences and used rare alleles as a surrogate for more recent mutations, ultimately showing that rare alleles are more likely to occur at locus-population combinations with higher heterozygosity even when all populations carry exactly the same number of alleles. This shows that local heterozygosity causes more mutations and represents a positive feedback loop.

Arabidopsis Research Roundup: January 8th

For the inaugural Arabidopsis Research Roundup of 2016 we feature the final publications of UK researchers from 2015. Martin Howard kindly provides an audio description of a paper that looks at a fundamental aspect of transcriptional regulation, through the lense of the FLC gene, whilst his co-author Caroline Dean on that paper is an author on another manuscript that investigates RNA stability in the same FLC locus. Katja Graumann leads a paper that looks into gene expression at the periphery of the nucleus whilst Ian Colbeck looks at the effect of silver nanoparticles on plant growth. Ari Sadanandom is the UK lead of a study that investigates of SUMOylation and Ian Fricker looks at the role of a cytochrome P450 on the defence response. Finally Liam Dolan is involved in a comparative analysis of the genes involved in tip growth in the cells of plants and moss.

Wu Z, Ietswaart R, Liu F, Yang H, Howard M, Dean C (2015) Quantitative regulation of FLC via coordinated transcriptional initiation and elongation. Proc Natl Acad Sci U S A. http://dx.doi.org/10.1073/pnas.1518369112 Open Access

Martin Howard and Caroline Dean lead this study that comes out of the John Innes Centre and is the result of the same collaboration that featured in an ARR earlier in 2015. In this study they investigate the mechanisms that control the quantitative regulation of gene expression by focusing on the complex regulation of the FLOWERING LOCUS C (FLC). FLC expression is controlled by a chromatin silencing mechanism involving alternative polyadenylation of antisense transcripts. However they surprisingly show that the amount of RNA Polymerase II occupancy at FLC does not coincide very well with levels of FLC transcription. They used modeling to predict that there is a tight coordination between transcriptional initiation and elongation, which was validated by detailed measurements of the levels of FLC intronic RNA. Variation within initiation and elongation rates were significantly different and was coincident with changes in H3K36me3 and H3K4me2 levels in the FLC gene. The authors propose that chromatin state can influence transcriptional initiation and elongation rates and may be a general mechanism for quantitative gene regulation in a chromatin context.

Martin Howard kindly provides an audio description of this paper and wider aspects of transcriptional regulation.

Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu LJ (2015) RNA-binding proteins At RZ-1B and At RZ-1C play a critical role in regulation of pre-mRNA splicing and gene expression during Arabidopsis development Plant Cell http://dx.doi.org/10.1105/tpc.15.00949

This study investigates a set of previously mysterious RNA-binding proteins and is led by Chinese researchers with a UK contribution from Caroline Dean (JIC). They look at two Arabidopsis proteins, AtRZ-1B and At RZ-1C that have RNA-binding domains and are localised to the mysterious nuclear speckles. In addition these proteins physically interact with a range of serine/arginine-rich (SR) proteins and disrupting this binding causes a range of growth phenotypes that are similar to that observed in At rz-1b/At rz-1c double mutants. These include delayed seed germination, reduced stature, and serrated leaves and on the cellular level this is accompanied by defective splicing and global changes in gene expression. Interestingly AtRz-1C directly effects the expression of the floral repressor FLC, which links this work with other research in the Dean lab. Overall this highlights the important role of At RZ-1B/1C in RNA splicing and the link to many developmental phenotypes.

Smith S, Galinha C, Desset S, Tolmie F, Evans D, Tatout C, Graumann K (2015) Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus. http://dx.doi.org/10.1080/19491034.2015.1126028

Expression of Seh1-LacI-YFP at the nuclear periphery. From http://dx.doi.org/10.1080/19491034.2015.1126028
Expression of Seh1-LacI-YFP at the nuclear periphery. From http://dx.doi.org/10.1080/19491034.2015.1126028

Katja Graumann and David Evans (Oxford Brookes) are the lead academics on this collaboration with the lab of Christophe Tatout from Clermont Ferrand in France. They are attempting to answer a long standing question in the field of the biology of the nucleus; whether genes that are located close to nuclear pore complexes have increased gene expression. They used the Lac Operator/ Lac Repressor (LacI-LacO) system to assess changes in gene expression when a loci is tethered to the NPC by attaching the LacI domain to the nucleoporins Seh1 or NUP50a. The Seh1 clones localised to the nuclear periphery and showed higher RNA and protein expression of Luc. When this interaction at the periphery was distributed, the higher levels of expression were abolished. The authors therefore show that association with the nuclear periphery is important for the regulation of gene expression.

Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V (2015) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify physiology of Arabidopsis thaliana plants. Plant Journal http://dx.doi.org/10.1111/tpj.13105

Ian Colbeck (Essex) is the UK lead on this study that involves a collaboration between researchers in New Zealand, Belarus and Russia and focuses on the effect of silver nanoparticles (Ag NPs) on the growth of Arabidopsis seedlings. This type of nanoparticle is used for many difference applications so worries exist about the safety of their use. This study looks at the effect of Ag NPs on Arabidopsis root elongation and leaf expansion, both of which were inhibited at over [300mg/l] Ag NPs. In addition there were reductions of photosynthetic efficiency and accumulation of silver in plant tissues. They also showed that these particles altered the influx and efflux of metal ions whilst, although they were unable to catalyse hydroxyl radical generation, they did directly oxidise the major plant antioxidant, L-ascorbic acid. Overall the authors show that silver nanoparticles induce classical stress signalling responses but also illicit specific detrimental effects at the plasma membrane. At the whole plant level this study provides a worrying example for the role of Ag NPs on whole plant growth, even though the concentrations used in food preparation might be lower.

Crozet P, Margalha L, Butowt R, Fernandes N, Elias A, Orosa B, Tomanov K, Teige M, Bachmair A, Sadanandom A, Baena-González E (2015) SUMOylation represses SnRK1 signaling in Arabidopsis. Plant Journal http://dx.doi.org/10.1111/tpj.13096

This pan-European study features researchers from Portugal, Austria and the UK’s Durham University, led by Ari Sadanandom. They investigate the role of the SnRK1 protein kinase, which is a key enzyme for modulating the plant stress response. This paper adds detail to the cellular mechanisms that regulate SnRK1 and they show that SnRK1 is SUMOylated by the SIZ1 E3 SUMO ligase. SnRK1 is ubiquitinated and degraded in a SIZ1-dependent manner that is lacking in siz1 mutants. Interestingly only active SnRK1 is degraded as the inactive SnRK1 protein is stable but can be easily degraded upon SUMOylation. Finally they show that SnRK1 is involved in a negative feedback loop wherein it controls its own SUMOylation and degradation that, in wildtype cells, prevents a potentially detrimental stress response.

Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzländer M, Fricker MD, Lipka V (2015) Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. Plant Cell http://dx.doi.org/10.1105/tpc.15.00887

Mark Fricker (Oxford) is the UK research lead on this study that investigates the role of the atypical myrosinase PEN2 in the response to pathogen attack. PEN2 is targeted to both peroxisomes and mitochondria and can also form homo-oligomer complexes. PEN2 localised to mitochondria are immobilized following fungal invasion and this accompanies mitochondrial arrest. The substrate for PEN2 is produced by the cytochrome P450 monooxygenase CYP81F2, which is localized to the ER and moves toward immobilized mitochondria. The critical function of PEN2 in that organelle was confirmed by the result that showed exclusive mitochondria targeting could rescue pen2 mutant phenotypes. The authors show by live-cell imaging that arrested mitochondria in domains of plant-microbe interaction exhibit a pathogen-induced redox imbalance that may lead to production of intracellular signals.

Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JA, Becker JD (2015) A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol Plant. http://dx.doi.org/10.1016/j.molp.2015.12.002

Liam Dolan (Oxford) is an author on this study that is led from Portugal and is an investigation of the transcriptome of the model moss Physcomitrella patens throughout its life cycle. They also compare transcriptomes from P.patens and Arabidopsis, allowing the authors to identify transcription factors that are expressed in tip growing cells. Interestingly they identified differences in expression patterns that might account for the differences between tip growth in moss and the Arabidopsis root hairs, an area that is the expertise of the Dolan lab.

«page 3 of 13»

Follow Me
TwitterRSS
GARNetweets
Categories
April 2024
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
2930  

Welcome , today is Wednesday, April 24, 2024