Arabidopsis Research Roundup: June 9th

This edition of the Arabidopsis Research Roundup pleasingly includes four Open Access articles. Firstly Jose Gutierrez-Marcos leads an investigation into stress-induced memory, secondly Richard Morris is the corresponding author on a study that has developed a new model that explains waves of calcium signalling that response to environmental stresses. Thirdly is a UK-US collaboration that defines the factors that control carotenoid accumulation in seeds. Finally Chris Hawes leads a study that characterises the novel localisation of a subset of auxin biosynthetic enzymes.

Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity Elife Open AccessStress_Model

Jose Gutierrez-Marcos is the corresponding author on this pan-European study that adds to our increasing knowledge about the role of generational memory in the response to stress. Distinct regions of the Arabidopsis genome are susceptible to fluctuations in the level of DNA methylation in response to hyperosmotic stress, a condition that persists into a following generation. This effect is transmitted through the female lineage and the authors investigate this effect in more detail by focussing on a single epigenetically targeted locus. By designing experiments that ran over a series of generations they show that a plants ‘short term memory’ is reliant on the DNA methylation machinery and is able to transmit a distinct developmental response to immediate offspring.

Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted Calcium Wave Dependent on AtRBOHD and TPC1 Propagates the Systemic Response to Salt Stress in Arabidopsis Roots. Plant Physiol.

http:/​/​dx.​doi.​org/​10.​1104/​pp.​16.​00215 Open Access

Richard Morris (JIC) leads this US-UK collaboration that investigates the downstream mechanisms that occur after the waves of ROS and Ca2+ signalling that respond to environmental stresses. The authors show that the current model for propagation of this wave, which relies upon a diffusive wave Ca2+ signalling, is unable to explain the speed of transmission of the wave. The authors develop a new model that adds a ROS-signalling component to explain the velocity of the Ca2+ wave and experimentally verify that their model could represent the in vivo situation. In addition they show that the effectiveness of this ROS-release signalling module is dependent on the activity of the vacuolar ion channel TPC1 and the NADPH Oxidase AtRBOHD.
Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M, Lipka AE, Angelovici R, Gore MA, DellaPenna D (2016) ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing Arabidopsis seed. Plant Physiol.

http:/​/​dx.​doi.​org/​10.​1104/​pp.​16.​00604 Open Access

The lead author of this US-led study is Sabrina Gonzalez-Jorge who is currently a post-doc in GARNet committee member Ian Henderson’s lab in Cambridge. This study elucidates nine loci that are involved in carotenoid homeostasis in Arabidopsis seeds and shows that plants lacking the ZEAXANTHIN EPOXIDASE (ZEP) protein have a six-fold reduction in total seed carotenoids. Natural variation within the ZEP gene is able to account for the fine-tuning of seed carotenoid content and acts upstream of two previously characterised CAROTENOID CLEAVAGE DIOXYGENASE enzymes. Importantly, and somewhat surprisingly, four of the nine Arabidopsis loci are thought to have conserved function in determining the composition of carotenoids in maize kernels. This demonstrates that studying this phenomonen in Arabidopsis is highly relevant for study of the same process in economically important crops.

Kriechbaumer V, Botchway SW, Hawes C (2016) Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway J Exp Bot. Open Access

Chris Hawes (Oxford Brookes) leads this study that localised a subset of enzymes involved in auxin biosynthesis to the endoplasmic reticulum. In addition certain of these enzymes appear to physically interact. This localisation is confirmed by showing ER microsomal fractions are able to undertake auxin biosynthesis. The auxin signalling pathway is complex and well characterised yet this finding adds another layer of regulation that might influence the dynamics of auxin activity.

Arabidopsis Research Report: May 26th

This weeks Arabidopsis Research Roundup includes six studies across a range of discplines. Firstly Alison Smith provides an excellent audio description of an investigation into the dynamics of night-time starch degradation.

Secondly three UK institutions (Durham, Exeter and Oxford Brookes) participate in a study of VAP27 membrane network proteins. Next a broad collaboration from CPIB in Nottingham then introduce a multi-scale model that helps describe Arabidopsis root development.

We also include two studies that involve collaborations with Korean researchers: Gary Loake is a contributor on a study that introduces plant RALF genes whilst Ian Henderson’s research group participates in a study into the function of the SWR1 complex in miRNA gene expression. Finally we highlight a new Plant Cell teaching tool put together by UK academics from Hull and Bristol.

Feike D, Seung D, Graf A, Bischof S, Ellick T, Coiro M, Soyk S, Eicke S, Mettler-Altmann T, Lu KJ, Trick M, Zeeman SC, Smith AM (2016) The starch granule-associated protein EARLY STARVATION1 (ESV1) is required for the control of starch degradation in Arabidopsis thaliana leaves Plant Cell Open Access

This UK and Swiss study is led by Alison Smith from the John Innes Centre and investigates starch degradation that occurs during nighttime. They developed a novel screen to identify an uncharacterized mutant called early starvation 1 (esv1) that more rapidly degraded starch so that it is exhausted earlier in the night. They found that ESV1 and the related LESV1 proteins associated with starch granules within the chloroplast stroma. The authors propose that these proteins influence the organisation of the starch granule matrix, facilitating access for starch-degrading enzymes. In addition they also show that this function appears to be conserved throughout all starch-synthesizing organisms.

Professor Smith provides an audio description of this paper:

Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ (2016) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol. 210(4):1311-1326

This cell biology-focused study is a collaboration between the Universities of Exeter, Durham and Oxford Brookes and investigates vesicle-associated membrane protein-associated proteins (VAPs), which form part of the network that links the plasma membrane and ER. The Arabidopsis genome contains 10 VAP homologues (VAP27-1 to -10) split into 3 clades. Members of clades I and II localise to both ER as well as to ER/PM contact sites (EPCSs) whilst clade II members are only found at the PM, all discovered through transient expression experiments in tobacco. Interestingly the localisation to the EPCSs is associated with the cytoskeleton but does not require the presence of that underlying structure. These proteins are expressed in most cell types and when their levels are altered, plants show pleiotropic phenotypes. Overall this study shows that VAP27 proteins are required for ER-cytoskeleton interactions that are critical for normal plant development.

Muraro D, Larrieu A, Lucas M, Chopard J, Byrne H, Godin C, King J (2016) A multi-scale model of the interplay between cell signalling and hormone transport in specifying the root meristem of Arabidopsis thaliana. J Theor Biol. S0022-5193(16)30070-4


This investigation was performed at CPIB in Nottingham in collaboration with the Virtual Plant Project in Montpellier and is led by John King. The authors have developed a multi-scale computational model that allows the study of signalling networks that occurs during Arabidopsis root growth. This model was experimentally tested to investigate how it is affected by hormonal changes during root growth. The model was able to identify two novel mutants that significantly alter root length through perturbations in meristem size. In general this study demonstrates the value of multi-scale modeling as part of the process of evaluating the function of the components that define the formation of the root meristem.

Sharma A, Hussain A, Mun BG, Imran QM, Falak N, Lee SU, Kim JY, Hong JK, Loake GJ, Ali A, Yun BW (2016) Comprehensive analysis of plant rapid alkalization factor (RALF) genes Plant Physiol Biochem. 106:82-90

This Korean-led study includes a contribution from Gary Loake from the University of Edinburgh and is the first comprehensive investigation of Rapid alkalization factor (RALF) proteins across plant species. These RALF proteins are thought to be important signalling molecules in plant defense and development. This study provides information on gene structure, subcellular locations, conserved motifs, protein structure, protein-ligand interactions and promoter analysis across Arabidopsis, rice, maize and soybean. The RALF genes are phylogenetically divided into 7 clades and their mRNA upregulation following nitrosative and oxidative stresses suggests that they are function in responding to changes in cellular redox status. Overall this manuscript provides a valuable resource to prime future research into the role of RALF genes.

Choi K, Kim J, Müller SY, Oh M, Underwood C, Henderson I, Lee I (2016) Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex in Arabidopsis thaliana. Plant Physiol.

GARNet committee member Ian Henderson (Cambridge) is a contributor on this study that is led by researchers in Seoul, South Korea. In the last ARR, Vinod Kumar described work that looked into the role of the SWR1 chromatin-remodeling complex and this study provides an insight into the role of this same SWR1 complex on microRNA (miRNA)-mediated transcriptional control. In SWR1 complex mutants (arp6, sef, and pie1), deep sequencing revealed that many miRNA types and their target mRNAs are misregulated. This further establishes the role of the SWR1 complex in the control of nucleosome occupancy, likely by mediating the exchange of H2A isoforms, for a range of genes involved in the fine-tuning of numerous developmental processes.

Hubbard, K, Dodd, A. (2016). Rhythms of Life: The Plant Circadian Clock. Teaching Tools in Plant Biology: Lecture Notes.

Katherine Hubbard and Anthony Dodd have produced a teaching resource focused on the Circadian Clock as part of the increasingly comprehensive Plant Cell Teaching Tools. Most academics are looking to save time and this resource will allow them to do this and provides excellent coverage of the topic.

Arabidopsis Research Roundup: May 13th

Tags: No Tags
Comments: 1 Comment
Published on: May 13, 2016

This weeks Arabidopsis Research Roundup includes two peer-reviewed papers and the release of a preprint. Vinod Kumar from the JIC provides an audio description of a study that investigates the role of the SWR1 complex in the defence response. Secondly Jessica Metcalf from Oxford is a contributor on a study that looks at population responses of Arabidopsis to simulated climate change. Finally John Brown (University of Dundee and the James Hutton Institute) is the corresponding authors on a preprint that introduces a new Arabidopsis transcriptome annotation.

Berriri S, Gangappa SN, Kumar SV (2016) SWR1 chromatin-remodelling complex subunits and H2A.Z have non-overlapping functions in immunity and gene regulation in Arabidopsis Molecular Plant Open Access

Vinod Kumar (John Innes Centre) is the corresponding author on this study that investigates the incorporation of the histone variant H2A.Z into Arabidopsis nucleosomes. This histone variant is important in the control of differential gene expression although its role in plant immunity is not well understood. H2A.Z is integrated into nucleosome by the SWR1 chromatin remodelling complex that contains a number of subunits namely PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6). Interestingly each subunit plays discrete roles in different pathogen response processes including basal resistance, enhanced resistance, effector-triggered immunity or in altered JA/ET-mediated immunity. Genome wide expression analysis reveals a role for PIE1 in the crosstalk between signalling processes and overall that SWR1c components might have distinct non-overlapping roles during gene regulation and expression.

Dr Kumar kindly provides a brief audio description of this paper:


Fournier-Level A, Perry EO, Wang JA, Braun PT, Migneault A, Cooper MD, Metcalf CJ, Schmitt J (2016) Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana PNAS PNASpic

Mathematician Jessica Metcalf (Oxford) is an author on this US-led study that uses Arabidopsis to investigate the effect of climate change on evolution of fitness. Over four seasons plants were grown under four climatic conditions (present day, overall increased temp, winter-warming and poleward-migration temp) and 12 traits were measured as a proxy for fitness evolution. The data was used to simulate evolutionary trajectories over a 50-100 year period. The authors found that each climatic condition resulted in different outcomes where populations with fewer founding genotypes or less initial diversity adapted less well to altered conditions. This suggests that successful adaptation to climate change is linked to the diversity within a given population prior to the change occurring.

Zhang R, Calixto C, Marquez Y, Venhuizen P, Tzioutziou N, Guo W, Spensley M, Frey N, Hirt H, James A, Nimmo H, Barta A, Kalyna M, Brown J (2016) AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data. Preprint BioRxiv Open Access

This preprint includes researchers from the Universities of Dundee (John Brown), Glasgow (Hugh Nimmo) and Vienna and the James Hutton Institute and introduces AtRTD2, a new transcriptome for Arabidopsis and AtRTD2-QUASI for expression analysis and quantification of alternatively spliced isoforms in RNA-seq data.

Arabidopsis Research Roundup: May 5th

There are a bumper crop of papers in this edition of the Arabidopsis Research Roundup. First from the University of Manchester is a paper that identifies a protein involved in plant programmed cell death. Secondly are two papers from the University of Bristol that highlight the role of viruses in the reflectivity of plant leaves and an assessment of the growth parameters of Arabidopsis on different soil-types. Thirdly are three papers from University of Edinburgh that either use CRISPR-Cas technology to develop virus-research plants, investigate the relationship between photoperiod and metabolism or present a method for assessment of protein S-nitrosylation. Fourthly is a paper that includes a contribution from the University of Leeds that investigates the evolutionary and functional relationship of the WOX gene family. Finally is a study that highlights the role of the AUGMIN complex during microtubule activity that includes a contribution from the University of Leicester.

In addition, although not involving Arabidopsis, we should mention an exciting study from Gerben van Ooijen (Edinburgh) that has discovered a conserved circadian mechanism based on magnesium rhythms that is linked to energy expenditure.

Ge Y, Cai YM, Bonneau L, Rotari V, Danon A, McKenzie EA, McLellan H, Mach L, Gallois P (2016) Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death Differ. Open Access

The corresponding author of this paper is Patrick Gallois from the University of Manchester and includes contributions from Hazel McLellan in Dundee almongside Chinese and Austrian collaborators. This study investigates the role of caspase proteins on control of programmed cell death in plants. This research area has been hindered by the apparent lack of plant caspase orthologues despite pharmacological evidence that proteins with caspase activity are active in plants. The authors use a labeled caspase-3 inhibitor to identify the Arabidopsis Cathepsin B3 (AtCathB3) protein as having caspase activity, which was verified using recombinant proteins during in vitro enzyme assays. AtCathepsinB1,2,3 triple mutant plants demonstrate a reduction in PCD induced by different stresses and explains why caspase inhibitors are effective tools for studying PCD in plants. The core Cathepsin B protein is evolutionarily conserved suggesting that an ancestral pathway exists that controls PCD, the details of which require further study.

Maxwell DJ, Partridge JC, Roberts NW, Boonham N, Foster GD (2016) The Effects of Plant Virus Infection on Polarization Reflection from Leaves. PLoS One. 11(4):e0152836 10.1371/journal.pone.0152836 Open Access

Gary Foster’s research group at the University of Bristol collaborate with others at the University of York and in Australia for this study that investigates how plant viruses may modify gene expression to benefit their own transmission. They show that Potato virus Y and Cucumber mosaic virus (CMW), which both are transmitted by aphids, significantly reduce the amount of polarised light that is reflected from abaxial leaf surfaces of tobacco plants particularly when compared to the effects caused by non-insect vectored viruses. However this effect was not shown in Arabidopsis leaves infected by a variety of differently transmitted viruses. Interestingly ECERIFERUM6 (CER6) transcripts accumulate to higher levels following infection with insect vectored viruses and as this gene is involved in cuticle wax synthesis the authors suggest that induced changes in cuticle composition might be key in understanding how viruses encourage predation by their insect vectors. Finally the authors discuss the overall adaptive significance of these results.

Drake T, Keating M, Summers R, Yochikawa A, Pitman T, Dodd AN (2016) The Cultivation of Arabidopsis for Experimental Research Using Commercially Available Peat-Based and Peat-Free Growing Media. PLoS One. 11(4):e0153625 10.1371/journal.pone.0153625 Open AccessPeatPic

GARNet committee member Anthony Dodd, also from the University of Bristol, leads this study into the growth of Arabidopsis on peat-free media, which was motivated by the unsustainable use of peat-based composts. They found that biomass accumulation and seed yield were reduced on peat-free media and that some types of this media was more suspectible to fungal contamination. Overall vegetative phenotypic parameters were similar between plants grown on peat-based or peat-free media, indicating that this type of media will be appropriate for future analysis. However the seed yield was usually reduced, indicating that experiments looking at post-phase change phenotypes might not be as comparable between plants growth on media with different amount of peat.

Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants Mol Plant Pathol.

Attila Molnar (Edinburgh) is the corresponding author on this study that uses the transformative technology CRISPR/Cas9 to engineer Arabidopsis plants that are resistant to potyvirus infection. This is achieved by targeting the genes encoding the translation initiation factor eIF(iso)4E that had been previously identified as being critical for viral establishment. Importantly they subsequently selected transgene-free plants that have no phenotypic changes when compared to wildtype growth under standard conditions. As the potyvirus Turnip Mosaic Virus is an important pathogen for vegetable crops this is potentially an extremely powerful technique for generating virus-resistance food crops.

Flis A, Sulpice R, Seaton DD, Ivakov AA, Liput M, Abel C, Millar AJ, Stitt M (2016) Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis Plant Cell Environ.

This German–led study aims to connect the expression of photoperiod-length responsive circadian clock-regulated genes with those involved in metabolic processes such as starch degradation and includes a contribution from Professor Andrew Miller from the Edinburgh SynthSys Centre. The authors assess global gene expression by transcript profiling at photoperiods ranging from 4-18 hours and found that changes in transcript abundance at dawn throughout these photoperiods were as large as changes seen in individual experiments when comparing dawn and dusk. These complex interactions revealed coordinated regulation of key metabolic processes and begins to demonstrate how metabolism is linked to photoperiod.

Homem RA, Le Bihan T, Yu M, Loake GJ (2016) Identification of S-Nitrosothiols by the Sequential Cysteine Blocking Technique Methods Mol Biol. 1424:163-74.

This paper from the lab of Gary Loake (Edinburgh) describes the methods they use to investigate the role of protein S-nitrosylation in the immune responses of Arabidopsis. These are based on a modification of the biotin-switch technique, which they term sequential cysteine blocking.

Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, Chen J, Davies B, Werr W, Laux T (2016) Stem cell regulation by Arabidopsis WOX genes Mol Plant. S1674-2052(16)30029-6

This German-led study includes work from the lab of Brendan Davies at the University of Leeds and investigates the role of the WUSCHEL-RELATED HOMEOBOX (WOX) transcription factor gene family during stem cell development and maintenance. Most members of the WUS-clade can largely substitute for WUSCHEL activity in the shoot meristem, which is absolutely dependent on a conserved WUS-box motif that is critical for the interaction with TOPLESS co-repressors. In contrast to the WUS clade, the WOX13 and WOX9 clades cannot substitute for WUS activity. The indicates that WOX control of shoot and floral meristem relies on certain currently not-fully-understood attributes of the WUS-clade of proteins.

Oh SA, Jeon J, Park HJ, Grini PE, Twell D, Park SK (2016) Analysis of gemini pollen 3 mutant suggests a broad function of AUGMIN in microtubule organization during sexual reproduction in Arabidopsis Plant J.

David Twell (Leicester) is an author on his Korean-led study that reports on the identification of the new gem3 mutant, which displays defects in gametophytic development. Mutant plants exhibits disrupted cell division during male meiosis, at pollen mitosis I and throughout female gametogenesis. Gem3 is a hypomorphic allele of the AUGMIN subunit 6 gene, which is a component of Augmin complex responsible for microtubule (MT) nucleation in acentrosomal cells. In the gem3 mutant, the authors show that MT arrays are incorrectly distributed, likely causing the gametophyte-specific phenotypes and demonstrating a broad role for the augmin complex during sexual reproduction in flowering plants

Arabidopsis Research Roundup: April 14th

This week Arabidopsis Research Roundup contains two studies that originate at the University of Birmingham. Firstly George Bassel kindly provides an audio description of a study that looks at the processes regulating seed germination. Secondly Juliet Coates leads an investigation into the function of evolutionarily conserved ARABIDILLO proteins. Elsewhere is a University of Edinburgh study into the tissue-specificity of PhyA responses and lastly an investigation of the phytotoxic effects of Cerium nanoparticles.

Nieuwland J, Stamm P, Wen B, Randall RS, Murray JA, Bassel GW (2016) Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6. Sci Rep. Open AccessRootTip

George Bassel (Birmingham), GARNet PI Jim Murray (Cardiff) and Jeroen Nieuwland (South Wales) are the leaders of this study that investigates the activation of the root meristem during germination, a process that requires de novo GA synthesis. Using hormone applications and genetic analysis the authors show that root meristem can begin elongation independent of germination, which is defined as occurring following both testa rupture and radicle protrusion. KRP6 is a cell cycle regulator and partially represses activation of the cell cycle by GA so krp6 mutants germinate more rapidly. Overall this study concludes that the cell cycle can uncouple the interactions of GA and ABA that act to conclude germination and promote root meristem elongation.

George Bassel kindly provides a short audio description of this paper.

Moody LA, Saidi Y, Gibbs DJ, Choudhary A, Holloway D, Vesty EF, Bansal KK, Bradshaw SJ, Coates JC (2016) An ancient and conserved function for Armadillo-related proteins in the control of spore and seed germination by abscisic acid. New Phytol. Open Access

This study comes exclusively from the University of Birmingham and is led by Juliet Coates. This group investigates the role of Armadillo-related ARABIDILLO proteins on branching processes across plant species. In the moss Physcomitrella patens these proteins are linked to the action of the hormone ABA on spore germination, which converges with a role for the proteins in Arabidopsis seed germination. Importantly both P.patens and Selaginella moellendorffii ARABIDILLO proteins are able to substitute for native proteins in Arabidopsis, demonstrating their conserved function. The authors conclude that these proteins were co-opted into the regulation of both sporophytic and gametophytic processes early in plant evolution.

Kirchenbauer D, Viczián A, Ádám É, Hegedűs Z, Klose C, Leppert M, Hiltbrunner A, Kircher S, Schäfer E, Nagy F (2016) Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-A expressed in different tissues. New Phytologist . Open Access

Ferenc Nagy (Edinburgh) is the corresponding author of this Hungaro-German study that focuses on how phytochrome responses are mediated in a tissue-specific manner. Considering that phyA is expressed throughout plant tissues it remained a mystery as to how the PhyA responses are able to control plant development. This study used tissue-specific promotors to drive PHYA production in a variety of tissues and discovered that expression in a limited number of tissues is able to regulate flowering time and root growth. In addition they find evidence for the intercellular movement of PhyA. The authors conclude that the PhyA response is partly controlled by a mix of tissue-specific expression and the regulation of key downstream factors in a tissue-autonomous cell activity.

Yang X, Pan H, Wang P, Zhao FJ (2016) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana J Hazard Mater.

GraphThis Sino-UK-Australian study is led by Fang-Jie Zhao at Rothamstead Research. They investigate the uptake and phytotoxicity of commonly used (in consumer products) cerium oxide nanoparticles (CeO2-NPs) into Arabidopsis. At high concentrations the NP component, but not the Ce ions, were shown to have toxic effects on plant growth. These CeO2-NPs were taken up and translocated to the shoot where they aggregate in needle-like particles. This movement was independent of the type or concentation of Ce. The authors suggest this represents important information for the environmental considerations linked to the use and disposal of this type of NPs.

Arabidopsis Research Roundup: April 1st.

This weeks Arabidopsis Research Roundup contains an eclectic mix of investigations. Firstly is a study from Peter Unwin that investigates the molecular factors that control interactions between plants and nematode parasites. Secondly is a study led by John Christie that investigates the factors that control hypocotyl curvature. Thirdly is a fascinating proof-of-concept synbio-style study from Rothamstead Research where an algal gene is transferred into Arabidopsis in the hope of developing a phytomediation-based solution to heavy metal contamination. Fourthly is a study from David Bass that catalogues protist species that feed on leaf-microorganisms whilst finally John Carr heads a study that compares RNA-dependent RNA polymerases from Arabidopsis and Potato.

Eves-van den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE (2016) Functional C-terminally encoded plant peptide (CEP) hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol Plant Pathol.

This study is a collaboration between researchers at the Universities of Dundee and Leeds, led by Peter Unwin. The focus of the paper is the interaction of Plant-Parasitic Nematodes (PPNs) with their plant hosts. PPNs stimulate redifferentiation of vascular tissues to form ‘feeding structures’ that benefit the parasite. This process is mediated by a diverse family of effector proteins termed C-terminally Encoded Peptide plant hormone mimics (CEPs). This study investigates the CEPs from the nematode Rotylenchulus reniformis and suggests that these peptides evolved de novo in this organism. They show that the activity of a synthetic peptide corresponding to RrCEPs causes a reduction in primary root elongation whilst upregulating a set of genes including the nitrate transporter AtNRT2.1. The authors propose that CEPs evolved in R. reniformis to allow sustained biotrophy by upregulating a specific set of feeding-responsive genes and by limiting the size of the feeding site produced. This study represents an exciting introduction to a currently under-researched area within plant-pathogen interactions.

Sullivan S, Hart JE, Rasch P, Walker CH, Christie JM (2016) Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis. Front Plant Sci. 7:290 Open AccessFrontiersPHOT1

John Christie (Glasgow) is the corresponding author on this investigation into the role of the blue-light receptor phototropin 1 (phot1) during hypocotyl phototropism. Curvature of this organ is enhanced by treatment by red-light mediated by the phytochromeA receptor. However this study shows that pre-treatment with blue-light can also enhance this hypocotyl curvature although this did not occur at higher light intensities. In addition phototropic enhancement was also lacking when PHOT1 is expressed only in the hypocotyl epidermis. Therefore the study shows that the phyA impact on phot1 signaling is restricted to low light intensities and in tissues other than the epidermis.

Zhong Tang, Yanling Lv, Fei Chen, Wenwen Zhang, Barry P. Rosen, and Fang-Jie Zhao (2016) Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity J. Agric. Food Chem. Open Access ArsM

This synthetic biology-focused study is led by Fang-Jie Zhao at Rothamstead Research. The authors take an algal gene (arsM) that allows the transformation of inorganic arsenic to a more volatile methylated version. The biological activity of this enzyme was successfully transferred to two different Arabidopsis ecotypes. However interestingly these transgenic plants became more sensitive to arsenic in growth media suggesting that the new methylated arsenic intermediate is more phytotoxic than inorganic arsenic. Therefore this study demonstrates a negative consequence of this project that attempted to engineer arsenic tolerance in plants. Once again this demonstrates that nature rarely acts predictably and any great ideas usually need to be tested in vivo.

Ploch S, Rose L, Bass D, Bonkowski M (2016) High Diversity Revealed in Leaf Associated Protists (Rhizaria: Cercozoa) of Brassicaceae J Eukaryot Microbiol.

After a fantastic opening line in the abstract, ‘The largest biological surface on earth is formed by plant leaves’, this study includes the work of David Bass from the Natural History Museum in London. They investigate the abundance of protists that associate with leaf-inhabiting microorganisms, the “phyllosphere microbiome“. Their findings demonstrate that protists should be considered an important part of the diversity of plant-interacting microbial organisms.

Hunter LJ, Brockington SF, Murphy AM, Pate AE, Gruden K, MacFarlane SA, Palukaitis P, Carr JP (2016) RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases Sci Rep. 6:23082 Open Access

John Carr (Cambridge) is the UK-lead on this collaboration with Slovenian and Korean researchers. They primarily investigate the role of the RDR1 RNA-dependent RNA polymerase (RDRs) in potato. In Arabidopsis the RDR1 gene contributes to basal viral resistance but potato plants deficient in StRDR1 do not show altered susceptibility to three different plant viruses. In addition they perform a phylogenetic analysis on the RDR genes and identify a novel RDR7 gene that is only found in Rosids (but not Arabidopsis.

Arabidopsis Research Roundup: March 24th

Tags: No Tags
Comments: No Comments
Published on: March 24, 2016

Just three papers this week in the UK Arabidopsis Research Roundup. Firstly Professor Anna Amtmann provides an audio description of her groups characterisation of the binding partners of the Histone Deacetylase Complex1 protein. Secondly Dr Carine De Marcos Lousa leads a study that investigates a set of plant-specific proteins involved in the cellular secretory pathway. Finally Dr Paul Devlin is a contributor to a study that characterises the role of a nucleoporin protein in the shade avoidance response.

Perrella G, Carr C, Asensi-Fabado MA, Donald NA, Páldi K, Hannah MA, Amtmann A (2016) The Histone Deacetylase Complex (HDC) 1 protein of Arabidopsis thaliana has the capacity to interact with multiple proteins including histone 3-binding proteins and histone 1 variants. Plant Physiol. Open Access

Anna Amtmann (Glasgow) leads this European collaboration that investigates the binding capability of the Histone Deacetylase Complex (HDC) 1 protein, which has been previously shown to regulate multiple growth phenotypes due to its interaction with histone deacetylases. HDC1 proteins are ubiquitously present throughout plant tissues yet their secondary structure offers little clue to their specific binding interactions. Therefore this attempt to dissect the interaction spectrum of HDC1 and discovered that the protein interacts with different histone3 (H3) binding proteins but not H3 itself. Interestingly HDC1 could also interact with different variants of the H1 histone linker protein. The authors show that the ancestral core of HDC1 had a narrower range of interactions indicating that over evolutionary time the protein had developed more promiscuous binding. However even the conserved portion of the protein is able to interact with H3-associated proteins and H1, indicating that HDC1 played an important role in the establishment of interactions between histones and modifying enzymes.

Professor Amtmann kindly provides a short audio description of this paper. Apologies for the variation in sound quality and volume!

de Marcos Lousa C, Soubeyrand E, Bolognese P, Wattelet-Boyer V, Bouyssou G, Marais C, Boutté Y, Filippini F, Moreau P (2016) Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway J Exp Bot. Open Access

Carine De Marcos Lousa (Leeds Beckett)  is the lead author in the UK-French-Italian study that investigates the activity of plant specific R-SNARE proteins, called longins. SNARE proteins are critical for the membrane fusion events that occur during intracellular transport. A new four-member family of longins called ‘phytolongins’ (Phyl) that lack a typical SNARE domain have recently been discovered. These ubiquituosly expressed proteins are distributed throughout the secretory pathway with different members localised at ER, Golgi apparatus or post-Golgi compartments. Furthermore the export of the Phyl1.1 protein from the ER is dependent on a Y48F49 motif as well as the activity of at least three accessory proteins. This manuscript is the first characterisation of Phyl subcellular localisation and adds to our knowledge of specific mechanisms involved in the plant secretory pathway.

Gallemí M, Galstyan A, Paulišić S, Then C, Ferrández-Ayela A, Lorenzo-Orts L, Roig-Villanova I, Wang X, Micol JL, Ponce MR, Devlin PF, Martínez-García JF (2016) DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development.

This Spanish-led study includes Dr Paul Devlin (RHUL) and introduces a new gene that is involved in the shade-avoidance-response in Arabidopsis. The DRACULA2 gene is a homolog of the metazoan nucleoporin NUP98, which is a component of the nuclear pore complex (NPC). The authors find that other members of the NPC are also involved in the control of hypocotyl elongation in response to proximity of other plants. This is likely due to nuclear transport-dependent processes. However the authors suggest that DRA2 also has a transport-independent role that is related to its physical association with the NPC. This demonstrates that nucleoporins play an important role in plant signaling, although assigning specificity to their activity remains difficult given their general role in nucleocytoplasmic transport.

Arabidopsis Research Roundup: March 18th

Tags: No Tags
Comments: No Comments
Published on: March 18, 2016

This weeks Arabidopsis Research Roundup includes three papers from the Norwich Research Park on very different topics. Firstly the team of Richard Morris investigates the nature of mRNA sequences that are transported over long-distances. Secondly Kristen Bomblies introduces a set of genes involved in the evolution of weediness whilst finally Cyril Zipfel is involved in research that developed a novel assay for identification of defence signaling components. Elsewhere Paul Devlin’s group from RHUL characterises the interactions between components of a light signaling pathway whilst Alex Webb and co-workers use a novel assay to confirm the activity of plant nucleotide cyclases involved in calcium signaling.

Calderwood A, Kopriva S, Morris RJ (2016) Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell Open Access

Richard Morris (JIC) is the lead author on this ‘Breakthrough Report’ that analyses previously generated data in order to ascertain whether populations of mRNAs that are transported long-distances in the phloem are selected by any mechanism. They showed that in general mobile transcripts can be explained by their abundance and half-life, leading to the conclusion that the majority of transported mRNAs are not selected on the basis of their primary sequence.


Recent ECR Research Grant awardee Kristen Bomblies (JIC) leads this investigation into growth variation in Arabidopsis Arenosa. This obligate outbreeding relative of A.thaliana is normally not weedy but can transition to weediness in conditions of high disturbance. This study uses transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to investigate a weedy population of A.arenosa that has been discovered growing along railway lines through central and Northern Europe. These plants show constitutive upregulation of genes involved in heat shock and freezing tolerance. Amongst the genes that were strongly selected in the weedy population was LATE ELONGATED HYPOCOTYL (LHY), which is known to regulate many stress-regulated genes in A.thaliana and therefore might be a significant determinant in the evolution of weediness.

Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana Proc Natl Acad Sci U S A.

This Australian-Austrian-UK collaboration includes work from the lab of Cyril Zipfel (TSL). The initial work in this study uses the Nicotiana benthamiana expression system to identify novel leucine-rich repeat (LRR)-containing pattern recognition receptors (PRR) that interact with the BRI1-ASSOCIATED KINASE1 (BAK1) protein, which is important in recognition of bacterial pathogens. N.benthamiana plants were treated with the effector peptide csp22 and the resulting samples were immunopurified with BAK1. They identified a protein termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR) which, when silenced in tobacco resulted in reduced defence responses to the csp22 peptide. Subsequent expression of NbCSPR in Arabidopsis caused antibacterial resistance. Primarily the authors demonstrate a novel protocol that could be used to identify further novel components in signaling pathways that response to pathogen attack.

Siddiqui H, Khan S, Rhodes BM, Devlin PF (2016) FHY3 and FAR1 Act Downstream of Light Stable Phytochromes Front Plant Sci. 7:175 Open Access
Paul Devlin (RHUL) is the lead on this study that looks at the regulation of the ELF4 gene. This gene is a light-dependent target for the transcription factors FHY3 and FAR1 and the authors demonstrate that this signaling acts via not only the phytochrome PhyA but also through phyB, phyD, and phyE. ELF4 induction by FHY3 and FAR1 occurs specifically in the evening, which allows expression of ELF4 beyond dusk during shortening days. Without the action of the two transcription factors, this ELF4 expression is not maintained resulting in further downstream gene expression changes that alters the cycling of the circadian clock.

Abdul-Awal SM, Hotta CT, Dodd AN, Davey MP, Smith AG, Webb AA (2016) NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis Plant Physiol. Open Access

This study continues Alex Webb’s (Cambridge) work in the area of calcium signaling by investigating the control of cyclic ADP-ribose (cADPR) production in Arabidopsis. Although the role of cADPR in plant signaling is well established there are no ADPR cyclase enzymes with strong similarity to known metazoan enzymes in previously interrogated plant genomes. This argues for either a unique synthesis route for cADPR or for the activity of an enzyme with low sequence similarity to previously characterized cyclases. To test these difference ideas the authors developed two novel fluorescence-based assays to measure ADPR cyclase activity. These assays reveal that indeed there is activity that resembles the characteristics of a cyclase, which additionally is activated by nitric oxide (NO). This potentially links NO signaling activity to increased levels of cADPR and mobilisation of a calcium signal.

«page 2 of 12»

Follow Me
March 2017
« Feb    

Welcome , today is Monday, March 27, 2017